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ABSTRACT For a single diallelic locus in a finite
population with any time-independent selection scheme,
using the diffusion approximation, a formula is derived
in terms of sojourn times for the moments of the integral
of an arbitrary function of gene frequency along sample
paths. Irreversible mutation and conditioned and un-
conditioned processes without mutation are treated.
From this expression, the differential equation satisfied
by the moments follows directly, and the exact probability
distribution of sojourn times is deduced. An independent
probabilistic proof of the last result based on the proper-
ties of time-homogeneous Markov processes is presented.

In a recent paper (1), Maruyama and Kimura, relying on a
theorem proved in Dynkin (2), developed a unified approach
to the calculation of the moments of many distributions sig-
nificant in the genetics of finite populations. These character-
istics of stochastic changes in gene frequencies include so-
journ times, times to fixation or loss, and total heterozygosities.
The only probability distribution of this nature that has been
derived analytically is that of the fixation time for a neutral
gene (3).
Maruyama and Kimura consider a single diallelic locus,

and denote the frequencies of the alleles A and a by x and
1 - x. They discuss only the case without mutation, but
irreversible mutation may be permitted without altering the
basic formalism. Thus, x = 0 or x = 1 or both are absorbing
barriers. Following ref. 1, we designate the frequency of A at
time t for the particular sample path X by x(w, t). We assume
all paths start at t = 0, and let x(w, 0) = p. Since there is at least
one absorbing barrier, for each sample path w, the exit time
from the interval (0,1), 3(w), is finite, and x [w,3(w)] = 0 or 1.
The nth moment of the integral of an arbitrary function of

gene frequency, f(x), along the sample path w is
3r(co) nl

F(n)(p) = E {f f[X(Wt)]dt]} [1]

where E indicates the expectation with respect to sample
paths. If there is no mutation, frequently one desires to study
paths conditioned on fixation or loss. Suppose ul (p) represents
the probability that a path ultimately reaches x = 1. The
nth moment comparable to F (n) (p) reads

Klf(p) = Fln)(p)/ui(p), [2]
with

FIN(p) = ul(p)E {[Tk f[x(w,t)]dt] x[w,3(co)] = 1}.

[3]

In terms of the time-independent drift and diffusion co-

efficients M(p) and V(p), we may write the backward diffu-
sion operator as

L = M(p) + V(p) 62

Up 2 ?.p2 [4]

In Eq. 4, M(p) is the expected change in gene frequency per
unit time (generation), and V(p) = p(l - p)/(2Ne), where
Ne denotes the variance effective population number.
Maruyama and Kimura (1) base their discussion on the

theorem (2)

LF(f)(p) + nf(p)F("-)(p) = 0, n > 1. [5]

For two absorbing barriers, they give the boundary condi-
tions

F ()(0) = F(nh) (1) = 0. [6]
If only x = 1 is an absorbing state, Eq. 6 must be replaced
by the requirements that

- F(ff)(0) be finite
dp

[7a]

and
F(f) (1) = 0. [7b]

The condition 7a can be deduced from the work of Feller (4).
For a single absorbing barrier at x = 0, 0 and 1 must be
interchanged in Eq. 7. The conditional moment Fi(n) (p)
also satisfies Eqs. 5 and 6(1). The moment-generating function

[8].t(X;P) = E (Xn/n!)F(nf)(p)
n =O

satisfies

L4(X;p) + Xf(p)4((X;p) = 0,

as does its conditioned analogue (1),

1(DI p) = E (Xn/n!)Fl(n)(p).n=o

[9]

[10]

In order to apply the theory expounded by Maruyama
and Kimura, one must either solve Eq. 5 recursively or derive
the moment-generating function from Eq. 9. For higher
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moments, the first method is clearly quite inconvenient, if not
impracticable. The second technique, in general, is rather
difficult; for the lower moments, manifestly unnecessarily so.
We shall present an explicit integral formula for the moments
F(n)(p) and K(n)(p) as functions of mean sojourn times.
The latter have received considerable attention (5-8) and
may be computed easily as follows. Set

G(x) exp 2 f [M()/V()Id} [il]

and
ab

g(a,b) = GQt)d{. [12]

With no mutation, the respective probabilities of fixation and
loss are

ui(p) = g(O,p)/g(0,1) [13a]

and

uo(p) = g(p,1)/g(0,1). [13b]

Let r(p,y)Ay designate the total time the population spends
in the interval I: (y, y + Ay) for a particular sample path
c (starting at p, as stated above). We shall call r(p,y) the
sojourn time; the mean sojourn time is

