Application of diazene-directed fragment assembly to the enantioselective total synthesis and stereochemical assignment of (+)-desmethyl-mesochimonanthine and related heterodimeric alkaloids.

Stephen P. Lathrop and Mohammad Movassaghi* Massachusetts Institute of Technology, Department of Chemistry, Massachusetts 02139

Supporting Information

General Procedures	<u>S2</u>
Materials	S2
Instrumentation	S2
Positional Numbering System	S 3
N1-Carboxymethyl Hexahydropyrroloindole (–)- S2	S4
C2-Carboxymethyl Hexahydropyrroloindole (+)- 13	S6
N8-Carboxy-tert-Butyl Hexahydropyrroloindole (-)-14	S 7
Hexahydropyrroloindole Sulfamate Ester (–)-15	S 9
C3a-Aminohexahydropyrroloindole (–)-16	S11
C2-Carboxymethyl Hexahydropyrroloindole (–)-17	S12
N8-tert-Butylbenzenesulfonyl Hexahydropyrroloindole (-)-18	S14
Hexahydropyrroloindole Sulfamate Ester (-)-19	S16
C3a-Aminohexahydropyrroloindole (–)-20	S18
N1-Carboxytrichloroethyl Hexahydropyrroloindole (+)-S4	S20
C2-Carboxymethyl Hexahydropyrroloindole (+)-21	S22
N8-Benzenesulfonyl Hexahydropyrroloindole (+)-22	S24
C3a-Aminohexahydropyrroloindole (+)-24	S26
Mixed Sulfamide (-)-25	S28
Unsymmetrical Diazene (-)-26	S30
Heterodimer (–)-27	S32
Mixed Sulfamide (+)-28	S34
Unsymmetrical Diazene (+)-29	<u>\$36</u>
Heterodimer (+)- 30	S38
N8'-H Heterodimer (–)- 31	S40
N8'-Methyl Heterodimer (–)- 32	S42
(-)-N1,N1'-Carboxymethyl Calycanthidine (33)	S44
(–)-Calycanthidine (1)	S46
NMR Comparison Tables for (–)-Calycanthidine (1)	S48
N1'-Carboxyethyl Heterodimer (+)-34	S52
(-)-N1-Carboxymethyl-N1'-Carboxyethyl meso-Chimonanthine (35)	S54
meso-Chimonanthine (2)	<u>\$56</u>
NMR Comparison Tables for <i>meso</i> -Chimonanthine (2)	<u>S58</u>
meso-Calycanthine (36)	S62
NMR Comparison Tables for <i>meso</i> -Calycanthine (36)	<u>\$63</u>
(-)-N1-Carboxymethyl-N1'-Desmethyl-meso-Chimonanthine (37)	<u>\$65</u>
(-)-Desmethyl- <i>meso</i> -Chimonanthine (3)	S67
NMR Comparison Tables for Desmethyl-meso-Chimonanthine (3)	S70

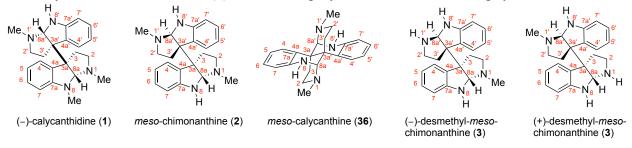
Application of diazene-directed fragment assembly to the enantioselective total synthesis and stereochemical assignment of (+)-desmethyl-*meso*chimonanthine and related heterodimeric alkaloids. Stephen P. Lathrop and Mohammad Movassaghi* Page S2 / S153

	8
N1'-H Heterodimer (–)- 38	<u>\$73</u>
N1'-Methyl Heterodimer (–)- 39	<u>\$75</u>
(-)-N1-Carboxymethyl-meso-Chimonanthine (40)	<u>\$77</u>
(+)-Desmethyl-meso-Chimonathine (3)	S79
Copy of ¹ H and ¹³ C NMR spectra	S80

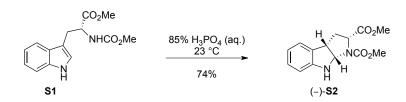
General Procedures. All reactions were performed in oven-dried or flame-dried round-bottom flasks. The flasks were fitted with rubber septa, and reactions were conducted under a positive pressure of argon. Cannulae or gas-tight syringes with stainless steel needles were used to transfer air- or moisture-sensitive liquids. Where necessary (so noted), solutions were deoxygenated by sparging with argon for a minimum of 10 min. Flash column chromatography was performed as described by Still et al.¹ using granular silica gel (60-Å pore size, 40–63 µm, 4–6% H₂O content, Zeochem). Analytical thin layer chromatography (TLC) was performed using glass plates pre-coated with 0.25 mm 230–400 mesh silica gel impregnated with a fluorescent indicator (254 nm). TLC plates were visualized by exposure to short wave ultraviolet light (254 nm) and irreversibly stained by treatment with an aqueous solution of ceric ammonium molybdate (CAM) followed by heating (~ 1 min) on a hot plate (~ 250 °C). Organic solutions were concentrated at 29–30 °C on rotary evaporators capable of achieving a minimum pressure of ~2 torr. The diazene photolysis was accomplished by irradiation in a Rayonet RMR-200 photochemical reactor (Southern New England Ultraviolet Company, Branford, CT, USA) equipped with 16 lamps.

Materials. Commercial reagents and solvents were used as received with the following exceptions: dichloromethane, acetonitrile, tetrahydrofuran, methanol, pyridine, toluene, and triethylamine were purchased from J. T. Baker (CycletainerTM) and were purified by the method of Grubbs *et al.* under positive argon pressure.² N,N'-diisopropylethylamine and benzene were dried by distillation over calcium hydride under an inert nitrogen atmosphere and used directly. L-tryptophan methyl ester hydrochloride was purchased from Chem-Impex International, Inc.; di-*tert*-butyl dicarbonate (Boc₂O) was purchased from Oakwood Chemicals, Inc.; trimethyltin hydroxide and sodium bis(2-methoxyethoxy)aluminum hydride (Red-Al) were purchased from Strem Chemicals, Inc.; thiopyridine *N*-oxide and 2-methyl-2-phenylpropionic acid were purchased from TCI America; *N,N,N',N'*-tetramethylchloroformamidinium hexafluorophosphate (TCFH) was purchased from AK Scientific, Inc. All other solvents and chemicals were purchased from Sigma–Aldrich.

Instrumentation. Proton nuclear magnetic resonance (¹H NMR) spectra were recorded with a Varian inverse probe 500 INOVA spectrometer. Chemical shifts are recorded in parts per million on the δ scale and are referenced from the residual protium in the NMR solvent (CHCl₃: δ 7.24, CDHCl₂: 5.32, CD₂HCN: 1.94, CD₃SOCD₂H: 2.50, C₆D₅H: 7.16). Data are reported as follows: chemical shift [multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet), coupling constant(s) in Hertz, integration, assignment]. Carbon-13 nuclear magnetic resonance spectra were recorded with a Varian 500 INOVA spectrometer and are recorded in parts per million on the δ scale and are referenced from the carbon resonances of the solvent (CDCl₃: δ 77.23: CD₂Cl₂: 54.00 CD₃CN: 118.69, DMSO-*d*₆: 39.51, C₆D₆: 128.39). Data are reported as


¹ W. C. Still, M. Kahn, and A. Mitra . J. Org. Chem. 1978, **43**, 2923.

² A. B. Pangborn, M. A. Giardello, R. H. Grubbs, R. K. Rosen, and F. Timmers, J. Organometallics 1996, **15**, 1518.


Application of diazene-directed fragment assembly to the enantioselective total synthesis and stereochemical assignment of (+)-desmethyl-*meso*chimonanthine and related heterodimeric alkaloids. Stephen P. Lathrop and Mohammad Movassaghi* Page S3 / S153

follows: chemical shift [multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet), coupling constant(s) in Hertz, assignment]. Fluorine-19 nuclear magnetic resonance spectra were recorded with a Varian 300 INOVA spectrometer and are recorded in parts per million on the δ scale and are referenced from the fluorine resonances of trifluoroacetic acid (CF₃CO₂H δ –76.55). Data are reported as follows: chemical shift [multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet), coupling constant(s) in Hertz, integration, assignment]. Infrared data were obtained with a Perkin-Elmer 2000 FTIR and are reported as follows: [frequency of absorption (cm⁻¹), intensity of absorption (s = strong, m = medium, w = weak, br = broad), assignment]. We thank Dr. Li Li at the Massachusetts Institute of Technology Department of Chemistry instrumentation facility for obtaining mass spectroscopic data. High resolution mass spectra (HRMS) were recorded on a Bruker Daltonics APEXIV 4.7 Tesla FT-ICR-MS using electrospray (ESI) (*m/z*) ionization source.

Positional Numbering System. In assigning the ¹H and ¹³C NMR data of all intermediates en route to (–)-calycanthidine (1), *meso*-chimonanthine (2), *meso*-calycanthine (36), (–)- and (+)- N_1 -desmethyl-*meso*-chimonanthine (3) we have employed a uniform numbering system.

Application of diazene-directed fragment assembly to the enantioselective total synthesis and stereochemical assignment of (+)-desmethyl-*meso*chimonanthine and related heterodimeric alkaloids. Stephen P. Lathrop and Mohammad Movassaghi* Page S4 / S153

<u>N1-Carboxymethyl Hexahydropyrroloindole (–)-S2:</u>

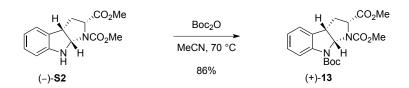
Aqueous phosphoric acid (85% w/v, 110 mL) was added to a flask containing indole S1 (9.60 g, 36.3 mmol, 1 equiv) at 23 °C. The resulting heterogeneous mixture was stirred vigorously. After 8 h, the homogenous solution was poured slowly into a vigorously stirred biphasic mixture of dichloromethane (200 mL) and a solution of potassium carbonate (480 g) and potassium hydroxide (160 g) in water (1 L) at 0 °C. The pH of the mixture was maintained above 7 by the periodic addition of solid potassium carbonate (5 × 50 g). Once the addition was complete, the mixture was extracted with diethyl ether (3 × 300 mL). The combined organic layers were washed with brine (100 mL), were dried over anhydrous sodium sulfate, were filtered, and were concentrated under reduced pressure. The resulting residue was purified by flash column chromatography on silica gel (eluent: 15 \rightarrow 25% acetone in hexanes) to give N1-carboxymethyl hexahydropyrroloindole (–)-S2³ (7.40 g, 73.7%) as a white solid. Structural assignments were made using additional information from gCOSY, HSQC, and HMBC experiments.

¹H NMR (500 MHz, C₆D₆, 20 °C):

Major Rotamer: δ 6.91 (app-t, J = 7.7 Hz, 1H, C₆H), 6.78 (d, J = 7.5 Hz, 1H, C₄H), 6.60 (app-t, J = 7.4 Hz, 1H, C₅H), 6.33 (d, J = 7.7 Hz, 1H, C₇H), 5.44 (d, J = 6.7 Hz, 1H C_{8a}H), 5.39 (br-s, 1H, N₈H), 4.27 (d, J = 9.0 Hz, 1H, C₂H), 3.46 (s, 3H, N₁CO₂CH₃), 3.30–3.27 (m, 1H, C_{3a}H), 2.92 (s, 3H, CO₂CH₃), 2.30 (d, J = 13.1 Hz, 1H, C₃H_a), 1.92–1.84 (m, 1H, C₃H_b).

Minor Rotamer: δ 6.95 (app-t, J = 7.7 Hz, 1H, C₆H), 6.81 (d, J = 7.5 Hz, 1H, C₄H), 6.63 (app-t, J = 7.4 Hz, 1H, C₅H), 6.45 (d, J = 7.7 Hz, 1H, C₇H), 5.17 (d, J = 6.7 Hz, 1H C_{8a}H), 4.77 (br-s, 1H, N₈H), 4.61 (d, J = 9.0 Hz, 1H, C₂H), 3.49 (s, 3H, N₁CO₂CH₃), 3.30–3.27 (m, 1H, C_{3a}H), 2.93 (s, 3H, CO₂CH₃), 2.29 (d, J = 13.1 Hz, 1H, C₃H_a), 1.92–1.84 (m, 1H, C₃H_b).

¹³C NMR (125.8 MHz, C₆D₆, 20 °C):

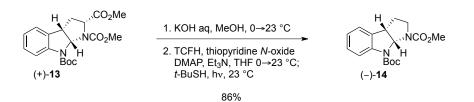

Major Rotamer: δ 171.9 (CO₂CH₃), 155.6 (N₁CO₂CH₃), 151.3 (C_{7a}), 129.1 (C_{4a}), 128.9 (C₆), 124.5 (C₄), 118.8 (C₅), 109.7 (C₇), 78.1 (C_{8a}), 59.6

 $^{^{3}}$ Due to facile opening of cyclotryptophan (–)-**S2** to the corresponding tryptophan derivative this material was used in the next step immediately following purification..

Application of diazene-directed fragment assembly to the enantioselective total synthesis and stereochemical assignment of (+)-desmethyl-*meso*chimonanthine and related heterodimeric alkaloids. Stephen P. Lathrop and Mohammad Movassaghi* Page S5 / S153

	(C ₂), 52.7 (N ₁ CO ₂ CH ₃), 52.0 (CO ₂ CH ₃), 45.4 (C _{3a}), 34.9 (C ₃).
	<i>Minor Rotamer:</i> δ 172.1 (CO ₂ CH ₃), 154.8 (N ₁ CO ₂ CH ₃), 150.8 (C _{7a}), 129.0 (C _{4a}), 128.7 (C ₆), 124.6 (C ₄), 119.2 (C ₅) 109.6 (C ₇), 77.3 (C _{8a}), 60.1 (C ₂), 52.7 (N ₁ CO ₂ CH ₃), 51.9 (CO ₂ CH ₃), 46.7 (C _{3a}), 34.4 (C ₃).
FTIR (thin film) cm ⁻¹ :	3383 (br-w), 2953 (m), 1755 (s), 1702 (s), 1611 (m), 1451 (s), 1382(s).
HRMS (ESI) (m/z) :	calc'd for $C_{14}H_{17}N_2O_4$ [M+H] ⁺ : 277.1183, found: 277.1179.
$[\alpha]_D^{24}$:	$-232 (c = 1.52, CH_2Cl_2).$
TLC (25% acetone in hexanes), Rf:	0.38 (UV, CAM).

Application of diazene-directed fragment assembly to the enantioselective total synthesis and stereochemical assignment of (+)-desmethyl-mesochimonanthine and related heterodimeric alkaloids. Stephen P. Lathrop and Mohammad Movassaghi* Page S6 / S153



C2-Carboxymethyl Hexahydropyrroloindole (+)-13:

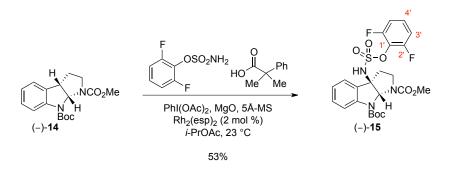
Di-*tert*-butyl dicarbonate (7.70 g, 35.2 mmol, 3.00 equiv) was added to a solution of N1carboxymethyl hexahydropyrroloindole (–)-**S2** (3.10 g, 11.7 mmol, 1 equiv) in acetonitrile (50 mL) at 23 °C. The reaction flask was fitted with a reflux condenser and heated to 70 °C. After 8 h, another portion of di-*tert*-butyl dicarbonate (7.70 g, 35.2 mmol, 3.00 equiv) was added and the solution was continued to stir at 70 °C. After 15 h, the homogenous solution was allowed to cool to 23 °C and concentrated under reduced pressure. The resulting residue was purified by flash column chromatography on silica gel (eluent: $10\rightarrow 20\%$ acetone in hexanes) to give C2-carboxymethyl hexahydropyrroloindole (+)-13 (3.80 g, 86.3%) as a white foam. Structural assignments were made using additional information from gCOSY, HSQC, and HMBC experiments.

¹ H NMR (500 MHz, CD ₃ CN, 20 °C):	δ 7.52 (d, $J = 8.0$ Hz, 1H, C ₇ H), 7.19–7.14 (m, 2H, C ₄ H, C ₆ H), 6.98 (app-t, $J = 7.5$ Hz, 1H, C ₅ H), 6.32 (d, $J = 6.5$ Hz, 1H, C _{8a} H), 4.54 (d, $J = 8.7$ Hz, 1H, C ₂ H), 4.01 (app-t, $J = 6.6$ Hz, 1H, C _{3a} H), 3.66 (s, 3H, N ₁ CO ₂ CH ₃), 3.14 (s, 3H, CO ₂ CH ₃), 2.58 (ddd, J = 7.0, 8.7, 13.2 Hz, 1H, C ₃ H _a), 2.53 (ddd, $J = 1.7,1.8, 13.2 Hz, 1H, C3Hb), 1.55 (s, 9H,N8CO2C(CH3)3).$
¹³ C NMR (125.8 MHz, CD ₃ CN, 20 °C):	δ 173.1 (CO ₂ CH ₃), 156.2 (N ₁ CO ₂ CH ₃), 153.6 (N ₈ CO ₂ C(CH ₃) ₃), 144.4 (C _{7a}), 133.6 (C _{4a}), 129.4 (C ₆), 125.4 (C ₄), 124.4 (C ₅), 117.9 (C ₇), 82.3 (N ₈ CO ₂ C(CH ₃) ₃), 76.7, (C _{8a}), 60.7 (C ₂), 53.5 (N ₁ CO ₂ CH ₃), 52.3 (CO ₂ CH ₃), 46.2 (C _{3a}), 34.3 (C ₃), 28.9 (N ₈ CO ₂ C(CH ₃) ₃).
FTIR (thin film) cm ⁻¹ :	2979 (m), 1705 (s), 1605 (w), 1482 (s), 1447 (s).
HRMS (ESI) (<i>m/z</i>):	calc'd for $C_{19}H_{25}N_2O_6$ [M+H] ⁺ : 377.1707, found: 377.1713.
$[\alpha]_D^{24}$:	$+2.4 (c = 1.7, CH_2Cl_2).$
TLC (33% acetone in hexanes), Rf:	0.47 (UV, CAM).

Application of diazene-directed fragment assembly to the enantioselective total synthesis and stereochemical assignment of (+)-desmethyl-*meso*chimonanthine and related heterodimeric alkaloids. Stephen P. Lathrop and Mohammad Movassaghi* Page S7 / S153

<u>N8-Carboxy-tert-Butyl Hexahydropyrroloindole (-)-14:</u>

An aqueous solution of potassium hydroxide (5 N, 55 mL) was added to a solution of C2carboxymethyl hexahydropyrroloindole (+)-**13** (3.20 g, 8.50 mmol, 1 equiv) in methanol (110 mL) at 0 °C in an ice bath. After 10 min, the ice bath was removed and the mixture was allowed to warm to 23 °C. After 2 h, the resulting solution was cooled to 0 °C in an ice bath and adjusted to pH ~ 2 by the dropwise addition of an aqueous solution of hydrochloric acid (12 N, 25 mL). The mixture was allowed to warm to 23 °C and extracted with dichloromethane (3 × 150 mL). The combined organic layers were washed with brine (50 mL), were dried over anhydrous sodium sulfate, were filtered, and were concentrated under reduced pressure to afford the crude carboxylic acid as a white foam.


Thiopyridine N-oxide (1.73 g, 13.6 mmol, 1.60 equiv), 4-(dimethylamino)pyridine (104 mg, 850 µmol, 0.10 equiv), and N,N,N',N'-tetramethylchloroformamidinium hexafluorophosphate (TCFH, 3.19 g, 12.8 mmol, 1.50 equiv) were sequentially added to a solution of the crude carboxylic acid in tetrahydrofuran (85 mL) cooled to 0 °C in an ice bath. The reaction flask was removed from the ice bath, covered in aluminum foil and triethylamine (4.75 mL, 34.0 mmol, 4.00 equiv) was added while the reaction mixture was still cold. After 1.5 h, tertbutylthiol (4.80 mL, 42.5 mmol, 5.00 equiv) was added via syringe and the aluminum foil was removed from the flask. The resulting suspension was irradiated with a flood lamp (500 W). After 2 h, the lamp was shut off and the tetrahydrofuran was removed under reduced pressure. The resulting residue was diluted with dichloromethane (200 mL) and was washed with aqueous saturated sodium bicarbonate solution (50 mL). The aqueous layer was extracted with dichloromethane ($2 \times 100 \text{ mL}$). The combined organic extracts were washed with brine (50 mL), were dried over anhydrous sodium sulfate, were filtered and were concentrated under reduced pressure. The resulting residue was purified by flash column chromatography on silica gel (eluent: 5→10% acetone in hexanes) to afford N8-carboxy-tert-butyl hexahydropyrroloindole (-)-14 (2.33 g, 86.1%, overall from (+)-13) as a clear viscous oil. Structural assignments were made using additional information from gCOSY, HSQC, and HMBC experiments.

¹H NMR (500 MHz, CD₃CN, 20 °C):

δ 7.61 (d, J = 8.1 Hz, 1H, C₇H), 7.23 (d, J = 7.4 Hz, 1H, C₄H), 7.19 (app-t, J = 7.5 Hz, 1H, C₆H), 7.03 (app-t, J = 7.5 Hz, 1H, C₅H), 6.31 (d, J = 6.9 Hz, 1H, C_{8a}H), 4.01 (app-t, J = 7.2 Hz, 1H, C_{3a}H), 3.75 (dd, J = 7.7, 11.1 Hz, 1H, C₂H_a) 3.64 (s, 3H, N₁CO₂CH₃), 2.76 (app-dt, J = 5.6, 11.6 Hz, 1H, C₂H_b), 2.15 (app-tt, J = 7.7, 12.0 Hz, 1H, C₃H_a), 2.05 (dd, J = 5.6, 6.9 Hz, 1H, C₃H_b), 1.53 (s, 9H, N₈CO₂C(CH₃)₃). Application of diazene-directed fragment assembly to the enantioselective total synthesis and stereochemical assignment of (+)-desmethyl-*meso*chimonanthine and related heterodimeric alkaloids. Stephen P. Lathrop and Mohammad Movassaghi* Page S8 / S153

¹³ C NMR (125.8 MHz, CD ₃ CN, 20 °C):	δ 156.5 (N ₁ CO ₂ CH ₃), 153.8 (N ₈ CO ₂ C(CH ₃) ₃), 144.2 (C _{7a}), 133.9 (C _{4a}), 129.2 (C ₆), 125.5 (C ₄), 124.6 (C ₅), 117.1 (C ₇), 82.3 (N ₈ CO ₂ C(CH ₃) ₃), 78.1 (C _{8a}), 53.3 (N ₁ CO ₂ CH ₃), 46.6 (C _{3a}), 46.3 (C ₂), 32.0 (C ₃), 28.9 (N ₈ CO ₂ C(CH ₃) ₃).
FTIR (thin film) cm^{-1} :	2977 (m), 1704 (s), 1604 (w), 1483 (s), 1446 (s).
HRMS (ESI) (m/z) :	calc'd for $C_{17}H_{23}N_2O_4$ [M+H] ⁺ : 319.1652, found: 319.1672.
$[\alpha]_{D}^{24}$:	$-127 (c = 1.37, CH_2Cl_2).$
TLC (33% acetone in hexanes), Rf:	0.42 (UV, CAM).

Application of diazene-directed fragment assembly to the enantioselective total synthesis and stereochemical assignment of (+)-desmethyl-*meso*chimonanthine and related heterodimeric alkaloids. Stephen P. Lathrop and Mohammad Movassaghi* Page S9 / S153

Hexahydropyrroloindole Sulfamate Ester (-)-15:

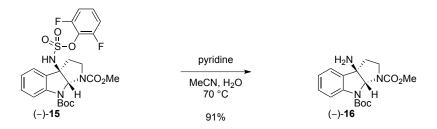
A round bottom flask was charged with 5Å molecular sieves (296 mg, 200 mg/mmol of 14), magnesium oxide (239 mg, 5.92 mmol, 4.00 equiv) and flame-dried under vacuum for 5 min. The reaction vessel was allowed to cool to 23 °C and back filled with argon. Solid 2,6difluorophenyl sulfamate⁴ (402 mg, 1.92 mmol, 1.30 equiv), 2-methyl-2-phenylpropionic acid (122 mg, 0.740 mmol, 0.500 equiv), and Rh₂(esp)₂ (23.0 mg, 300 µmol, 0.0200 equiv) were added sequentially. A solution of N8-carboxy-tert-butyl hexahydropyrroloindole (-)-14 (470 mg, 1.48 mmol, 1 equiv) in isopropyl acetate (3.0 mL) was added via syringe at 23 °C and the mixture was allowed to stir. After 5 min, (diacetoxyiodo)benzene (953 mg, 1.92 mmol, 2.00 equiv) was added and the green heterogeneous mixture was agitated by vigorous stirring at 23 °C. After 14 h, the reaction mixture was filtered through a pad of Celite and the filter cake was rinsed with ethyl acetate (40 mL). The filtrate was concentrated under reduced pressure. The resulting residue was purified by flash column chromatography on silica gel (eluent: gradient, $15 \rightarrow 33\%$ ethyl acetate in hexanes) to afford the hexahydropyrroloindole sulfamate ester (-)-15 (413 mg, 53.1%) as a white solid. Structural assignments were made using additional information from gCOSY, HSQC, and HMBC experiments.

¹H NMR (500 MHz, CD₃CN, 20 °C):

C_{311a} , 2.47 (uu
$(s, 9H, N_8CO_2C($

¹³C NMR (125.8 MHz, CD₃CN, 20 °C):

δ 7.68 (d, J = 8.1 Hz, 1H, C₇H), 7.47 (d, J = 7.7 Hz, 1H, C₄H), 7.39–7.32 (m, 2H, C₆H, C₄·H), 7.16–7.11 (m, 3H, C₅H, C₃·H), 7.06 (br-s, 1H, C_{3a}NH), 6.50 (s, 1H, C_{8a}H), 3.85 (dd, J = 6.9, 10.3 Hz, 1H, C₂H_a) 3.66 (s, 3H, N₁CO₂CH₃), 2.77–2.65 (m, 2H, C₂H_b, C₃H_a), 2.47 (dd, J = 4.3, 11.4 Hz, 1H, C₃H_b), 1.50 (s, 9H, N₈CO₂C(CH₃)₃).

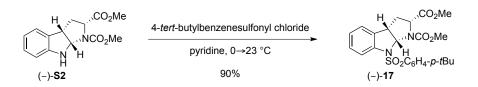

°C): δ 157.2 (dd, J = 3.5, 251.8 Hz, C₂'), 156.2 (N₁CO₂CH₃), 153.5 (N₈CO₂C(CH₃)₃), 144.9 (C_{7a}), 131.8 (C₆), 130.8 (C_{4a}), 129.2 (app-t, J = 9.4 Hz, C₄'), 127.8 (t, J = 15.8 Hz, C₁'), 125.9 (C₄), 125.1 (C₅), 118.1 (C₇), 114.1 (dd, J = 4.0, 18.4 Hz, C₃'), 82.7 (N₈CO₂C(CH₃)₃), 81.1, (C_{8a}), 72.8 (C_{3a}), 53.6 (N₁CO₂CH₃), 46.2 (C₂), 36.6 (C₃), 28.8 (N₈CO₂C(CH₃)₃).

⁴ J. L. Roizen, D. N. Zalatan and J. Du Bois, Angew. Chem. Int. Ed., 2013, Early View, DOI: 10.1002/anie.201304238.

Application of diazene-directed fragment assembly to the enantioselective total synthesis and stereochemical assignment of (+)-desmethyl-*meso*chimonanthine and related heterodimeric alkaloids. Stephen P. Lathrop and Mohammad Movassaghi* Page S10 / S153

¹⁹ F NMR (282 MHz, CDCl ₃ , 20 °C):	$\delta - 124.8$ (t, $J = 6.6$ Hz, 2F, C ₆ H ₃ F ₂).
FTIR (thin film) cm ⁻¹ :	3168 (br-m), 2981 (w), 1712 (s), 1680 (s), 1606 (w), 1481 (s).
HRMS (ESI) (m/z) :	calc'd for $C_{23}H_{26}F_2N_3O_7S [M+H]^+$: 526.1454, found: 526.1465.
$[\alpha]_D^{24}$:	$-82 (c = 1.04, CH_2Cl_2).$
TLC (33% ethyl acetate in hexanes), Rf:	0.26 (UV, CAM).

Application of diazene-directed fragment assembly to the enantioselective total synthesis and stereochemical assignment of (+)-desmethyl-*meso*chimonanthine and related heterodimeric alkaloids. Stephen P. Lathrop and Mohammad Movassaghi* Page S11 / S153


C3a-Aminohexahydropyrroloindole (-)-16:

1

Pyridine (613 µL, 7.61 mmol, 20.0 equiv) was added to a solution of hexahydropyrroloindole sulfamate ester (-)-15 (200 mg, 381 µmol, 1 equiv) in a mixture of acetonitrile-water (2:1, 4.50 mL), via syringe at 23 °C. The reaction flask was fitted with a reflux condenser and heated to 70 °C. After 24 h, the resulting yellow solution was allowed to cool to 23 °C. The mixture was diluted with dichloromethane (50 mL) and was washed with a saturated aqueous sodium bicarbonate solution (20 mL). The aqueous layer was extracted with dichloromethane $(2 \times 30 \text{ mL})$. The combined organic extracts were washed with brine (20 mL). were dried over anhydrous sodium sulfate, were filtered, and were concentrated under reduced pressure. The resulting residue was purified by flash column chromatography on silica gel (eluent: gradient. 1→5% methanol in dichloromethane) to afford the C3aaminohexahvdropyrroloindole (-)-16 (115 mg, 90.5%) as a vellow oil. Structural assignments were made using additional information from gCOSY, HSQC, and HMBC experiments.

¹ H NMR (500 MHz, CD ₃ CN, 20 °C):	δ 7.63 (d, $J = 8.1$ Hz, 1H, C ₇ H), 7.34 (d, $J = 7.5$ Hz, 1H, C ₄ H), 7.26 (app-t, $J = 7.5$ Hz, 1H, C ₆ H), 7.07 (app-t, $J = 7.5$ Hz, 1H, C ₅ H), 5.77 (s, 1H, C _{8a} H), 3.73 (dd, $J = 7.9$, 11.1 Hz, 1H, C ₂ H _a) 3.64 (s, 3H, N ₁ CO ₂ CH ₃), 2.75 (app-dt, $J = 5.6$, 11.7 Hz, 1H, C ₂ H _b), 2.22 (dd $J = 7.9$, 11.1 Hz, 1H, C ₃ H _a), 2.09 (app-dt, $J = 8.1$, 12.2 Hz, 1H, C ₃ H _b), 1.92 (br-s, 2H, NH ₂)1.54 (s, 9H, N ₈ CO ₂ C(CH ₃) ₃).
¹³ C NMR (125.8 MHz, CD ₃ CN 20 °C):	δ 156.5 (N ₁ CO ₂ CH ₃), 154.0 (N ₈ CO ₂ C(CH ₃) ₃), 143.9 (C _{7a}), 136.9 (C _{4a}), 130.3 (C ₆), 124.8 (2C, C ₄ , C ₅), 117.5 (C ₇), 84.6 (C _{8a}), 82.3 (N ₈ CO ₂ C(CH ₃) ₃), 70.3 (C _{3a}), 53.3 (N ₁ CO ₂ CH ₃), 47.0 (C ₂), 39.4 (C ₃), 28.9 (N ₈ CO ₂ C(CH ₃) ₃).
FTIR (thin film) cm ⁻¹ :	3369 (br-w), 3302 (br-w), 2977 (w), 1702 (s), 1603 (w), 1480 (m), 1447 (m), 1393 (m), 1200 (m).
HRMS (ESI) (m/z) :	calc'd for $C_{17}H_{24}N_3O_4 [M+H]^+$: 334.1761, found: 334.1783.
$[\alpha]_D^{24}$:	$-119 (c = 1.55, CH_2Cl_2).$
TLC (50% acetone in hexanes), Rf:	0.15 (UV, CAM).

Application of diazene-directed fragment assembly to the enantioselective total synthesis and stereochemical assignment of (+)-desmethyl-*meso*chimonanthine and related heterodimeric alkaloids. Stephen P. Lathrop and Mohammad Movassaghi* Page S12 / S153

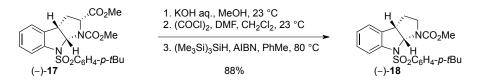
C2-Carboxymethyl Hexahydropyrroloindole (-)-17:

A solution of 4-*tert*-butylbenzenesulfonyl chloride (3.50 g, 15.1 mmol, 2.00 equiv) in pyridine (3 mL) was added dropwise via syringe to a solution of hexahydropyrroloindole (–)-**S2** (2.00 g, 7.57 mmol, 1 equiv) in pyridine (20 mL) at 0 °C in an ice bath. After 15 min, the ice bath was removed and allowed to warm to 23 °C. After 4 h, the solution was concentrated under reduced pressure. The resulting residue was diluted with ethyl acetate (250 mL) and washed sequentially with an aqueous solution of hydrochloric acid (1 N, 2 × 25 mL), saturated aqueous solution of sodium bicarbonate (25 mL), and brine (50 mL). The organic layer was separated, was dried over anhydrous sodium sulfate, was filtered, and was concentrated under reduced pressure. The resulting residue was purified by flash column chromatography on silica gel (eluent: $15\rightarrow 25\%$ acetone in hexanes) to give C2-carboxymethyl hexahydropyrroloindole (–)-**17** (3.20 g, 89.5%) as a white solid.

As a result of the slow conformational equilibration at ambient temperature, NMR spectra were collected at elevated temperature. Structural assignments were made using additional information from gCOSY, HSQC, and HMBC experiments also collected at elevated temperature.