GENERAL THEORY
We rewrite Eq. 1 in the form

(pn (c )
F(f)(p) =E H

i=l
[19]

and note that the n! permutations of the times to contribute
equally to F(f)(p). Therefore, we may order them so that
ti > ti-1. Introducing the probability O(p, x; t)Ax that the
gene frequency, with initial value p, is in the interval (x,
x + Ax) at time t, Eq. 19 becomes

n tfi+lFM)(p) = n! H , dtj 1 dxJf(xj)O(xlj..,x;tj -ti-,)
[20]

where we define to = 0, tn+1 = I, xo = p, and average over
sample paths by setting xi = x(w,tj). Next, we change vari-
ables to the time intervals

[21a]ti' = t - ti-12
i

to= i ti',
i = 1

and find
nJ co

F"I)(p) = n! II ,d= t'(xi)-O(xjj,xj;tj').
i=l 0

[21b]

[22]

f(Py) = E[T(py)].

Finally, we introduce the Heaviside unit step function

'1, t > 0
@(t) = 1/2, t = 0.

(o, t < o
If both fixation and loss are possible,

T(p,y) = 2[V(y)G(y)]-1[uo(p)g(O,y)O(p - y)
+ ul(p)g(yl)(y - p)].

The mean sojourn times conditioned on fixation or loss rea

TIi(p,y) = -T(P,y)ui(y)/U1(p)

(14] Substituting

coFQ7)= f Q(77;t)dt,

[15] into Eq. 22, we obtain our main result,
nJ I

F"I)(p) = n! IIJ dxf f(xj)-T(xj-j,xj).
i= 1

[17a]

and

io(py) = T(p,y)Uo(y)/UO(p) * [17b]

With absorption possible only at x = 1,

i(p,y) = 2[V(y)G(y)]'-
X [g(p,1)O(p - y) + g(y,1)(y - p) ], [18a]

while if it can occur only at x = 0,

F(p,y) = 2[V(y)G(y)]-1[g(Oy)O(p - y)

+ g(0,p)G(y - p)]. [18b]

From the expressions in the General Theory section for
F(f)(p) and K(f)(p), we shall deduce Eq. 5 directly. This
seems desirable because Dynkin's proof (2) is neither
brief nor elementary. In the section on Sojourn Times,
we shall calculate the probability distribution of the
sojourn time r(p,y) in terms of its mean 1(p,y) for all cases.
This result will be verified by a probabilistic argument.

[23]

[24]

Equation 24 applies to all unconditional processes with at
least one absorbing barrier. If we treat only simple paths that
eventually reach x = 1, Eq. 20 must be modified to

n rtf+lF,"I (p) = n! J J dtidxff(x')o(xil xj;t
- ti.)ul(xn), [25]

whence the equation corresponding to Eq. 22 will read
n r1 "OFI(M) (p) - n! J dxi dti'f(xi)O(xj-1,x1;t1')u1(x.).

[26]

The conditional mean sojourn time i1(E,%) is given by Eqs.
17a and 23. Hence, the integrations over time may be per-
formed successively to derive, recalling Eq. 2,

n Jf
K Mf (p) = 71! rJJdxff(xif37(xi-l,,x) .

i=l
[27]

As might have been expected, Eq. 27 has the same form as
Eq. 24. (For an alternative expression, see Eq. 32.) Therefore,
all results derived from the former will apply to conditioned
processes if unconditioned mean sojourn times are replaced
by conditioned ones. Observe that, since the mean sojourn
times 16, 17, and 18 satisfy the appropriate boundary con-
ditions 6 or 7, so do - (p) and Fi(')(p) evaluated from our
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expressions 24 and 27. Therefore, we have found the unique
solution, in integral form, of the system of differential equa-
tions 5, 6, and 7.

Should we desire to calculate the total heterozygosity before
absorption, we have merely to set f(x) - 2x(1 - x). For
absorption times, f(x) = 1. In the latter case, the integral
over xn may be performed at once:

T(xn-1) dxnT(xlxn), [28]

where T(Q) is the mean absorption time for paths starting at
x = E at t 0. For example, the second moment of the dis-
tribution of absorption times is

T(2) (p) = 2 f dJT(px)T(x). [29]

To demonstrate Eq. 5, we apply the operator L to Eq.
24. Now, from Eq. 23 anid the backward Kolmogorov equa-
tion,

LT(p,xi) = S (px; t)dt
= (p,xl;co) - (p,xl;O)
= -B(xl-p), 0 < p, xi<1, [30]

whence, integrating over xi in Eq. 24,
n 1l

LF(fn)(p) = -nf(p) (n - 1)!fJdxff(x) T(xj_,x)X

[31]

with the understanding that, due to Eq. 3Q, in Eq. 31 xi
=p. The bracket is just F(n -)(p), so Eq. 5 follows. Using Eq.
17a in Eq. 27, we find,

n
FiPn)(p) = n! II dxff(xi)f(xi1.,x0)ui(xn). [32]

i= 1

Of course, the product does not include u1(xn) here. Hence,
the proof for F(f) (p) holds equally for Fi(n) (p).

SOJOURN TIMES

With the identification (1)

f(x) =(x -y),
where a is the Dirac delta function, the theory devel(
above yields the moments of the distribution of r(p,y).
stituting Eq. 33 into 24 yields

F(n)(p) = n!T(py)[T(yy)]-1, n > 1.

The sum in Eq. 8 is trivial;

Now,

q (x ;PlY) = 1 + )XT(P,Y)1 - XF(yy)

(o

This distribution is valid for all cases discussed in this paper;
for conditional processes, one simply inserts conditional mean
sojourn times. Note also that, from Eq. 17,

Tl(Y,Y) = fo(y,y) = T(yy). [38]
Equation 35 was confirmed purely analytically by solving

Eq. 9 for every possible process. To do this, one must use
Eqs. 4, 6, 7, 11 to 18, and, crucially, 33. For conditional fixa-
tion at x = 1, the second moment calculated by Maruyama
(9) may be simplified to our formula

K(")(p) = n!F(py)[T(yy)] 1, n > 1, [39]
forn = 2.
A few observations concerning Eq. 37 are instructive.

The delta-function term allows for the possibility of not
visiting the interval I: (y, y + Ay) at all. If the process com-
mences at y, that is, p = y, this term disappears, as it must:

e -/-(yy)
P(T;Y,Y) =

TF(Y,Y)
[40]

If the population must visit I, the term also vanishes. For
y > p, this occurs if there is only one absorbing barrier at
x = 1, or if fixation is conditioned there. For y < p, the single
absorbing state or conditioning must be at x 0. From Eqs.
16, 17, and 18 it is easy to check that all four instances do,
indeed, satisfy i(p,y) = 1(y,y). If p = 0 and there are two
unconditioned absorbing barriers, or conditioning at x = 0,
or a single absorbing state at x = 0, the process is finished at
t = 0 and Eqs. 16, 17, and 18 show T(p,y) = 0. This statement
is equally valid if p = 0 and x = 0 are replaced by p = 1
and x = 1, respectively. From Eq. 37, we obtain, then, as we
must, P(r;p,y) = B(r), indicating that the sojourn time
necessarily vanishes. Of course, the delta-function term in
Eq. 37 serves only to normalize the probability density;
it does not contribute to any of its moments.

Finally, we shall derive Eq. 37 by a general probabilistic
argument using the properties of time-homogeneous Markov
processes. Clearly,

P(T;p,y) = Q(P,Y)5(r) + [1 - Q(P,Y)]P(T;Y,Y), [41]

where Q(p,y) is the probability of not visiting I before fixation
or loss. Therefore,

[33]
coF(py) = f TP(T;p,y)dT

- [1 -Q PY T(,)
(34] whence we see that the probability of a visit to I is

1 - Q(p,y) = F(PY)/F(YY)

[42]

[43]

[44]

It remains to determine P(r;y,y). To this end, we modify
[35] the treatment of continuous sojourn times (those between an

entrance to an interval and the next exit) for a discrete state
space by Dynkin and Yushkevich (10). Let R(T;y,y) be the

[36] probability that r(y,y) is greater than some valuer; thus

where P(r;p,y) is the probability density of r = -r(p,y).
Hence, inverting the simple Laplace transform 35, we find

P(T;P[1t 6(T) +[-( y)]2 e -T/f [37]

R(T;y,y) = P(T ;y,y)d '.

For a time-homogeneous Markov process, evidently
R (Ti + T2;yy) = R(Tri;y,y)R(r2;Y,Y). [46]

[45]
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Consequently, for some constant k,

R(T;y,y) = e kT, [47]

and

P(T;y,y) = - -R(T;yy)
dr

= kekr. [48]

Substituting Eq. 48 into Eq. 42, we find

i(y,y) = 1/k, [49]

and combining Eqs. 44,48, and 49, we obtain Eq. 37.
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