¹ H NMR (500 MHz, CD ₃ CN, 70 °C):	δ 7.66 (d, $J = 8.6$ Hz, 2H, N ₈ SO ₂ Ar- <i>o</i> - H), 7.50 (d, $J = 8.6$ Hz, 2H, N ₈ SO ₂ Ar- <i>m</i> - H), 7.38 (d, $J = 8.1$ Hz, 1H, C ₇ H), 7.23 (app-t, $J = 7.2$ Hz, 1H, C ₆ H), 7.10 (d, $J = 7.4$ Hz, 1H, C ₄ H), 7.07 (app-t, $J = 7.2$ Hz, 1H, C ₅ H), 6.29 (d, $J = 6.5$ Hz, 1H C _{8a} H), 4.54 (d, $J = 9.0$ Hz, 1H, C ₂ H), 3.71 (app-t, $J = 6.9$ Hz, 1H, C _{3a} H), 3.60 (s, 3H, N ₁ CO ₂ C H ₃), 3.16 (s, 3H, CO ₂ C H ₃), 2.61–2.49 (m, 2H, C ₃ H), 1.30 (s, 9H, C(C H ₃) ₃).
¹³ C NMR (125.8 MHz, CD ₃ CN, 70 °C):	δ 173.2 (CO ₂ CH ₃) 158.9 (N ₈ SO ₂ Ar- <i>p</i> -C), 156.5 (N ₁ CO ₂ CH ₃), 144.3 (C _{7a}), 138.5 (N ₈ SO ₂ Ar- <i>ipso</i> -C), 135.8 (C _{4a}), 130.2 (C ₆), 128.6 (N ₈ SO ₂ Ar- <i>o</i> -C), 127.7 (N ₈ SO ₂ Ar- <i>m</i> -C), 126.9 (C ₄), 126.3 (C ₅), 119.8 (C ₇), 82.5 (C _{8a}), 60.9 (C ₂), 53.8 (NCO ₂ CH ₃), 53.1 (CO ₂ CH ₃), 47.4 (C _{3a}), 36.6 (C(CH ₃) ₃), 35.1 (C ₃), 32.1 (C(CH ₃) ₃).
FTIR (thin film) cm ⁻¹ :	2956 (w), 1711 (s), 1595 (w), 1447 (m), 1384 (m), 1360 (m), 1169 (m).
HRMS (ESI) (<i>m</i> / <i>z</i>):	calc'd for $C_{24}H_{29}N_2O_6S [M+H]^+: 473.1741$, found: 473.1740.

Application of diazene-directed fragment assembly to the enantioselective total synthesis and stereochemical assignment of (+)-desmethyl-*meso*-chimonanthine and related heterodimeric alkaloids. Stephen P. Lathrop and Mohammad Movassaghi* Page \$13 / \$153


$$[\alpha]_{D}^{24}$$
:

$$-71 (c = 0.44, CH_2Cl_2).$$

TLC (33% acetone in hexanes), Rf:

0.33 (UV, CAM).

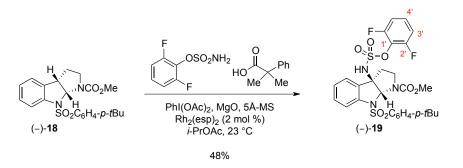
Application of diazene-directed fragment assembly to the enantioselective total synthesis and stereochemical assignment of (+)-desmethyl-*meso*chimonanthine and related heterodimeric alkaloids. Stephen P. Lathrop and Mohammad Movassaghi* Page S14 / S153

N8-tert-Butylbenzenesulfonyl Hexahydropyrroloindole (-)-18:

An aqueous solution of potassium hydroxide (5 N, 30 mL) was added to a solution of C2carboxymethyl hexahydropyrroloindole (–)-**17** (3.10 g, 6.56 mmol, 1.00 equiv) in methanol (60 mL) at 23 °C. After 40 min, the resulting solution was cooled to 0 °C in an ice bath and adjusted to pH ~ 2 by the dropwise addition of an aqueous solution of hydrochloric acid (12 N, 15 mL). The mixture was allowed to warm to 23 °C and was extracted with dichloromethane (3 × 150 mL). The combined organic layers were washed with brine (50 mL), were dried over anhydrous sodium sulfate, were filtered, and were concentrated under reduced pressure to afford the crude carboxylic acid as a white foam. The crude carboxylic acid was concentrated from benzene (15 mL) under reduced pressure to remove residual methanol.

Oxalyl chloride (1.60 mL, 18.9 mmol, 3.00 equiv) and dimethylformamide (48.0 μ L, 630 μ mol, 0.100 equiv) were added sequentially via syringe to a solution of the crude carboxylic acid in dichloromethane (65 mL) at 23 °C. After 1 h, the solution was concentrated under reduce pressure. The resulting residue was concentrated from benzene (2 × 20 mL) to remove the remaining oxalyl chloride. The crude acid chloride was dissolved in toluene (120 mL) and argon was bubbled through the solution for 10 min. Tristrimethylsilylsilane (2.90 mL, 9.45 mmol, 1.50 equiv) and azobisisobutyronitrile (AIBN, 103 mg, 630 μ mol, 0.10 equiv) were added to the solution at 23 °C. The flask was fitted with a reflux condenser and heated to 80 °C. After 45 min, an additional portion of tristrimethylsilylsilane (2.90 mL, 9.45 mmol, 1.50 equiv) and AIBN (103 mg, 630 μ mol, 0.10 equiv) was added. After a further 1.5 h, another portion of AIBN (103 mg, 630 μ mol, 0.10 equiv) was added. After an additional 1.5 h the reaction mixture was allowed to cool to 23 °C and was concentrated under reduced pressure. The resulting residue was purified by flash column chromatography on silica gel (eluent: 15–20% acetone in hexanes) to give N8-*tert*-butylbenzenesulfonyl hexahydropyrroloindole (–)-**18** (2.40 g, 88.3%, overall from (–)-**17**) as a white foam.

As a result of the slow conformational equilibration at ambient temperature, NMR spectra were collected at elevated temperature. Structural assignments were made using additional information from gCOSY, HSQC, and HMBC experiments also collected at elevated temperature.


¹H NMR (500 MHz, CD₃CN, 70 °C):

δ 7.65 (d, J = 8.6 Hz, 2H, N₈SO₂Ar-*o*-**H**), 7.50–7.49 (m, 3H, N₈SO₂Ar-*m*-**H**, C₇**H**), 7.25 (app-t, J = 8.0 Hz, 1H, C₆**H**), 7.16 (d, J = 7.4 Hz, 1H, C₄**H**), 7.10 (app-t, J = 7.4 Hz, 1H, C₅**H**), 6.25 (d, J = 6.7 Hz, 1H, C_{8a}**H**), 3.74–3.70 (m, 2H, C_{3a}**H**, C₂**H**_a), 3.67 (s, 3H, N₁CO₂C**H**₃), 2.77 (app-dt, J = 5.7, 11.5 Hz, 1H, C₃**H**_a), 2.15 (app-ddt, J = 7.9, 11.6, 12.6 Hz, 1H, C₃**H**_a), 2.00 (dd, J = 5.5, 12.2 Hz, 1H, C₃**H**_b), 1.30 (s, 9H, C(C**H**₃)₃).

Application of diazene-directed fragment assembly to the enantioselective total synthesis and stereochemical assignment of (+)-desmethyl-*meso*chimonanthine and related heterodimeric alkaloids. Stephen P. Lathrop and Mohammad Movassaghi* Page S15 / S153

¹³ C NMR (125.8 MHz, CD ₃ CN, 70 °C):	δ 159.1 (N ₈ SO ₂ Ar- <i>p</i> -C), 156.6 (N ₁ CO ₂ CH ₃), 143.9 (C _{7a}), 137.9 (N ₈ SO ₂ Ar- <i>ipso</i> -C), 136.0 (C _{4a}), 130.0 (C ₆), 128.8 (N ₈ SO ₂ Ar- <i>o</i> -C), 127.8 (N ₈ SO ₂ Ar- <i>m</i> -C), 127.1 (C ₄), 126.3 (C ₅), 118.9 (C ₇), 82.0 (C _{8a}), 53.7 (N ₁ CO ₂ CH ₃), 47.8 (C _{3a}), 46.5 (C ₂), 36.6 (C(CH ₃) ₃), 32.2 (C ₃), 32.1 (C(CH ₃) ₃).
FTIR (thin film) cm^{-1} :	2961 (m), 1709 (s), 1447 (m), 1385 (m), 1360 (m).
HRMS (ESI) (m/z) :	calc'd for $C_{22}H_{27}N_2O_4S$ [M+H] ⁺ : 415.1686, found: 415.1676 .
$[\alpha]_{D}^{24}$:	$-198 (c = 0.19, CH_2Cl_2).$
TLC (33% acetone in hexanes), Rf:	0.34 (UV, CAM).

Application of diazene-directed fragment assembly to the enantioselective total synthesis and stereochemical assignment of (+)-desmethyl-*meso*chimonanthine and related heterodimeric alkaloids. Stephen P. Lathrop and Mohammad Movassaghi* Page S16 / S153

Hexahydropyrroloindole Sulfamate Ester (-)-19:

A round bottom flask was charged with 5Å molecular sieves (482 mg, 200 mg/mmol of 18), magnesium oxide (388 mg, 9.64 mmol, 4.00 equiv), and flame-dried under vacuum for 5 min. The reaction vessel was allowed to cool to 23 °C and back filled with argon. Solid 2,6difluorophenyl sulfamate⁴ (656 mg, 3.14 mmol, 1.30 equiv), 2-methyl-2-phenylpropionic acid (198 mg, 1.21 mmol, 0.500 equiv), and Rh₂(esp)₂ (3.7 mg, 48 µmol, 0.020 equiv) were added sequentially and the mixture was sealed under argon. A solution of N8-tertbutylbenzenesulfonyl hexahydropyrroloindole (-)-18 (1.00 g, 2.41 mmol, 1 equiv) in isopropyl acetate (5.0 mL) was added via syringe at 23 °C and the mixture was allowed to stir. After 5 min, (diacetoxyiodo)benzene (1.55 g, 4.82 mmol, 2.00 equiv) was added and the resulting green heterogeneous mixture was agitated by vigorous stirring at 23 °C. After 14 h, the mixture was filtered through a pad of Celite and the filter cake was rinsed with ethyl acetate (50 mL). The filtrate was concentrated under reduced pressure. The resulting residue was purified by flash column chromatography on silica gel (eluent: gradient, $15 \rightarrow 20\%$ acetone in hexanes) to afford a mixture of the desired sulfamate ester (-)-19 along with minor amounts of regioisomeric amination products. The mixture was triturated with dichloromethane in hexanes (33% v/v, 20 mL) and the resulting suspension was filtered over a sintered glass funnel and rinsed with cold dichloromethane in hexanes (33% v/v, 10 mL) to afford pure hexahvdropyrroloindole sulfamate ester (-)-19 (0.578 g, 38.5%) as a white solid. The filtrate was concentrated under reduced pressure. The resulting residue was purified by flash column chromatography on silica gel (eluent: gradient, $20 \rightarrow 33\%$ ethyl acetate in hexanes) to afford a second portion of pure hexahydropyrroloindole sulfamate ester (-)-19 (140 mg, 9.3%) as a white solid. Structural assignments were made using additional information from gCOSY, HSQC, and HMBC experiments.

¹H NMR (500 MHz, CDCl₃, 20 °C):

δ 7.71 (d, J = 8.1Hz, 1H, C₇H), 7.57 (br-s, 2H, N₈SO₂Ar-*o*-H), 7.43 (app-t, J = 7.6 Hz, 1H, C₆H), 7.37–7.34 (m, C₄H, N₈SO₂Ar-*m*-H), 7.26-7.20 (m, C₅H, C₄'H), 7.01 (app-t, J = 7.8 Hz, 2H, C₃'H), 6.20 (s, 1H, C_{8a}H), 3.94 (s, 1H, C_{3a}NH), 3.86 (dd, J = 8.0, 11.1, 1H, C₂H_a), 3.72 (s, 3H, N₁CO₂CH₃), 2.99 (app-dt, J = 8.1, 12.1Hz, 1H, C₂H_a), 2.76 (br-s, 1H, C₂H_b), 2.43 (dd, J = 4.9, 12.4 Hz, 1H C₃H_b), 1.18 (s, 9H, C(CH₃)₃).

Application of diazene-directed fragment assembly to the enantioselective total synthesis and stereochemical assignment of (+)-desmethyl-*meso*chimonanthine and related heterodimeric alkaloids. Stephen P. Lathrop and Mohammad Movassaghi* Page S17 / S153

¹³ C NMR (125.8 MHz, CDCl ₃ , 20 °C):	δ 157.9 (N ₈ SO ₂ Ar- <i>p</i> -C), 156.1 (dd, $J = 3.4$, 253.7 Hz, C ₂ '), 155.0 (N ₁ CO ₂ CH ₃), 142.7 (C _{7a}), 135.1 (N ₈ SO ₂ Ar- <i>ipso</i> -C), 131.9 (C _{4a}), 131.6 (C ₆), 128.1 (app-t, $J = 9.3$ Hz, C ₁ '), 127.7 (C ₄ '), 127.1 (N ₈ SO ₂ Ar- <i>o</i> -C), 126.8 (N ₈ SO ₂ Ar- <i>m</i> -C), 126.7 (C ₅), 124.3 (C ₄), 119.7 (C ₇), 112.9 (dd, $J = 3.9$, 18.4 Hz, C ₃ '), 82.6 (C _{8a}), 72.6 (C _{3a}), 53.1 (N ₁ CO ₂ CH ₃), 45.2 (C ₂), 35.4 (C(CH ₃) ₃), 32.7 (C ₃), 31.0 (C(CH ₃) ₃).
¹⁹ F NMR (282 MHz, CDCl ₃ , 20 °C):	$\delta - 124.9$ (t, $J = 6.6$ Hz, 2F, C ₆ H ₃ F ₂).
FTIR (thin film) cm ⁻¹ :	2964 (m), 1689 (m), 1498 (m), 1390 (m), 1176 (w).
HRMS (ESI) (m/z) :	calc'd for $C_{28}H_{30}F_2N_3O_7S_2$ [M+H] ⁺ : 622.1488, found: 622.1499.
$[\alpha]_{D}^{24}$:	$-46 (c = 0.35, CH_2Cl_2).$
TLC (33% acetone in hexanes), Rf:	0.26 (UV, CAM).

Application of diazene-directed fragment assembly to the enantioselective total synthesis and stereochemical assignment of (+)-desmethyl-*meso*chimonanthine and related heterodimeric alkaloids. Stephen P. Lathrop and Mohammad Movassaghi* Page S18 / S153

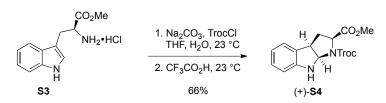
C3a-Aminohexahydropyrroloindole (-)-20:

Pyridine (130 µL, 1.61 mmol, 20.0 equiv) was added to a solution of hexahydropyrroloindole sulfamate ester (-)-19 (50.0 mg, 80.0 umol, 1 equiv) in a mixture of acetonitrile-water (2:1, 900 µL) via syringe at 23 °C. The reaction flask was fitted with a reflux condenser and heated to 70 °C. After 24 h, the resulting yellow solution was allowed to cool to 23 °C. The mixture was diluted with dichloromethane (25 mL) and was washed with a saturated aqueous sodium bicarbonate solution (10 mL). The aqueous layer was extracted with dichloromethane $(2 \times 15 \text{ mL})$. The combined organic extracts were washed with brine (10 mL). were dried over anhydrous sodium sulfate, were filtered, and were concentrated under reduced pressure. The resulting residue was purified by flash column chromatography on silica gel gradient, 2→5% methanol in dichloromethane) to afford (eluent: the C3aaminohexahydropyrroloindole (-)-20 (31.0 mg, 90.2%) as a yellow oil.

As a result of the slow conformational equilibration at ambient temperature, NMR spectra were collected at elevated temperature. Structural assignments were made using additional information from gCOSY, HSQC, and HMBC experiments also collected at elevated temperature.

¹ H NMR (500 MHz, CD ₃ CN, 70 °C):	δ 7.75 (d, $J = 8.5$ Hz, 2H, N ₈ SO ₂ Ar- <i>o</i> - H), 7.55–7.53 (m, 3H, N ₈ SO ₂ Ar- <i>m</i> - H , C ₇ H), 7.34–7.29 (m, 2H, C ₆ H , C ₄ H), 7.17 (app-t, $J = 7.5$ Hz, 1H, C ₅ H), 5.71 (s, 1H, C _{8a} H), 3.76 (app-t, $J = 9.5$ Hz, 1H, C ₂ H _a), 3.67 (s, 3H, N ₁ CO ₂ C H ₃), 2.80 (app-dt, $J = 6.0, 11.1$ Hz, 1H, C ₂ H _b) 2.14 (dd, $J = 6.0, 12.5$ Hz, 1H, C ₃ H _a), 2.07 (app-dt, $J = 8.0, 11.0$ Hz, 1H, C ₃ H _b), 1.43 (br-s, 2H, N H ₂) 1.30 (s, 9H, C(C H ₃) ₃).
¹³ C NMR (125.8 MHz, CD ₃ CN, 70 °C):	δ 159.3 (N ₈ SO ₂ Ar- <i>p</i> -C), 156.8 (N ₁ CO ₂ CH ₃), 143.4 (C _{7a}), 138.3 (C _{4a}), 137.9 (N ₈ SO ₂ Ar- <i>ipso</i> -C), 131.1 (C ₆), 129.0 (N ₈ SO ₂ Ar- <i>o</i> -C), 127.9 (N ₈ SO ₂ Ar- <i>m</i> -C), 127.0 (C ₅), 125.6 (C ₄), 118.6 (C ₇), 88.5 (C _{8a}), 71.9 (C _{3a}), 53.7 (N ₁ CO ₂ CH ₃), 47.4 (C ₂), 40.5 (C ₃), 36.7 (C(CH ₃) ₃), 32.0 (C(CH ₃) ₃).
FTIR (thin film) cm ⁻¹ :	3380 (br-w), 3316 (br-w), 2962 (m), 1710 (s), 1595 (w), 1448 (m), 1385 (m), 1197 (m).
HRMS (ESI) (<i>m/z</i>):	calc'd for $C_{22}H_{27}N_3NaO_4S [M+Na]^+$: 452.1614, found: 452.1633.

Application of diazene-directed fragment assembly to the enantioselective total synthesis and stereochemical assignment of (+)-desmethyl-*meso*-chimonanthine and related heterodimeric alkaloids. Stephen P. Lathrop and Mohammad Movassaghi* Page S19 / S153


$$[\alpha]_{D}^{24}$$
:

$$-175 (c = 1.66, CH_2Cl_2).$$

TLC (50% acetone in hexanes), Rf:

0.24 (UV, CAM).

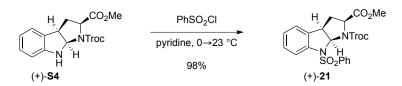
Application of diazene-directed fragment assembly to the enantioselective total synthesis and stereochemical assignment of (+)-desmethyl-*meso*chimonanthine and related heterodimeric alkaloids. Stephen P. Lathrop and Mohammad Movassaghi* Page S20 / S153

N1-Carboxytrichloroethyl Hexahydropyrroloindole (+)-S4:

Sodium carbonate (8.30 g, 78.5 mmol, 2.00 equiv) was added in one portion as a solid to a solution of L-tryptophan methyl ester hydrochloride (S3) (10.0 g, 39.3 mmol, 1 equiv) in tetrahydrofuran-water (1:1, 400 mL) at 23 °C. After 10 min, 2,2,2-trichloroethyl chloroformate (7.00 mL, 51.0 mmol, 1.30 equiv) was added via syringe. After 1 h, tetrahydrofuran was removed under reduced pressure, and the resulting aqueous suspension was extracted with dichloromethane (3×300 mL). The combined organic extracts were washed with brine (100 mL), were dried over anhydrous sodium sulfate, were filtered, and were concentrated under reduced pressure to afford 2,2,2-trichloroethoxycarbonylated L-tryptophan methyl ester. The resulting tryptophan derivative was dissolved in trifluoroacetic acid (200 mL) and stirred at 23 °C. After 40 h, the homogenous solution was poured slowly into a vigorously stirred biphasic mixture of dichloromethane (200 mL) and aqueous sodium carbonate solution (10% w/v, 600 mL). The pH of the mixture was maintained above 7 by the periodic addition of solid sodium carbonate (5 \times 50 g). Once the addition was complete, the mixture was extracted with dichloromethane $(3 \times 400 \text{ mL})$ and the combined organic layers were washed sequentially with water (100 mL) and brine (100 mL). The organic layer was separated, was dried over anhydrous sodium sulfate, was filtered, and was concentrated under reduced pressure. The resulting residue was purified by flash column chromatography on silica gel (eluent: $15 \rightarrow 25\%$ acetone in hexanes) to give N1-carboxytrichloroethyl hexahydropyrroloindole (+)- $S4^5$ (10.2 g, 65.9%) as a clear Structural assignments were made using additional information from gCOSY, viscous oil. HSQC, and HMBC experiments.

¹H NMR (500 MHz, C₆D₆, 20 °C):

Major Rotamer: δ 6.89 (app-t, J = 7.5 Hz, 1H, C₆H), 6.79–6.75 (m, 1H, C₄H), 6.61 (app-t, J = 7.4 Hz, 1H, C₅H), 6.25 (d, J = 7.7 Hz, 1H, C₇H), 5.33 (d, J = 6.6 Hz, 1H, C_{8a}H), 5.17 (br-s, 1H, N₈H), 4.65 (d, J= 11.9 Hz, 1H, N₁CO₂CH_aH_bCCl₃) 4.56–4.52 (m, 1H, N₁CO₂CH_aH_bCCl₃), 4.38 (d, J = 8.7 Hz, 1H, C₂H), 3.21 (app-t, J = 7.1 Hz, 1H, C_{3a}H), 2.92 (s, 3H, CO₂CH₃), 2.27 (d, J = 13.2 Hz, 1H, C₃H_a), 1.83–1.74 (m, 1H, C₃H_b).


Minor Rotamer: δ 6.94 (app-t, J = 7.5 Hz, 1H, C₆H), 6.79–6.75 (m, 1H, C₄H), 6.64 (app-t, J = 7.4 Hz, 1H, C₅H), 6.49 (d, J = 7.7 Hz, 1H, C₇H), 5.31 (d, J =

 $^{^{5}}$ Due to facile opening of cyclotryptophan **S4** to the corresponding tryptophan derivative this material was used in the next step immediately following purification.

Application of diazene-directed fragment assembly to the enantioselective total synthesis and stereochemical assignment of (+)-desmethyl-*meso*chimonanthine and related heterodimeric alkaloids. Stephen P. Lathrop and Mohammad Movassaghi* Page S21 / S153

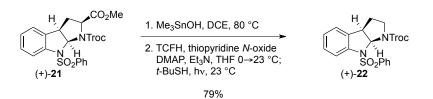
	6.6 Hz, 1H, C_{8a} H), 4.99 (br-s, 1H, N ₈ H), 4.65 (d, J = 11.9 Hz, 1H, N ₁ CO ₂ CH _a H _b CCl ₃) 4.56–4.52 (m, 1H N ₁ CO ₂ CH _a H _b CCl ₃), 4.50 (d, J = 8.7 Hz, 1H, C ₂ H), 3.29 (app-t, J = 7.1 Hz, 1H, C _{3a} H), 2.89 (s, 3H, CO ₂ CH ₃), 2.28 (d, J = 13.2 Hz, 1H, C ₃ H _a), 1.83–1.74 (m, 1H, C ₃ H _b).
¹³ C NMR (125.8 MHz, C ₆ D ₆ , 20 °C):	MajorRotamer: δ 171.5(CO ₂ CH ₃),153.2(N ₁ CO ₂ CH ₂ CCl ₃),150.9(C _{7a}),129.1(C ₆),128.7(C _{4a}),124.5(C ₄),119.2(C ₅),109.7(C ₇),96.3(N ₁ CO ₂ CH ₂ CCl ₃),78.3(C _{8a}),75.2(N ₁ CO ₂ CH ₂ CCl ₃),59.7(C ₂),52.1(CO ₂ CH ₃),45.6(C _{3a}),34.8(C ₃).
	$\begin{array}{llllllllllllllllllllllllllllllllllll$
FTIR (thin film) cm ⁻¹ :	3384 (br-w), 2951 (w), 1718 (s), 1610 (w), 1414 (m).
HRMS (ESI) (<i>m/z</i>):	calc'd for $C_{15}H_{16}Cl_3N_2O_4$ [M+H] ⁺ : 393.0170, found: 393.0180.
$[\alpha]_D^{24}$:	$+168 (c = 0.58, CH_2Cl_2).$
TLC (33% acetone in hexanes), Rf:	0.34 (UV, CAM).

Application of diazene-directed fragment assembly to the enantioselective total synthesis and stereochemical assignment of (+)-desmethyl-*meso*chimonanthine and related heterodimeric alkaloids. Stephen P. Lathrop and Mohammad Movassaghi* Page S22 / S153

C2-Carboxymethyl Hexahydropyrroloindole (+)-21:

Benzenesulfonyl chloride (6.10 mL, 47.8 mmol, 2.00 equiv) was added dropwise via syringe to a solution of N1-carboxytrichloroethyl hexahydropyrroloindole (+)-**S4** (9.40 g, 23.9 mmol, 1 equiv) in pyridine (40 mL) at 0 °C in an ice bath. After 15 min, the ice bath was removed and allowed to warm to 23 °C. After 15 h, the solution was concentrated under reduced pressure. The resulting residue was diluted with ethyl acetate (750 mL) and washed sequentially with an aqueous solution of hydrochloric acid (1 N, 2 × 50 mL), saturated aqueous solution of sodium bicarbonate (50 mL), and brine (100 mL). The organic layer was separated, was dried over anhydrous sodium sulfate, was filtered, and was concentrated under reduced pressure. The resulting residue was purified by flash column chromatography on silica gel (eluent: $25 \rightarrow 50\%$ ethyl acetate in hexanes) to give C2-carboxymethyl hexahydropyrroloindole (+)-**21** (12.5 g, 97.9%) as a white foam.

As a result of the slow conformational equilibration at ambient temperature, NMR spectra were collected at elevated temperature. Structural assignments were made using additional information from gCOSY, HSQC, and HMBC experiments also collected at elevated temperature.


¹ H NMR (500 MHz, CD ₃ CN, 70 °C):	δ 7.72 (d, $J = 8.3$ Hz, 2H, N ₈ SO ₂ Ph- <i>o</i> - H), 7.57 (t, $J = 7.8$ Hz, 1H, N ₈ SO ₂ Ph- <i>p</i> - H), 7.45–7.40 (m, 3H, C ₇ H , N ₈ SO ₂ Ph- <i>m</i> - H), 7.25 (app-t, $J = 8.3$ Hz, 1H, C ₆ H), 7.09 (m, 2H, C ₄ H , C ₅ H), 6.38 (d, $J = 6.4$ Hz, 1H, C _{8a} H), 4.86 (d, $J = 12.1$ Hz, 1H, N ₁ CO ₂ CH _a H _b CCl ₃) 4.71 (d, $J = 10.5$ Hz, 1H, N ₁ CO ₂ CH _a H _b CCl ₃), 4.64 (d, $J = 9.1$ Hz, 1H, C ₂ H), 3.70 (app-t, $J = 7.0$ Hz, 1H, C _{3a} H), 3.15 (s, 3H, CO ₂ CH ₃), 2.61 (ddd, $J = 7.5$, 9.1, 13.4 Hz, 1H, C ₃ H _a), 2.52 (d, $J = 13.4$ Hz, 1H, C ₃ H _b).
¹³ C NMR (125.8 MHz, CD ₃ CN, 70 °C):	δ 172.7 (CO ₂ CH ₃), 154.0 ⁶ (N ₁ CO ₂ CH ₂ CCl ₃), 144.1 (C _{7a}), 140.8 (N ₈ SO ₂ Ph- <i>ipso</i> -C), 135.9 (C _{4a}), 135.0 (N ₈ SO ₂ Ph- <i>p</i> -C), 130.8 (N ₈ SO ₂ Ph- <i>m</i> -C), 130.4 (C ₆), 128.9 (N ₈ SO ₂ Ph- <i>o</i> -C), 127.3 (C ₅), 126.4 (C ₄), 120.0 (C ₇), 97.3 (N ₁ CO ₂ CH ₂ CCl ₃), 82.9 (C _{8a}), 76.7 (N ₁ CO ₂ CH ₂ CCl ₃), 61.1 (C ₂), 53.2 (CO ₂ CH ₃), 47.1 (C _{3a}), 35.2 (C ₃).
FTIR (thin film) cm^{-1} :	2952 (w), 1731 (s), 1404 (m), 1357 (m), 1170 (m).

⁶ Not observed directly in simple ¹³C NMR. Assigned based on HMBC correlation to NCO₂CH_aH_bCCl₃.

Application of diazene-directed fragment assembly to the enantioselective total synthesis and stereochemical assignment of (+)-desmethyl-*meso*chimonanthine and related heterodimeric alkaloids. Stephen P. Lathrop and Mohammad Movassaghi* Page S23 / S153

HRMS (ESI) (<i>m/z</i>):	calc'd for $C_{21}H_{20}Cl_3N_2O_6S [M+H]^+$: 533.0102, found: 533.0107.
$[\alpha]_D^{24}$:	$+93 (c = 0.41, CH_2Cl_2).$
TLC (50% ethyl acetate in hexanes), Rf:	0.47 (UV, CAM).

Application of diazene-directed fragment assembly to the enantioselective total synthesis and stereochemical assignment of (+)-desmethyl-*meso*chimonanthine and related heterodimeric alkaloids. Stephen P. Lathrop and Mohammad Movassaghi* Page S24 / S153

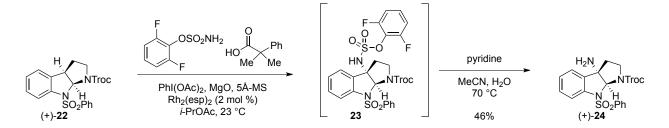
N8-Benzenesulfonyl Hexahydropyrroloindole (+)-22:

Trimethyltin hydroxide⁷ (9.50 g, 52.5 mmol, 8.00 equiv) was added to a solution of C2carboxymethyl hexahydropyrroloindole (+)-**21** (3.50 g, 6.55 mmol, 1 equiv) in dichloroethane (65 mL) at 23 °C. The reaction flask was fitted with a reflux condenser and heated to 80 °C. After 48 h, the heterogeneous mixture was allowed to cool to 23 °C and was concentrated under reduced pressure. The resulting residue was diluted with ethyl acetate (600 mL) and was washed with aqueous hydrochloric acid solution (1 N, 3 × 100 mL), brine (50 mL), the organic layer was separated, was dried over anhydrous sodium sulfate, was filtered and was concentrated under reduced pressure. The resulting residue was filtered through a pad of silica gel (eluent: 5% methanol in dichloromethane \rightarrow 5% acetic acid in dichloromethane) to remove excess trimethyltin hydroxide. The filtrate was concentrated under reduced pressure to provide the crude carboxylic acid.

Thiopyridine N-oxide (1.33 g, 10.5 mmol, 1.60 equiv), 4-(dimethylamino)pyridine (80.0 650 umol. 0.100 equiv), and *N*,*N*,*N*',*N*'-tetramethylchloroformamidinium mg, hexafluorophosphate (TCFH, 2.75 g, 9.81 mmol, 1.50 equiv) were sequentially added to a solution of the crude carboxylic acid in tetrahydrofuran (65 mL) at 0 °C in an ice bath. The reaction flask was removed from the ice bath, covered in aluminum foil, and triethylamine (3.65 mL, 26.2 mmol, 4.00 equiv) was added while the reaction mixture was still cold. After 1.5 h, tert-butylthiol (3.70 mL, 32.7 mmol, 5.00 equiv) was added via syringe and the aluminum foil was removed from the flask. The resulting suspension was irradiated with a flood lamp (500 W). After 2 h, the lamp was turned off and the tetrahydrofuran was removed under reduced pressure. The resulting residue was diluted with dichloromethane (200 mL) and was washed with aqueous saturated sodium bicarbonate solution (50 mL). The aqueous layer was extracted with dichloromethane $(2 \times 100 \text{ mL})$. The combined organic extracts were washed with brine (50 mL), were dried over anhydrous sodium sulfate, were filtered, and were concentrated under reduced pressure. The resulting residue was purified by flash column chromatography on silica gel (eluent: gradient, $10 \rightarrow 33\%$ ethyl acetate in hexanes) to give N8-benzenesulfonyl hexahydropyrroloindole (+)-22 (2.47 g, 79.3%, overall from (+)-21) as a white foam.

As a result of the slow conformational equilibration at ambient temperature, NMR spectra were collected at elevated temperature. Structural assignments were made using additional information from gCOSY, HSQC, and HMBC experiments also collected at elevated temperature.

¹H NMR (500 MHz, CD₃CN, 70 °C):


δ 7.74 (d, J = 7.8 Hz, 2H, N₈SO₂Ph-*o*-**H**), 7.59 (t, J = 7.5 Hz, 1H, N₈SO₂Ph-*p*-**H**) 7.52 (d, J = 8.1 Hz, 1H, C₇**H**) 7.45 (t, J = 7.3 Hz, 2H, N₈SO₂Ph-*m*-**H**),

⁷ All operations involving trimethyltin hydroxide were carried out in a well-ventilated fume hood. This includes but is not limited to: measuring out the reagent, execution of the transformation, work-up of the reaction mixture, and concentration of the crude reaction mixture.

Application of diazene-directed fragment assembly to the enantioselective total synthesis and stereochemical assignment of (+)-desmethyl-*meso*chimonanthine and related heterodimeric alkaloids. Stephen P. Lathrop and Mohammad Movassaghi* Page S25 / S153

	7.27 (app-t, $J = 7.3$ Hz, 1H, C ₆ H), 7.18–7.12 (m, 2H, C ₄ H, C ₅ H), 6.34 (d, $J = 6.7$ Hz, 1H, C _{8a} H), 4.90–4.82 (m, 2H, N ₁ CO ₂ CH ₂ CCl ₃), 3.85 (dd, $J = 8.3$, 10.6 Hz, 1H, C ₂ H _a), 3.73 (app-t, $J = 7.1$ Hz, 1H, C _{3a} H), 2.85 (app-dt, $J = 5.7$, 11.4 Hz, 1H, C ₂ H _b), 2.23–2.14 (m, 1H, C ₃ H _a), 2.04 (dd, $J = 5.6$, 12.7 Hz, 1H, C ₃ H _b).
¹³ C NMR (125.8 MHz, CD ₃ CN, 70 °C):	δ 154.3 (N ₁ CO ₂ CH ₂ CCl ₃), 143.7 (C _{7a}), 140.4 (N ₈ SO ₂ Ph- <i>ipso</i> -C), 135.8 (C _{4a}), 135.1 (NSO ₂ Ph- <i>p</i> -C), 130.9 (N ₈ SO ₂ Ph- <i>m</i> -C), 130.2 (C ₆), 129.0 (N ₈ SO ₂ Ph- <i>o</i> -C), 127.3 (C ₅), 126.4 (C ₄), 119.0 (C ₇), 97.7 (N ₁ CO ₂ CH ₂ CCl ₃), 82.1 (C _{8a}), 76.6 (N ₁ CO ₂ CH ₂ CCl ₃), 47.6 (C _{3a}), 46.9 (C ₂), 37.3 (C ₃).
FTIR (thin film) cm^{-1} :	2952 (w), 1728 (s), 1407 (m), 1358 (m), 1173 (m).
HRMS (ESI) (m/z) :	calc'd for $C_{19}H_{18}Cl_3N_2O_4S [M+H]^+$: 475.0047, found: 475.0051.
$[\alpha]_D^{24}$:	$+183 (c = 0.43, CH_2Cl_2).$
TLC (50% ethyl acetate in hexanes), Rf:	0.58 (UV, CAM).

Application of diazene-directed fragment assembly to the enantioselective total synthesis and stereochemical assignment of (+)-desmethyl-*meso*chimonanthine and related heterodimeric alkaloids. Stephen P. Lathrop and Mohammad Movassaghi* Page S26 / S153

C3a-Aminohexahydropyrroloindole (+)-24:

A round bottom flask was charged with 5Å molecular sieves (210 mg, 200 mg/mmol of 22), magnesium oxide (169 mg, 4.20 mmol, 4.00 equiv) and flame-dried under vacuum. The reaction vessel was allowed to cool to 23 °C and back filled with argon. Solid 2.6difluorophenyl sulfamate⁴ (287 mg, 1.37 mmol, 1.30 equiv), 2-methyl-2-phenylpropionic acid (86.0 mg, 526 µmol, 0.500 equiv), and Rh₂(esp)₂ (16.0 mg, 21.0 µmol, 0.0200 equiv) were added sequentially. A solution of N8-benzenesulfonyl hexahydropyrroloindole (+)-22 (500 mg, 1.05 mmol, 1 equiv) in isopropyl acetate (2.0 mL) was added at 23 °C and the mixture was allowed to stir. After 5 min, (diacetoxyiodo)benzene (676 mg, 2.10 mmol, 2.00 equiv) was added and the green heterogeneous mixture was vigorously agitated with stirring at 23 °C. After 24 h, the reaction mixture was filtered through a pad of Celite and the filter cake was rinsed with ethyl acetate (40 mL). The filtrate was concentrated under reduced pressure. The residue was diluted with dichloromethane (50 mL) and washed with a saturated solution of sodium thiosulfate (10 mL). The aqueous layer was then extracted with dichloromethane $(2 \times 30 \text{ mL})$. The combined organic extracts were washed with brine (25 mL), were dried over anhydrous sodium sulfate, were filtered, and were concentrated under reduced pressure.

The resulting crude aryl sulfamate ester 23 was dissolved in a mixture of acetonitrilewater (2:1, 21 mL). Pyridine (1.70 mL, 21.0 mmol, 20.0 equiv) was added via syringe at 23 °C. The reaction flask was fitted with a reflux condenser and heated to 70 °C. After 24 h, the resulting dark brown solution was allowed to cool to 23 °C. The mixture was diluted with dichloromethane (50 mL) and was washed with a saturated aqueous solution of sodium bicarbonate (20 mL). The aqueous layer was extracted with dichloromethane (2 × 30 mL). The combined organic extracts were washed with brine (25 mL), were dried over anhydrous sodium sulfate, were filtered, and were concentrated under reduced pressure. The resulting residue was purified by flash column chromatography on silica gel (eluent: gradient, $15 \rightarrow 33\%$ acetone in hexane) to afford the C3a-aminohexahydropyrroloindole (+)-24 (235 mg, 45.7%, overall from (+)-22) as an orange foam.

As a result of the slow conformational equilibration at ambient temperature, NMR spectra were collected at elevated temperature. Structural assignments were made using additional information from gCOSY, HSQC, and HMBC experiments also collected at elevated temperature.

¹H NMR (500 MHz, CD₃CN, 70 °C):

δ 7.86 (d, J = 7.9 Hz, 2H, N₈SO₂Ph-*o*-H), 7.61 (t, J = 7.8 Hz, 1H, N₈SO₂Ph-*p*-H) 7.55 (d, J = 8.1 Hz, 1H, C₇H), 7.49 (t, J = 7.4 Hz, 2H, N₈SO₂Ph-*m*-H), 7.35–7.31 (m, 2H, C₆H, C₄H), 7.18 (app-t, J = 7.5 Hz, 1H, C₅H), 5.82 (s, 1H, C_{8a}H), 4.88 (br-s, 1H, N₁CO₂CH_aH_bCCl₃), 4.81 (d, J = 10.9 Hz, 1H,

Application of diazene-directed fragment assembly to the enantioselective total synthesis and stereochemical assignment of (+)-desmethyl-*meso*chimonanthine and related heterodimeric alkaloids. Stephen P. Lathrop and Mohammad Movassaghi* Page S27 / S153

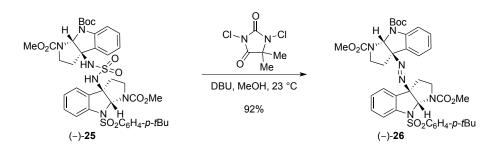
	N ₁ CO ₂ CH _a H _b CCl ₃), 3.90 (app-t, $J = 9.5$ Hz, 1H, C ₂ H _a), 2.91 (app-dt, $J = 6.0$, 11.1 Hz, 1H, C ₂ H _b), 2.19 (dd, $J = 6.0$, 12.5 Hz, 1H, C ₃ H _a), 2.11 (app-dt, J = 8.0, 11.4 Hz, 1H, C ₃ H _b) 1.47 (br-s, 2H, NH ₂).
¹³ C NMR (125.8 MHz, CD ₃ CN, 70 °C):	δ 154.6 (N ₁ CO ₂ CH ₂ CCl ₃), 143.2 (C _{7a}), 140.5 (N ₈ SO ₂ Ph- <i>ipso</i> -C), 137.9 (C _{4a}), 135.3 (N ₈ SO ₂ Ph- <i>p</i> -C), 131.3 (C ₆), 131.0 (N ₈ SO ₂ Ph- <i>m</i> -C), 129.2 (N ₈ SO ₂ Ph- <i>o</i> -C), 127.2 (C ₅), 125.8 (C ₄), 118.3 (C ₇), 97.7 (N ₁ CO ₂ CH ₂ CCl ₃), 88.5 (C _{8a}), 76.6 (N ₁ CO ₂ CH ₂ CCl ₃), 71.8 (C _{3a}), 47.8 (C ₂), 40.8 (C ₃).
FTIR (thin film) cm^{-1} :	2953 (w), 1733 (s), 1407 (m), 1361 (m), 1171 (w).
HRMS (ESI) (m/z) :	calc'd for $C_{19}H_{19}Cl_3N_3O_4S [M+H]^+$: 490.0156, found: 490.0139.
$[\alpha]_D^{24}$:	$+164 (c = 0.48, CH_2Cl_2).$
TLC (33% acetone in hexanes), Rf:	0.16 (UV, CAM).

Application of diazene-directed fragment assembly to the enantioselective total synthesis and stereochemical assignment of (+)-desmethyl-*meso*chimonanthine and related heterodimeric alkaloids. Stephen P. Lathrop and Mohammad Movassaghi* Page S28 / S153

Mixed Sulfamide (–)-25:

Triethylamine (82.0 μ L, 587 μ mol, 2.20 equiv) was added via syringe to a solution of C3a-aminohexahydropyrroloindole (–)-16 (89.0 mg, 267 μ mol, 1 equiv) and hexahydropyrroloindole sulfamate ester (–)-19 (200 mg, 320 μ mol, 1.20 equiv) in tetrahydrofuran (2.00 mL) at 23 °C. After 24 h, the clear solution was concentrated under reduced pressure. The resulting residue was purified by flash column chromatography on silica gel (eluent: 33% ethyl acetate in hexanes then 25% acetone in hexanes) to afford the mixed sulfamide (–)-25 (187 mg, 84.9%) as a white solid.

As a result of the slow conformational equilibration at ambient temperature, NMR spectra were collected at elevated temperature. Structural assignments were made using additional information from gCOSY, HSQC, and HMBC experiments also collected at elevated temperature.


¹H NMR (500 MHz, C₆D₆, 70 °C):

δ 8.05 (d, J = 8.2Hz, 1H, C₇·**H**), 7.94 (br-s, 2H, N₈SO₂Ar-*o*-**H**), 7.74 (d, J = 8.1Hz, 1H, C₇**H**), 7.14 (d, J = 8.5 Hz, 2H, N₈SO₂Ar-*m*-**H**), 7.08–7.00 (m, 2H, C₆**H**, C₆·**H**), 6.95 (d, J = 5.6 Hz, 1H, C₄·**H**), 6.91 (s, 1H, C_{8a}**H**), 6.73 (app-t, J = 7.5 Hz, 1H, C₅**H**), 6.66 (d, J = 6.6 Hz, 1H, C₄**H**), 6.61 (s, 1H, C_{8a}·**H**), 6.53 (br-s, 1H, C₅·**H**), 5.15 (br-s, 1H, SO₂N**H**), 3.84 (br-s, 1H, SO₂N**H**), 3.80–3.67 (m, 2H, C₂**H**_a, C₂·**H**_a), 3.51 (s, 3H, N₁CO₂C**H**₃), 3.44 (s, 3H, N₁·CO₂C**H**₃), 2.66–2.54 (m, 3H, C₂**H**_b, C₂·**H**_b, C₃**H**_a), 2.14–2.07 (m, 2H, C₃·**H**_a C₃·**H**_b), 1.79 (d, J = 7.1Hz, 1H, C₃**H**_b), 1.58 (s, 9H, N₁·CO₂C(C**H**₃)₃), 1.04 (s, 9H, C(C**H**₃)₃).

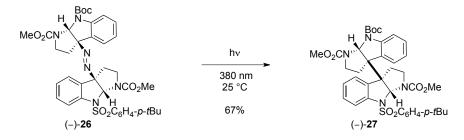
¹³C NMR (125.8 MHz, C₆D₆, 70 °C): δ 157.5 (N₈SO₂Ar-*p*-C), 155.7 (N₁·CO₂CH₃), 155.5 (N₁CO₂CH₃), 153.3 (N₈·CO₂C(CH₃)₃), 145.5 (C_{7a}'), 143.3 (C_{7a}), 138.2 (N₈SO₂Ar-*ipso*-C), 132.8 (C_{4a}), 130.9 (C₆), 130.8 (C₆), 129.5 (C_{4a}'), 128.0 (N₈SO₂Ar-*o*-C), 126.7 (N₈SO₂Ar-*m*-C), 125.3 (C₅), 124.8 (C₄), 124.5 (C₄'), 123.5 (C₅'), 118.4 (C₇), 117.5 (C₇'), 82.5 (C_{8a}), 82.0 (N₈·CO₂C(CH₃)₃), 81.6 (C_{8a'}), 72.9 (C_{3a}), 72.0 (C_{3a}), 52.9 (N₁·CO₂CH₃), 52.6 (N₁CO₂CH₃), 45.4 (C₂), 45.2 (C₂'), 37.8 (C₃'), 37.3 (C₃), 35.4 (C(CH₃)₃), 31.3 (C(CH₃)₃), 28.8 (N₈·CO₂C(CH₃)₃). Application of diazene-directed fragment assembly to the enantioselective total synthesis and stereochemical assignment of (+)-desmethyl-*meso*chimonanthine and related heterodimeric alkaloids. Stephen P. Lathrop and Mohammad Movassaghi* Page S29 / S153

FTIR (thin film) cm ⁻¹ :	3242 (br-m), 2960 (m), 1713 (s), 1480 (m), 1448 (m), 1392 (m), 1167 (w).
HRMS (ESI) (m/z) :	calc'd for $C_{39}H_{48}N_6NaO_{10}S_2 [M+Na]^+$: 847.2766, found: 847.2767.
$[\alpha]_D^{24}$:	$-111 (c = 0.66, CH_2Cl_2).$
TLC (33% acetone in hexanes), Rf:	0.25 (UV, CAM).

Application of diazene-directed fragment assembly to the enantioselective total synthesis and stereochemical assignment of (+)-desmethyl-*meso*chimonanthine and related heterodimeric alkaloids. Stephen P. Lathrop and Mohammad Movassaghi* Page S30 / S153

Unsymmetrical Diazene (–)-26:

1,8-Diazabicyclo[5.4.0]undec-7-ene (DBU, 152 μ L, 1.02 mmol, 5.00 equiv), was added via syringe to a solution of mixed sulfamide (–)-25 (169 mg, 205 μ mol, 1 equiv) in methanol (15.0 mL) at 23 °C. After 5 min, a solution of 1,3-dichloro-5,5-dimethylhydantoin (101 mg, 513 μ mol, 2.50 equiv) in methanol (5.00 mL) was added via syringe over 1 min at 23 °C. After 30 min, the clear solution was concentrated under reduced pressure. The resulting residue was purified by flash column chromatography on silica gel (eluent: 10–20% acetone in hexanes) to afford unsymmetrical diazene (–)-26 (143 mg, 91.9%) as a white foam.


As a result of the slow conformational equilibration at ambient temperature, NMR spectra were collected at elevated temperature. Structural assignments were made using additional information from gCOSY, HSQC, and HMBC experiments also collected at elevated temperature.

¹ H NMR (500 MHz, CD ₃ CN, 50 °C):	δ 7.72 (d, $J = 8.5$ Hz, 2H, N ₈ SO ₂ Ar- <i>o</i> - H), 7.68 (d, $J = 8.2$ Hz, 1H, C ₇ ' H), 7.50 (d, $J = 8.2$ Hz, 1H, C ₇ H), 7.46 (d, $J = 8.5$ Hz, 2H, N ₈ SO ₂ Ar- <i>m</i> - H), 7.35–7.29 (m, 2H, C ₆ H , C ₆ ' H), 7.13–6.97 (m, 4H, C ₄ H , C ₄ ' H , C ₅ H , C ₅ ' H), 6.64 (s, 1H, C _{8a} H), 6.51 (s, 1H, C _{8a} ' H), 3.92–3.85 (m, 2H, C ₂ H _a , C ₂ ' H _a), 3.69 (s, 3H, N ₁ 'CO ₂ C H ₃), 3.66 (s, 3H, N ₁ CO ₂ C H ₃), 3.00–2.90 (m, 2H, C ₂ H _b , C ₂ ' H _b), 2.28 (app-t, $J = 5.1$ Hz, 1H, C ₃ ' H _a), 2.26 (app-t, $J = 5.1$ Hz, 1H, C ₃ H _a), 2.18 (app-dt, $J = 8.0$, 11.9 Hz, 1H, C ₃ ' H _b), 2.10 (app-dt, $J = 8.2$, 12.3 Hz, 1H, C ₃ ' H _b), 1.54 (s, 9H, N ₁ 'CO ₂ C(C H ₃) ₃), 1.26 (s, 9H, C(C H ₃) ₃).
¹³ C NMR (125.8 MHz, CD ₃ CN, 50 °C):	δ 159.0 (N ₈ ·SO ₂ Ar- <i>p</i> -C), 156.6 (N ₁ ·CO ₂ CH ₃), 156.2 (N ₁ CO ₂ CH ₃), 153.8 (N ₈ ·CO ₂ C(CH ₃) ₃), 145.3 (C _{7a'}), 144.0 (C _{7a}), 137.5 (N ₈ SO ₂ Ar- <i>ipso</i> -C), 131.9 (C ₆), 131.7 (C ₆ '), 131.4 (C _{4a}), 130.6 (C _{4a'}), 129.0 (N ₈ SO ₂ Ar- <i>o</i> -C), 127.7 (N ₈ SO ₂ Ar- <i>m</i> -C), 127.0 (C ₄), 126.4 (C ₅), 126.3 (C ₄ '), 125.1 (C ₅ '), 118.2 (C ₇ '), 117.4 (C ₇), 90.6 (C _{3a}), 89.9 (C _{3a'}), 83.2 (N ₈ ·CO ₂ C(CH ₃) ₃), 83.0 (C _{8a}), 80.0 (C _{8a'}), 53.8 (N ₁ CO ₂ CH ₃), 53.7 (N ₁ ·CO ₂ CH ₃), 47.1 (C ₂ '), 46.9 (C ₂), 37.3 (C ₃), 36.5 (C(CH ₃) ₃), 35.9 (C _{3'}), 31.9 (C(CH ₃) ₃), 29.2 (N ₈ ·CO ₂ C(CH ₃) ₃).

Application of diazene-directed fragment assembly to the enantioselective total synthesis and stereochemical assignment of (+)-desmethyl-*meso*chimonanthine and related heterodimeric alkaloids. Stephen P. Lathrop and Mohammad Movassaghi* Page S31 / S153

FTIR (thin film) cm^{-1} :	2960 (m), 1712 (s), 1597 (w), 1447 (m), 1391 (s), 1171 (m).
HRMS (ESI) (m/z) :	calc'd for $C_{39}H_{46}N_6NaO_8S [M+Na]^+$: 781.2990, found: 781.2997.
$[\alpha]_D^{24}$:	$-226 (c = 1.03, CH_2Cl_2).$
TLC (33% acetone in hexanes), Rf:	0.50 (UV, CAM).

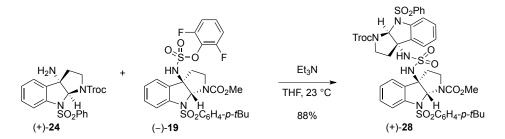
Application of diazene-directed fragment assembly to the enantioselective total synthesis and stereochemical assignment of (+)-desmethyl-*meso*chimonanthine and related heterodimeric alkaloids. Stephen P. Lathrop and Mohammad Movassaghi* Page S32 / S153

Heterodimer (-)-27:

A solution of unsymmetrical diazene (-)-26 (132 mg, 174 µmol, 1 equiv) in dichloromethane (30 mL) was concentrated under reduced pressure in a 100 mL round bottom flask to provide a thin film of diazene (-)-26 coating the flask. The flask was back filled with argon and irradiated in a Rayonet photoreactor equipped with 16 radially distributed (r=12.7 cm) 25 W lamps (λ =380 nm) at 25 °C. After 12 h, the lamps were turned off and the resulting residue was purified by flash column chromatography on silica gel (eluent: 10-20% acetone in hexanes) to afford the heterodimer (-)-27 (85.0 mg, 66.8%) as a white foam.

As a result of the slow conformational equilibration at ambient temperature, NMR spectra were collected at elevated temperature. Structural assignments were made using additional information from gCOSY, HSQC, and HMBC experiments also collected at elevated temperature.

¹H NMR (500 MHz, CD₃CN, 75 °C):


δ 7.85 (d, J = 8.5 Hz, 2H, N₈SO₂Ar-*o*-**H**), 7.62 (d, J = 8.5 Hz, 2H, N₈SO₂Ar-*m*-**H**), 7.58 (d, J = 8.2Hz, 1H, C₇'**H**), 7.44 (d, J = 8.2Hz, 1H, C₇**H**), 7.25–7.13 (m, 4H, C₆**H**, C₆'**H**, C₄**H**, C₄'**H**), 6.97 (app-t, J = 7.7 Hz, 1H, C₅**H**), 6.88 (app-t, J = 7.6 Hz, 1H, C₅'**H**), 6.35 (s, 1H, C_{8a}**H**), 6.24 (s, 1H, C_{8a}'**H**), 3.87 (dd, J = 7.6, 11.5 Hz, 1H, C₂**H**_a), 3.76 (dd, J = 7.6, 10.9 Hz, 1H, C₂'**H**_a), 3.66 (s, 3H, N₁'CO₂C**H**₃), 3.53 (s, 3H, N₁CO₂C**H**₃), 2.70–2.62 (m, 2H, C₂**H**_b), C₂'**H**_b), 2.25 (app-dt, J = 7.7, 12.0 Hz, 1H, C₃'**H**_a), 2.08–2.01 (m, 2H, C₃**H**_b, C₃'**H**_b), 1.60 (s, 9H, N₁'CO₂C(C**H**₃)₃), 1.36 (s, 9H, C(C**H**₃)₃).

δ 159.1 (N ₈ /SO ₂ Ar- <i>p</i> -C), 156.6 (N ₁ /CO ₂ CH ₃), 156.1 (N ₁ CO ₂ CH ₃), 153.7 (N ₈ /CO ₂ C(CH ₃) ₃), 145.3 (C _{7a'}), 144.8 (C _{7a}), 140.1 (N ₈ SO ₂ Ar- <i>ipso</i> -C), 133.4 (C _{4a'}), 133.1 (C _{4a}), 131.0 (C ₆), 130.7 (C _{6'}), 128.1 (N ₈ SO ₂ Ar- <i>m</i> -C), 128.0 (N ₈ SO ₂ Ar- <i>o</i> -C), 126.2 (C ₄), 125.9 (C _{4'}), 125.1 (C ₅), 124.9 (C _{5'}), 117.8 (C _{7'}), 115.6 (C ₇), 83.5 (N ₈ 'CO ₂ C(CH ₃) ₃), 83.3 (C _{8a}), 81.1 (C _{8a'}), 64.2 (C _{3a}), 63.2 (C _{3a'}), 54.0 (N ₁ CO ₂ CH ₃),
$(C_{3a}), 04.2, (C_{3a}), 05.2, (C_{3a}), 04.0, (M_1CO_2CH_3), 05.2, (C_{3a}), 0$

Application of diazene-directed fragment assembly to the enantioselective total synthesis and stereochemical assignment of (+)-desmethyl-*meso*chimonanthine and related heterodimeric alkaloids. Stephen P. Lathrop and Mohammad Movassaghi* Page S33 / S153

	36.7 ($C(CH_3)_3$), 35.6 ($C_{3'}$), 32.1 ($C(CH_3)_3$), 29.5 ($N_8'CO_2C(CH_3)_3$).
FTIR (thin film) cm^{-1} :	2957 (w), 1711 (s), 1596 (w), 1479 (m), 1391 (w), 1366 (w), 1166 (w).
HRMS (ESI) (<i>m</i> / <i>z</i>):	calc'd for $C_{39}H_{46}N_4NaO_8S [M+Na]^+$: 753.2929, found: 753.2927.
$[\alpha]_{D}^{24}$:	$-162 (c = 0.13, CH_2Cl_2).$
TLC (33% acetone in hexanes), Rf:	0.37 (UV, CAM).

Application of diazene-directed fragment assembly to the enantioselective total synthesis and stereochemical assignment of (+)-desmethyl-*meso*chimonanthine and related heterodimeric alkaloids. Stephen P. Lathrop and Mohammad Movassaghi* Page S34 / S153

Mixed Sulfamide (+)-28:

Triethylamine (206 μ L, 1.47 mmol, 2.20 equiv) was added via syringe to a solution of C3a-aminohexahydropyrroloindole (+)-24 (328 mg, 670 μ mol, 1 equiv) and hexahydropyrroloindole sulfamate ester (-)-19 (500 mg, 804 μ mol, 1.20 equiv) in tetrahydrofuran (3.50 mL) at 23 °C. After 24 h, the clear solution was concentrated under reduced pressure. The resulting residue was purified by flash column chromatography on silica gel (eluent: 20-33% acetone in hexanes) to afford the mixed sulfamide (+)-28 (581 mg, 88.3%) as a white solid.

As a result of the slow conformational equilibration at ambient temperature, NMR spectra were collected at elevated temperature. Structural assignments were made using additional information from gCOSY, HSQC, and HMBC experiments also collected at elevated temperature.

¹ H NMR (500 MHz, C ₆ D ₆ , 70 °C):	δ 8.04 (br-s, 2H, N ₈ /SO ₂ Ph- <i>o</i> -H), 7.96 (d, $J = 7.7$ Hz, 2H, N ₈ SO ₂ Ar- <i>o</i> -H), 7.66–7.63 (m, 2H, C ₇ H C ₇ H) 7.31 (d, $J = 7.5$ Hz, 1H, C ₄ H) 7.24 (d, $J = 7.1$ Hz, 1H, C ₄ 'H), 7.20 (d, $J = 7.6$ Hz, 2H, N ₈ SO ₂ Ar- <i>m</i> - H), 7.09–7.05 (m, 2H, C ₆ H, C ₆ 'H), 7.04–7.00 (m, 3H, N ₈ 'SO ₂ Ph- <i>p</i> -H, N ₈ 'SO ₂ Ph- <i>m</i> -H), 6.95–6.90 (m, 2H, C ₅ H, C ₅ 'H), 6.84 (s, 1H, C _{8a} H), 6.74 (br-s, 1H, C _{8a} 'H), 4.96 (br-s, 2H, SO ₂ NH ₂), 4.74 (br-s, 1H, N ₁ 'CO ₂ CH _a H _b CCl ₃), 4.53 (d, $J = 11.6$ Hz, 1H, N ₁ 'CO ₂ CH _a H _b CCl ₃), 3.83 (app-t, $J = 10.6$ Hz, 1H, C ₂ H _a), 3.74 (app-t, $J = 8.8$ Hz, 1H, C ₂ 'H _a), 3.41 (s, 3H, N ₁ CO ₂ CH ₃), 2.66–2.56 (m, 2H, C ₂ 'H _b), 2.54–2.45 (m, 2H, C ₃ H _a , C ₃ 'H _a), 2.06 (m, 2H, C ₃ H _b , C ₃ 'H _b), 1.07 (s, 9H, C(CH ₃) ₃).
¹³ C NMR (125.8 MHz, C ₆ D ₆ , 70 °C):	δ 157.5 (N ₈ 'SO ₂ Ar- <i>p</i> -C), 155.4 (N ₁ CO ₂ CH ₃), 153.3 (N ₁ 'CO ₂ CH ₂ CCl ₃), 143.5 (C _{7a} '), 143.3 (C _{7a}), 140.8 (N ₈ 'SO ₂ Ph- <i>ipso</i> -C), 138.7 (N ₈ SO ₂ Ar- <i>ipso</i> -C), 133.6 (N ₈ 'SO ₂ Ph- <i>p</i> -C), 132.5 (C _{4a} ') 132.1 (C _{4a}), 131.0 (2C, C ₆ , C ₆ '), 129.5 (N ₈ 'SO ₂ Ph- <i>m</i> -C), 128.3 (N ₈ SO ₂ Ar- <i>o</i> -

C) 128.0 (N₈·SO₂Ph-*o*-C), 126.7 (N₈SO₂Ar-*m*-C), 125.7 (C₄), 125.6 (C₄'), 125.5 (2C, C₅, C₅'), 117.8 (C₇'), 117.3 (C₇'), 95.6 (N₁·CO₂CH₂CCl₃), 83.6 (C_{8a}), 83.5 (C_{8a}'), 75.9 (N₁·CO₂CH₂CCl₃), 73.2 (2C,

Application of diazene-directed fragment assembly to the enantioselective total synthesis and stereochemical assignment of (+)-desmethyl-*meso*chimonanthine and related heterodimeric alkaloids. Stephen P. Lathrop and Mohammad Movassaghi* Page S35 / S153

	$C_{3a}, C_{3a'}$, 52.9 (N ₁ CO ₂ CH ₃), 45.8 (C ₂), 45.7 (C _{2'}), 37.4 (C ₃), 36.6 (C _{3'}), 35.4 (C(CH ₃) ₃), 31.3 (C(CH ₃) ₃).
FTIR (thin film) cm^{-1} :	2959 (w), 1717 (m), 1600 (w), 1448 (m), 1400 (w).
HRMS (ESI) (<i>m/z</i>):	calc'd for $C_{41}H_{47}Cl_3N_7O_{10}S_3 [M+NH_4]^+$: 998.1607, found: 998.1611.
$[\alpha]_{D}^{24}$:	$+19 (c = 0.32, CH_2Cl_2).$
TLC (33% acetone in hexanes), Rf:	0.18 (UV, CAM).

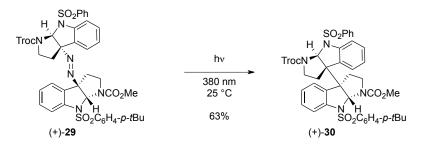
Application of diazene-directed fragment assembly to the enantioselective total synthesis and stereochemical assignment of (+)-desmethyl-*meso*chimonanthine and related heterodimeric alkaloids. Stephen P. Lathrop and Mohammad Movassaghi* Page S36 / S153

Unsymmetrical Diazene (+)-29:

1,8-Diazabicyclo[5.4.0]undec-7-ene (DBU, 152 μ L, 1.02 mmol, 5.00 equiv) was added via syringe to a solution of mixed sulfamide (+)-**28** (200 mg, 203 μ mol, 1 equiv) in methanol (15.0 mL) at 23 °C. After 5 min, a solution of 1,3-dichloro-5,5-dimethylhydantoin (100 mg, 507 μ mol, 2.50 equiv) in methanol (5 mL) was added via syringe over 1 min. After 30 min, the clear solution was concentrated under reduced pressure. The resulting residue was purified by flash column chromatography on silica gel (eluent: 17 \rightarrow 25% acetone in hexanes) to afford the unsymmetrical diazene (+)-**29** (159 mg, 85.5%) as a white foam.

As a result of the slow conformational equilibration at ambient temperature, NMR spectra were collected at elevated temperature. Structural assignments were made using additional information from gCOSY, HSQC, and HMBC experiments also collected at elevated temperature.

¹H NMR (500 MHz, CD₃CN, 70 °C):


δ 7.82–7.79 (m, 4H, N₈'SO₂Ph-*o*-H, N₈SO₂Ar-*o*-H), 7.62 (d, J = 8.3 Hz, 1H, C₇'H) 7.55–7.49 (m, 4H, N₈'SO₂Ph-*p*-H, N₈SO₂Ar-*m*-H, C₇H), 7.41–7.36 (m, 4H, N₈'SO₂Ph-*m*-H, C₆H, C₆'H), 7.20–7.16 (m, 2H, C₅H, C₄'H), 7.11–7.05 (m, 2H, C₅'H, C₄H), 6.71 (s, 1H, C_{8a}'H), 6.55 (s, 1H, C_{8a}H), 4.92 (d, J = 10.8, 1H, N₁'CO₂CH_aH_bCCl₃), 4.80 (d, J = 12.1 Hz, 1H, N₁'CO₂CH_aH_bCCl₃), 4.01 (dd, J = 7.9, 11.7 Hz, 1H, C₂'H_a), 3.83 (dd, J = 8.0, 11.4 Hz, 1H, C₂H_a), 3.65 (s, 3H, N₁CO₂CH₃), 3.05 (app-dt, J = 5.5, 11.8 Hz, 1H, C₂'H_b) 2.94 (app-dt, J = 5.7, 12.7 Hz, 1H, C₂H_b), 2.21 (dd, J = 5.3, 12.7 Hz, 1H, C₃'H_a), 2.12 (dd, J = 5.6, 12.7 Hz, 1H, C₃H_a), 2.01–1.89 (m, 2H, C₃H_b, C₃'H_b), 1.28 (s, 9H, C(CH₃)₃).

¹³ C NMR (125.8 MHz, CD ₃ CN, 70 °C):	δ 159.3 (N ₈ 'SO ₂ Ar- <i>p</i> - C), 156.4 (N ₁ CO ₂ CH ₃), 154.3 (N ₁ 'CO ₂ CH ₂ CCl ₃), 144.3 (C _{7a}), 144.1 (C _{7a} '), 140.1 (N ₈ 'SO ₂ Ph- <i>ipso</i> - C), 138.3 (N ₈ SO ₂ Ar- <i>ipso</i> - C), 135.4 (N ₈ 'SO ₂ Ph- <i>p</i> - C), 132.4 (C ₆ '), 132.1 (C ₆), 131.2 (C _{4a} '), 131.1 (C _{4a}), 131.0 (N ₈ 'SO ₂ Ph- <i>m</i> - C), 129.1 (N ₈ SO ₂ Ar- <i>o</i> - C), 129.0 (N ₈ 'SO ₂ Ph- <i>o</i> - C), 128.1 (N ₈ SO ₂ Ar- <i>m</i> - C), 127.3 (C ₄ '), 127.0 (C ₄), 126.9 (C ₅ '), 126.5 (C ₅), 117.5 (C ₇ '), 117.2 (C ₇ '), 97.5 (N ₄ CO ₂ CH ₂ CCh) 90.9 (2C C ₂ C ₂ C ₃) 83.2 (C ₆)
	$\begin{array}{c} \text{(N}_{1'}\text{CO}_2\text{CH}_2\text{CCl}_3), & \text{117.3} & (\text{C7}), & \text{117.2} & (\text{C7}), & \text{57.3} \\ \text{(N}_{1'}\text{CO}_2\text{CH}_2\text{CCl}_3), & 90.9 & (2\text{C}, \text{ C}_{3a}, \text{ C}_{3a'}), & 83.2 & (\text{C}_{8a}), \\ 82.7 & (\text{C}_{8a'}), & 76.8 & (\text{N}_{1'}\text{CO}_2\text{CH}_2\text{CCl}_3), & 54.0 \end{array}$

Application of diazene-directed fragment assembly to the enantioselective total synthesis and stereochemical assignment of (+)-desmethyl-*meso*chimonanthine and related heterodimeric alkaloids. Stephen P. Lathrop and Mohammad Movassaghi* Page S37 / S153

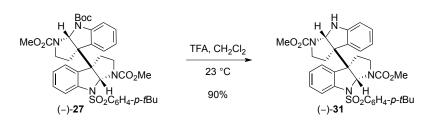
	$(N_1CO_2CH_3), 47.4 (C_{2'}), 47.1 (C_2), 38.7 (C_{3'}), 37.8 (C_3), 36.7 (C(CH_3)_3), 32.1 (C(CH_3)_3).$
FTIR (thin film) cm^{-1} :	2958 (w), 1718 (s), 1597 (w), 1447 (m), 1366 (w).
HRMS (ESI) (m/z) :	calc'd for $C_{41}H_{45}Cl_3N_7O_8S_2$ [M+NH ₄] ⁺ : 932.1831, found: 932.1853.
$[\alpha]_D^{24}$:	$+13 (c = 0.38, CH_2Cl_2).$
TLC (33% acetone in hexanes), Rf:	0.29 (UV, CAM).

Application of diazene-directed fragment assembly to the enantioselective total synthesis and stereochemical assignment of (+)-desmethyl-*meso*chimonanthine and related heterodimeric alkaloids. Stephen P. Lathrop and Mohammad Movassaghi* Page S38 / S153

Heterodimer (+)-30:

A solution of unsymmetrical diazene (+)-29 (159 mg, 174 µmol, 1 equiv) in dichloromethane (30 mL) was concentrated under reduced pressure in a 250 mL round bottom flask to provide a thin film of diazene (+)-29 coating the flask. The flask was back filled with argon and irradiated in a Rayonet photoreactor equipped with 16 radially distributed (r=12.7 cm) 25 W lamps (λ_{max} =380 nm) at 25 °C. After 7 h, the thin film was purified by flash column chromatography on silica gel (eluent: 17→50% ethyl acetate in hexanes) to afford the heterodimer (+)-30 (98 mg, 63.4%) as a white foam.

As a result of the slow conformational equilibration at ambient temperature, NMR spectra were collected at elevated temperature. Structural assignments were made using additional information from gCOSY, HSQC, and HMBC experiments also collected at elevated temperature.


¹H NMR (500 MHz, DMSO-*d*₆, 100 °C): δ 7.92 (d, J = 7.6 Hz, 2H, N₈SO₂Ph-*o*-H), 7.73 (d, J= 8.4 Hz, 2H, N₈SO₂Ar-o-H), 7.67 (t, J = 7.3Hz, 1H, N₈SO₂Ph-*p*-H), 7.60–7.57 (m, 4H, N₈SO₂Ar-*m*-H, N₈SO₂Ph-*m*-H), 7.40–7.37 (m, 2H, C₇H, C₇H), 7.34–7.28 (m, 2H, C₆H, C₆H), 7.20 (br-s, 1H, C₄H), 7.07 (app-t, J = 7.5 Hz, 1H, C₅H), 6.98 (app-t, J =7.4 Hz, 1H, C₅'H), 6.80 (br-s, 1H, C₄H), 6.47 (s, 1H, $C_{8a'}$ **H**), 6.28 (s, 1H, C_{8a} **H**), 4.82 (d, J = 11.9, 1H, $N_{1'}CO_2CH_aH_bCCl_3$, 4.71 (d, J = 11.9 Hz, 1H, $N_{1'}CO_2CH_aH_bCCl_3$, 3.82 (dd, J = 7.3, 11.7 Hz, 1H, $C_{2'}H_a$), 3.72 (dd, J = 7.6, 11.5 Hz, 1H, C_2H_a), 3.50 (s, 3H, $N_1CO_2CH_3$), 2.67–2.60 (m, 2H, C_2H_b , $C_{2'}H_b$, 2.05–1.99 (m, 2H, C_3H , $C_{3'}H_a$), 1.89 (dd, J = 12.5, 19.9 Hz, 1H, $C_{3'}H_b$), 1.77 (app-dt, J = 7.9, 11.7 Hz, 1H, C₃H_b), 1.31 (s, 9H, C(CH₃)₃).

¹³C NMR (125.8 MHz, DMSO- d_6 , 100 °C): δ 156.0 (N₈'SO₂Ar-*p*-C), 153.0 (N₁CO₂CH₃), 151.2 (N₁'CO₂CH₂CCl₃), 142.3 (C_{7a}), 141.9 (C_{7a}'), 139.8 (N₈'SO₂Ph-*ipso*-C), 137.1 (N₈SO₂Ar-*ipso*-C), 132.8 (N₈'SO₂Ph-*p*-C), 130.0 (C_{4a}), 129.6 (C_{4a}'), 129.1 (C_{6/6}'), 128.8 (N₈'SO₂Ph-*m*-C), 125.7 N₈'SO₂Ph-*o*-C), 125.5 (N₈SO₂Ar-*o/m*-C), 123.7 (2C, C₄, C₄'), 123.4 (2C, C₅, C₅'), 113.7 (C₇), 113.4 (C₇'), 95.1 (N₁'CO₂CH₂CCl₃), 79.8 (2C, C_{8a}, C_{8a}'), 73.9

Application of diazene-directed fragment assembly to the enantioselective total synthesis and stereochemical assignment of (+)-desmethyl-*meso*chimonanthine and related heterodimeric alkaloids. Stephen P. Lathrop and Mohammad Movassaghi* Page S39 / S153

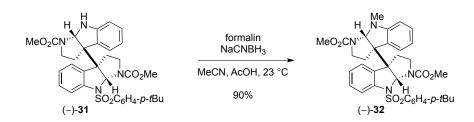
	$(N_1'CO_2CH_2CCl_3), 61.3 (2C, C_{3a}, C_{3a'}), 51.8 (N_1CO_2CH_3), 44.8 (C_{2'}), 44.4 (C_2), 35.0 (C_{3'}), 34.5 (C_3), 34.3 (C(CH_3)_3), 31.2 (C(CH_3)_3).$
FTIR (thin film) cm^{-1} :	2957(w), 1716 (s), 1595 (w), 1447 (m), 1167 (w).
HRMS (ESI) (m/z) :	calc'd for $C_{41}H_{41}Cl_3N_4NaO_8S_2 [M+Na]^+$: 909.1324, found: 909.1313.
$[\alpha]_D^{24}$:	$+23 (c = 0.49, CH_2Cl_2).$
TLC (33% ethyl acetate in hexanes), Rf:	0.29 (UV, CAM).

Application of diazene-directed fragment assembly to the enantioselective total synthesis and stereochemical assignment of (+)-desmethyl-*meso*chimonanthine and related heterodimeric alkaloids. Stephen P. Lathrop and Mohammad Movassaghi* Page S40 / S153

N8'-H Heterodimer (–)-31:

Trifluoroacetic acid (400 μ L) was added via syringe to a solution of heterodimer (–)-27 (67.0 mg, 91.8 μ mol, 1 equiv) in dichloromethane (1.60 mL) at 23 °C. After 45 min, the orange solution was diluted with dichloromethane (25 mL) and washed with aqueous saturated sodium bicarbonate solution (2 × 15 mL). The combined aqueous washes were extracted with dichloromethane (2 × 20 mL). The combined organic extracts were washed with brine (15 mL), were dried over anhydrous sodium sulfate, were filtered, and were concentrated under reduced pressure. The resulting residue was purified by flash column chromatography on silica gel (eluent: 20–25% acetone in hexanes) to afford the N8'-H heterodimer (–)-**31** (52.0 mg, 89.6%) as a white foam.

As a result of the slow conformational equilibration at ambient temperature, NMR spectra were collected at elevated temperature. Structural assignments were made using additional information from gCOSY, HSQC, and HMBC experiments also collected at elevated temperature.


¹ H NMR (500 MHz, CD ₃ CN, 70 °C):	δ 7.84 (d, $J = 8.3$ Hz, 2H, N ₈ SO ₂ Ar- <i>o</i> - H), 7.64 (d, $J = 8.3$ Hz, 2H, N ₈ SO ₂ Ar- <i>m</i> - H), 7.53 (d, $J = 8.3$ Hz, 1H, C ₇ H), 7.46 (d, $J = 7.7$ Hz, 1H, C ₄ H), 7.27 (appt, $J = 7.9$ Hz, 1H, C ₆ H), 7.06–7.02 (m, 3H, C ₆ ' H , C ₅ H , C ₄ ' H), 6.61 (app-t, $J = 7.5$ Hz, 1H, C ₅ ' H), 6.55 (d, $J = 7.7$ Hz, 1H, C ₇ ' H), 5.96 (s, 1H, C _{8a} H), 4.85 (br-s, 1H, N ₈ ' H), 4.79 (s, 1H, C _{8a} ' H), 3.88 (dd, $J = 7.9$, 11.1 Hz, 1H, C ₂ H _a), 3.61 (s, 3H, N ₁ 'CO ₂ C H ₃), 3.54 (app-t, $J = 8.4$ Hz, 1H, C ₂ ' H _a), 3.47 (s, 3H, N ₁ CO ₂ C H ₃), 2.80–2.67 (m, 2H, C ₂ H _b , C ₂ ' H _b), 2.46 (app-dt, $J = 7.9$, 12.1 Hz, 1H, C ₃ H _a), 2.35 (dd, $J = 11.2$, 20.3 Hz, 1H, C ₃ ' H _a), 2.12 (dd, $J = 6.0$, 12.5 Hz, 1H, C ₃ ' H _b), 2.07 (dd, $J = 5.4$, 12.5 Hz, 1H, C ₃ H _b), 1.37 (s, 9H, C(C H ₃) ₃).
¹³ C NMR (125.8 MHz, CD ₃ CN, 70 °C):	δ 159.2 (N ₈ 'SO ₂ Ar- <i>p</i> -C), 156.1 (2C, N ₁ 'CO ₂ CH ₃ , N ₁ CO ₂ CH ₃), 152.3 (C _{7a'}), 144.7 (C _{7a}), 139.3 (N ₈ SO ₂ Ar- <i>ipso</i> -C), 133.7 (C _{4a}), 131.0 (C ₅ , C ₆), 130.3 (C _{4a'}), 128.5 (N ₈ SO ₂ Ar- <i>o</i> -C), 128.1 (N ₈ SO ₂ Ar- <i>m</i> -C), 127.0 (C ₄), 126.1 (C _{6'}), 125.3 (C _{4'}), 120.3 (C _{5'}), 115.5 (C ₇), 111.2 (C _{7'}), 83.2 (C _{8a}), 80.3 (C _{8a'}), 64.3 (2C, C _{3a} , C _{3a'}), 53.8 (N ₁ CO ₂ CH ₃), 53.6 (N ₁ 'CO ₂ CH ₃), 46.5 (2C, C ₂ , C _{2'}), 37.6 (C ₃), 36.8

(C(CH₃)₃), 34.5 (C_{3'}), 32.2 (C(CH₃)₃).

Application of diazene-directed fragment assembly to the enantioselective total synthesis and stereochemical assignment of (+)-desmethyl-*meso*chimonanthine and related heterodimeric alkaloids. Stephen P. Lathrop and Mohammad Movassaghi* Page S41 / S153

FTIR (thin film) cm^{-1} :	3550 (br-m), 2956 (w), 1706 (s), 1595 (w), 1448 (s), 1384 (m), 1175 (m).
HRMS (ESI) (m/z) :	calc'd for $C_{34}H_{39}N_4O_6S [M+H]^+: 631.2585$, found: 631.2588.
$[\alpha]_D^{24}$:	$-283 (c = 0.53, CH_2Cl_2).$
TLC (33% ethyl acetate in hexanes), Rf:	0.30 (UV, CAM).

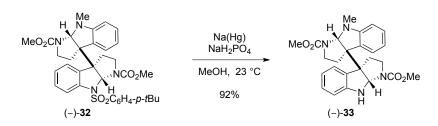
Application of diazene-directed fragment assembly to the enantioselective total synthesis and stereochemical assignment of (+)-desmethyl-*meso*chimonanthine and related heterodimeric alkaloids. Stephen P. Lathrop and Mohammad Movassaghi* Page S42 / S153

N8'-Methyl Heterodimer (-)-32:

Formalin (37% wt, 1.26 mL, 16.76 mmol, 235 equiv) and sodium cyanoborohydride in tetrahydrofuran (1.0 M, 214 μ L, 214 μ mol, 3.00 equiv) were added sequentially via syringe to a solution of N8'-H heterodimer (–)-**31** (45.0 mg, 71.3 μ mol, 1 equiv) in acetonitrile–acetic acid (10:1, 3.85 mL) at 23 °C. After 30 min, another portion of sodium cyanoborohydride (1.0 M in tetrahydrofuran, 71.0 μ L, 71.0 μ mol, 1.00 equiv) was added via syringe. After an additional 30 min, a saturated aqueous sodium bicarbonate solution (10 mL) was added and the resulting mixture was extracted with dichloromethane (3 × 20 mL). The combined organic extracts were washed with brine (15 mL), were dried over anhydrous sodium sulfate, were filtered, and were concentrated under reduced pressure. The resulting residue was purified by flash column chromatography on silica gel (eluent: 15–20% acetone in hexanes) to afford the N8'-methyl heterodimer (–)-**32** (41.0 mg, 89.6%) as a white foam.

As a result of the slow conformational equilibration at ambient temperature, NMR spectra were collected at elevated temperature. Structural assignments were made using additional information from gCOSY, HSQC, and HMBC experiments also collected at elevated temperature.

¹H NMR (500 MHz, CD₃CN, 70 °C):


δ 7.83 (d, J = 8.3 Hz, 2H, N₈SO₂Ar-*o*-**H**), 7.61 (d, J = 8.3Hz, 2H, N₈SO₂Ar-*m*-**H**), 7.43 (d, J = 8.3 Hz, 1H, C₇**H**), 7.36 (d, J = 7.7 Hz, 1H, C₄**H**), 7.25 (appt, J = 7.9 Hz, 1H, C₆**H**), 7.08 (app-t, J = 7.7 Hz, 1H, C₆'**H**), 7.04–6.97 (m, 2H, C₅**H**, C₄'**H**), 6.50 (app-t, J = 7.5 Hz, 1H, C₅'**H**), 6.35 (d, J = 8.0 Hz, 1H, C₇'**H**), 6.05 (s, 1H, C_{8a}**H**), 5.16 (s, 1H, C_{8a}'**H**), 3.87 (dd, J = 8.0, 11.2 Hz, 1H, C₂**H**_a), 3.77 (dd, J = 8.5, 10.4 Hz, 1H, C₂'**H**_a), 3.60 (s, 3H, N₁/CO₂C**H**₃), 2.83 (s, 3H, N₁'CH₃), 2.77–2.65 (m, 2H, C₂**H**_b, C₂'**H**_b), 2.43 (app dt, J = 8.0, 12.0 Hz, 1H, C₃'**H**_a), 2.11 (dd, J = 5.4, 12.5 Hz, 1H, C₃**H**_b), 2.05 (dd, J = 5.6, 12.3Hz, 1H, C₃'**H**_b), 1.35 (s, 9H, C(C**H**₃)₃).

¹³ C NMR (125.8 MHz, CD ₃ CN, 70 °C):	δ 159.0 (N ₈ /SO ₂ Ar- <i>p</i> -C), 156.9 (N ₁ /CO ₂ CH ₃), 156.1
	$(N_1CO_2CH_3), 153.7 (C_{7a'}), 144.7 (C_{7a}), 139.9$
	$(N_8SO_2Ar$ - <i>ipso</i> -C), 133.8 (C _{4a}), 131.1 (C _{6'}), 130.8
	$(2C, C_6, C_{4a'}), 128.2 (N_8SO_2Ar-o-C), 128.1$
	$(N_8SO_2Ar-m-C)$, 126.6 (C_4) , 125.6 $(C_{4'})$, 125.2
	$(C_{5,}), 118.9 (C_{5'}), 115.7 (C_{7}), 107.5 (C_{7'}), 85.6$

Application of diazene-directed fragment assembly to the enantioselective total synthesis and stereochemical assignment of (+)-desmethyl-*meso*chimonanthine and related heterodimeric alkaloids. Stephen P. Lathrop and Mohammad Movassaghi* Page S43 / S153

	$(C_{8a'})$, 83.3 (C_{8a}) , 64.4 (C_{3a}) , 63.6 $(C_{3a'})$, 53.8 $(N_1CO_2CH_3)$, 53.6 $(N_1'CO_2CH_3)$, 46.6 $(2C, C_2, C_{2'})$, 37.2 (C_3) , 36.7 $(C(CH_3)_3)$, 36.0 $(C_{3'})$, 33.0 $(N_{1'}CH_3)$, 32.1 $(C(CH_3)_3)$.
FTIR (thin film) cm^{-1} :	2956 (w), 1708 (s), 1605 (w), 1446 (m), 1385 (m).
HRMS (ESI) (m/z) :	calc'd for $C_{35}H_{41}N_4O_6S [M+H]^+$: 645.2741, found: 645.2728.
$[\alpha]_D^{24}$:	$-321 (c = 0.17, CH_2Cl_2).$
TLC (25% acetone in hexanes), Rf:	0.18 (UV, CAM).

Application of diazene-directed fragment assembly to the enantioselective total synthesis and stereochemical assignment of (+)-desmethyl-*meso*chimonanthine and related heterodimeric alkaloids. Stephen P. Lathrop and Mohammad Movassaghi* Page S44 / S153

(-)-N1,N1'-Carboxymethyl Calycanthidine (33):

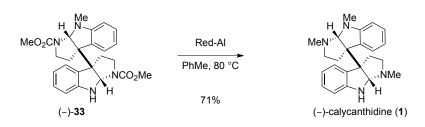
Sodium amalgam (5%-Na, 469 mg, 1.02 mmol, 20.0 equiv)⁸ was added to a suspension of sodium phosphate monobasic monohydrate (154 mg, 1.12 mmol, 22.0 equiv) and N8'-methyl heterodimer (–)-**32** (33.0 mg, 51.2 µmol, 1 equiv) in methanol at 23 °C. After 1 h, another portion of sodium phosphate monobasic monohydrate (154 mg, 1.12 mmol, 22.0 equiv) and sodium amalgam (5%-Na, 469 mg, 1.02 mmol, 20.0 equiv) were added sequentially. After an additional 1 h, the reaction mixture was diluted with ethyl acetate (20 mL) and was washed with a 5% aqueous sodium bicarbonate solution (10 mL). The aqueous phase was separated and extracted with ethyl acetate (2 × 20 mL). The combined organic layers were washed with brine (10 mL), were dried over anhydrous sodium sulfate, were filtered, and were concentrated under reduced pressure. The resulting residue was purified by flash column chromatography on silica gel (eluent: gradient, 15–20% acetone in hexanes) to afford (–)-N1,N1'-carboxymethyl calycanthidine (**33**, 21.0 mg, 91.8%) as a white foam.

As a result of the slow conformational equilibration at ambient temperature, NMR spectra were collected at elevated temperature. Structural assignments were made using additional information from gCOSY, HSQC, and HMBC experiments also collected at elevated temperature.

¹H NMR (500 MHz, CD₃CN, 70 °C):

δ 7.27–7.23 (m, 2H, C₄H, C₄'H), 7.13 (app-t, J = 7.5 Hz, 1H, C₆'H), 7.08 (app-t, J = 7.7 Hz, 1H, C₆H), 6.71 (app-t, J = 7.4 Hz, 1H, C₅H), 6.65 (app-t, J = 7.5 Hz, 1H, C₅'H), 6.61 (d, J = 7.7 Hz, 1H, C₇H), 6.40 (d, J = 8.0 Hz, 1H, C₇'H), 5.30 (br-s, 1H, N₈H), 5.10 (s, 1H, C_{8a}'H), 4.85 (s, 1H, C_{8a}H), 3.82–3.73 (m, 1H, C₂'H_a), 3.63–3.57 (m, 1H, C₂H_a), 3.61 (s, 3H, N₁CO₂CH₃), 3.57 (s, 3H, N₁'CO₂CH₃), 2.90 (s, 3H, N₈'CH₃), 2.81 (app-dt, J = 6.1, 10.7 Hz, 1H, C₂H_b), 2.71 (app-dt, J = 5.8, 11.2 Hz, 1H, C₂'H_b), 2.62–2.46 (m, 2H, C₃H_a, C₃'H_a), 2.21 (dd, J = 6.1, 12.5 Hz, 1H, C₃H_b), 2.12 (dd, J = 5.6, 12.3 Hz, 1H, C₃'H_b).

¹³ C NMR (125.8 MHz, CD ₃ CN, 70 °C):	δ 157.0 (N ₁ 'CO ₂ CH ₃), 153.9 (C _{7a} '), 152.7 (C _{7a}),
	131.3, $(C_{4a'})$ 131.0 $(C_{6'})$, 130.9 (C_{4a}) , 130.8 (C_6) ,
	126.5 (C ₄), 126.2 (C _{4'}), 120.1 (C ₅), 118.8 (C _{5'}),
	111.0 (C_7), 107.5 ($C_{7'}$), 85.8 ($C_{8a'}$), 80.4 (C_{8a}), 63.0


⁸ The reagent was prepared according to R. N. McDonald and C. E. Reineke Org. Synth. 1988, **6**, 461.

Application of diazene-directed fragment assembly to the enantioselective total synthesis and stereochemical assignment of (+)-desmethyl-*meso*chimonanthine and related heterodimeric alkaloids. Stephen P. Lathrop and Mohammad Movassaghi* Page S45 / S153

	$(C_{3a'})$, 53.5 (2C, N ₁ CO ₂ CH ₃ , N ₁ ·CO ₂ CH ₃), 46.8 (2C, C ₂ , C _{2'}), 35.4 (C _{3'}), 34.0 (C ₃), 33.5 (N ₈ ·CH ₃). ⁹
FTIR (thin film) cm^{-1} :	3363 (br-w), 2953 (w), 2881 (w), 1698 (s), 1605 (m), 1449 (s), 1383 (s), 1202 (w).
HRMS (ESI) (m/z) :	calc'd for $C_{25}H_{29}N_4O_4$ [M+H] ⁺ : 499.2183, found: 449.2172.
$[\alpha]_{D}^{24}$:	$-509 (c = 0.78, CH_2Cl_2).$
TLC (25% acetone in hexanes), Rf:	0.30 (UV, CAM).

 $^{^{9}}$ The C_{3a} , and $N_1CO_2CH_3$ were not observed, due to signal broadening, even at 70 °C. All expected ^{13}C signals were observed in the following compound.

Application of diazene-directed fragment assembly to the enantioselective total synthesis and stereochemical assignment of (+)-desmethyl-*meso*chimonanthine and related heterodimeric alkaloids. Stephen P. Lathrop and Mohammad Movassaghi* Page S46 / S153

(-)-Calycanthidine (1):

(–)-N1,N1'-Carboxymethyl calycanthidine (**33**, 15.4 mg, 34.3 µmol, 1 equiv) was azeotropically dried from anhydrous benzene ($2 \times 5 \text{ mL}$) and the residue was dissolved in toluene (3.5 mL). A solution of sodium bis(2-methoxyethoxy)aluminum hydride in toluene (Red-Al, 70% wt, 149 µL, 515 µmol, 15.0 equiv) was added via syringe at 23 °C. The reaction flask was fitted with a reflux condenser and heated to 80 °C. After 1 h, the reaction mixture was allowed to cool to 23 °C and excess reducing reagent was quenched by the addition of saturated aqueous sodium sulfate solution (100 µL). The resulting heterogeneous mixture was filtered through a plug of Celite and the filter cake was rinsed with dichloromethane (15 mL). The filtrate was concentrated under reduced pressure. The resulting residue was purified by flash column chromatography on silica gel (eluent: 10% methanol \rightarrow 10% methanol saturated with ammonium hydroxide in chloroform) to afford (–)-calycanthidine (**1**, 8.7 mg, 70.9%) as a white solid.

As a result of the slow conformational equilibration at ambient temperature, NMR spectra were collected at elevated temperature. Structural assignments were made using additional information from gCOSY, HSQC, and HMBC experiments also collected at elevated temperature.

¹H NMR (500 MHz, CDCl₃, 50 °C):

δ 7.06 (d, J = 7.4 Hz, 1H, C₄'**H**), 7.00 (d, J = 5.8 Hz, 1H, C₄**H**), 6.98 (app-t, J = 7.7 Hz, 1H, C₆'**H**), 6.92 (app-t, J = 7.5 Hz, 1H, C₆**H**), 6.58 (app-t, J = 7.5 Hz, 1H, C₅**H**), 6.51 (app-t, J = 7.2 Hz, 1H, C₅'**H**), 6.48 (d, J = 8.0 Hz, 1H, C₇**H**), 6.27 (d, J = 7.7 Hz, 1H, C₇'**H**), 4.47 (s, 1H, C_{8a}**H**), 4.37 (s, 1H, C_{8a}'**H**), 2.98 (s, 3H, N₈'C**H**₃), 2.65–3.41 (m, 6H, C₂**H**_a, C₂'**H**_a, C₂**H**_b, C₂'**H**_b, C₃**H**_a, C₃'**H**_a), 2.38 (s, 3H, N₁'C**H**₃), 2.33 (s, 3H, N₁C**H**₃), 2.01–1.93 (m, 2H, C₃**H**_b, C₃'**H**_b).

¹³C NMR (125.8 MHz, CDCl₃, 50 °C):
$$\delta$$
 153.2 (C_{7a'}), 151.2 (C_{7a}), 133.6, (C_{4a}), 133.1 (C_{4a}),
128.4 (C_{6'}), 128.2 (C₆), 124.7 (C₄), 124.0 (C_{4'}),
118.6 (C₅), 117.1 (C_{5'}), 109.3 (C₇), 106.2 (C_{7'}), 92.4
(C_{8a'}), 85.5 (C_{8a}), 63.8 (C_{3a}), 63.2 (C_{3a'}), 52.9 (2C,
C₂, C_{2'}), 38.2 (N₁·CH₃), 37.3 (N₁CH₃), 35.7 (C_{3'}),
35.6 (C₃), 35.6 (N₈·CH₃).

Application of diazene-directed fragment assembly to the enantioselective total synthesis and stereochemical assignment of (+)-desmethyl-*meso*chimonanthine and related heterodimeric alkaloids. Stephen P. Lathrop and Mohammad Movassaghi* Page S47 / S153

¹H NMR (500 MHz, DMSO-*d*₆, 100 °C):

δ 7.04 (d, J = 7.6 Hz, 1H, C₄'**H**), 6.94 (d, J = 7.2 Hz, 1H, C₄**H**), 6.89 (app-t, J = 7.4 Hz, 1H, C₆'**H**), 6.80 (app-t, J = 7.2 Hz, 1H, C₆**H**), 6.45–6.40 (m, 2H, C₅**H**, C₅'**H**), 6.38 (d, J = 7.6 Hz, 1H, C₇**H**), 6.26 (d, J = 7.8 Hz, 1H, C₇'**H**), 5.90 (br-s, 1H, N₈**H**), 4.54 (s, 1H, C_{8a}**H**), 4.44 (s, 1H, C_{8a}'**H**), 2.93 (s, 3H, N₈'C**H**₃), 2.65–2.57 (m, 2H, C₂**H**_a, C₂'**H**_a), 2.43–2.33 (m, 4H, C₂**H**_b, C₂'**H**_b, C₃**H**_a, C₃'**H**_a), 2.36 (s, 3H, N₁'C**H**₃), 1.91–1.82 (m, 2H, C₃**H**_b).

¹³ C NMR (125.8 MHz, DMSO- <i>d</i> ₆ , 100 °C):	δ 152.3 (C _{7a'}), 151.2 (C _{7a}), 132.4, (2C, C _{4a} , C _{4a'})
	127.1 ($C_{6'}$), 126.7 (C_{6}), 123.1 (C_{4}), 122.7 ($C_{4'}$),
	116.0 (C ₅), 115.8 (C _{5'}), 107.3 (C ₇), 105.0 (C _{7'}), 91.1
	$(C_{8a'})$, 84.1 (C_{8a}) , 62.1 $(C_{3a'})$, 62.0 (C_{3a}) , 51.3 $(C_{2'})$,
	51.2 (C ₂), 36.9 (N ₁ /CH ₃), 35.7 (N ₁ CH ₃), 34.9 (C _{3/3'}),
	34.6 (C _{3/3'}) 34.5 (N _{8'} CH ₃).

FTIR (thin film) cm^{-1} :	3385 (br-w), 2929 (w), 2789 (w), 1603 (m), 1488 (w), 1249 (w).
HRMS (ESI) (m/z) :	calc'd for $C_{23}H_{29}N_4 [M+H]^+$: 361.2387, found: 361.2397.
$[\alpha]_{D}^{24}$:	$-278 (c = 0.28, \text{MeOH}).^{10}$

TLC (10% methanol in chloroform saturated ammonium hydroxide), Rf: 0.55 (UV, CAM).

¹⁰ Literature value: $[\alpha]_{D}^{24} = -285.1$ (*c* 1.992, MeOH), see G. Barger, A. Jacob, J. Madinaveitia *Trav. Chim.* 1938, **57**, 548. Literature value: $[\alpha]_{D}^{27} = -301$ (*c* 0.97, MeOH), see E. A. Peterson, PhD Dissertation, University of California, Irvine, 2005.

Application of diazene-directed fragment assembly to the enantioselective total synthesis and stereochemical assignment of (+)-desmethyl-mesochimonanthine and related heterodimeric alkaloids. Stephen P. Lathrop and Mohammad Movassaghi* Page S48 / S153

Table S1. Comparison of our ¹H NMR data for (–)-calycanthidine (1) with literature data (CDCl₃):

Assignment	Overman's Report ¹¹	Takayama's Report ¹²	This Work
	(–)-calycanthidine ¹ H NMR, 500 MHz CDCl ₃ , 50 °C	(–)-calycanthidine ¹ H NMR, 500 MHz CDCl ₃ 50 °C	(–)-calycanthidine ¹ H NMR, 500 MHz CDCl ₃ 50 °C
N1'-CH ₃	2.41 (s, 3H)	2.38 (s, 3H)	2.38 (s, 3H)
N1-CH ₃	2.36 (s, 3H)	2.33 (s, 3H)	2.33 (s,3H)
C2′	2.68–2.42 (m, 2H)	2.65–2.40 (m, 2H)	2.65-2.40 (m, 2H)
C2	2.68–2.42 (m, 2H)	2.65-2.40 (m, 2H)	2.65-2.40 (m, 2H)
C3′	2.68–2.42 (m, 2H)	2.65–2.40 (m, 2H)	2.65-2.40 (m, 2H)
C3	2.68–2.42 (m, 2H)	2.65-2.40 (m, 2H)	2.65-2.40 (m, 2H)
C3a	-	-	_
C3a′	_	-	_
C4′	7.10 (d, <i>J</i> = 7.3Hz, 1H)	7.07 (d, <i>J</i> = 7.3Hz, 1H)	7.06 (d, <i>J</i> = 7.4 Hz, 1H)
C4	7.05 (d, <i>J</i> = 7.2Hz, 1H)	7.02 (d, J = 7.3, 1H)	7.00 (d, <i>J</i> = 5.8 Hz, 1H)
C4a′	-	-	_
C4a	-	-	-
C5′	6.55 (t, <i>J</i> = 7.4 Hz, 1H)	6.52 (dd, <i>J</i> = 7.3, 7.3Hz, 1H)	6.51 (app-t, $J = 7.2$ Hz, 1H)
C5	6.58 (t, <i>J</i> = 7.4 Hz, 1H)	6.59 (dd, <i>J</i> = 7.3, 7.3Hz, 1H)	6.58 (app-t, <i>J</i> = 7.5 Hz, 1H)
C6′	7.01 (dd, <i>J</i> = 7.5, 7.7 Hz, 1H)	6.98 (dd, <i>J</i> = 7.3, 7.6 Hz, 1H)	6.98 (app-t, $J = 7.7$ Hz, 1H)
C6	6.94 (dd, <i>J</i> = 7.5, 7.5 Hz, 1H)	6.92 (dd, <i>J</i> = 7.3, 7.6 Hz, 1H)	6.92 (app-t, $J = 7.5$ Hz, 1H)
C7′	6.30 (d, <i>J</i> = 7.8 Hz, 1H)	6.27 (d, <i>J</i> = 7.6 Hz, 1H)	6.27 (d, J = 7.7 Hz, 1H)
C7	6.50 (d, <i>J</i> =7.8 Hz, 1H)	6.48 (d, <i>J</i> = 7.6 Hz, 1H)	6.48 (d, J = 8.0 Hz, 1H)
C7a′	_	-	-
C7a	_	-	-
N8'-CH ₃	3.01 (s, 3H)	2.98 (s, 1H)	2.98 (s, 1H)
N8-H	_	_	_
C8a′	4.40 (s, 1H)	4.38 (s, 1H)	4.37 (s, 1H)
C8a	4.48 (s, 1H)	4.42 (s, 1H)	4.47 (s, 1H)

 ¹¹ E. A. Peterson, PhD. Dissertation, University of California, Irvine, 2005.
 ¹² H. Takayama, Y. Matsuda, K. Maubuchi, A. Ishida, M. Kitajima, and N. Aimi, *Tetrahedron*, 2004, **60**, 893.

Application of diazene-directed fragment assembly to the enantioselective total synthesis and stereochemical assignment of (+)-desmethyl-*meso*-chimonanthine and related heterodimeric alkaloids. Stephen P. Lathrop and Mohammad Movassaghi* Page S49 / S153

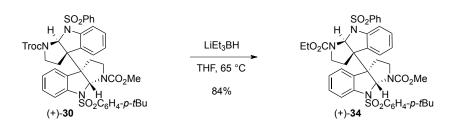
Page	S49	/	S153
------	-----	---	------

Table S2.	Comparison of ¹	³ C NMR	data of (–)-c	alycanthidine (1) v	vith literature	data
(CDCl ₃):						

Assignment	Overman's Report ¹¹ (–)-calycanthidine	Takayama's Report ¹² (–)-calycanthidine	This Work (–)-calycanthidine	Chemical Shift Difference	Chemical Shift Difference
	¹³ C NMR, 125.8 MHz	¹³ C NMR, 125.8 MHz	¹³ C NMR, 125.8 MHz	$\Delta \delta = \delta$ (this work) – δ (ref	$\Delta \delta = \delta$ (this work) – δ (ref
	CDCl ₃ , 50 °C	CDCl ₃ 50 °C	CDCl ₃ 50 °C	11)	12)
N1'-CH ₃	37.9	37.9	38.2	0.3	0.3
N1-CH ₃	37.0	37.0	37.3	0.3	0.3
C2′	52.6	52.6	52.9	0.3	0.3
C2	52.6	52.6	52.9	0.3	0.3
C3′	35.7	35.7	35.7	0.0	0.0
C3	35.6	35.7	35.6	0.0	-0.1
C3a′	62.9	62.8	63.2	0.3	0.4
C3a	63.5	63.2	63.8	0.3	0.6
C4′	123.6	123.6	124.0	0.4	0.4
C4	124.4	124.4	124.7	0.3	0.3
C4a′	132.9	132.7	133.1	0.2	0.4
C4a	133.4	133.3	133.6	0.2	0.3
C5′	116.7	116.7	117.1	0.4	0.4
C5	118.2	118.2	118.6	0.4	0.4
C6′	128.1	128.1	128.4	0.3	0.3
C6	127.8	127.9	128.2	0.4	0.3
C7′	105.8	105.9	106.2	0.4	0.3
C7	108.9	109.0	109.3	0.4	0.3
C7a′	152.9	152.8	153.2	0.3	0.4
C7a	151.0	150.8	151.2	0.2	0.4
N8'-CH3	35.4	35.4	35.6	0.2	0.2
N8-H	-	_	-	-	_
C8a′	92.1	91.8	92.4	0.3	0.6
C8a	85.1	85.0	85.5	0.4	0.5

Application of diazene-directed fragment assembly to the enantioselective total synthesis and stereochemical assignment of (+)-desmethyl-mesochimonanthine and related heterodimeric alkaloids. Stephen P. Lathrop and Mohammad Movassaghi* Page S50 / S153

Table S3. Comparison of our ¹H NMR data for (–)-calycanthidine (1) with literature data (DMSO- d_6):


Assignment	Overman's Report ¹³	This Work
issignment	(–)-calycanthidine	(–)-calycanthidine
	¹ H NMR, 500 MHz	¹ H NMR, 500 MHz
	DMSO- <i>d</i> ₆ , 100 °C	DMSO- <i>d</i> ₆ , 100 °C
N1'-CH ₃	2.40 (m, 3H)	2.36 (s, 3H)
N1-CH ₃	2.33 (s, 3H)	2.30 (s, 3H)
C2′	2.68–2.59 (m, 2H)	2.65–2.57 (m, 2H)
	2.51–2.42 (m, 2H)	2.43-2.33 (m, 2H)
C2	2.68–2.59 (m, 2H)	2.65–2.57 (m, 2H)
	2.51–2.42 (m, 2H)	2.43–2.33 (m, 2H)
C3′	2.40–2.36 (m, 1H)	2.43-2.33 (m, 2H)
	2.00–1.86 (m, 2H)	1.91–1.82 (m, 2H)
C3	2.51–2.42 (m, 2H)	2.43-2.33 (m, 2H)
	2.00–1.86 (m, 2H)	1.91–1.82 (m, 2H)
C3a	-	
C3a′	_	_
C4′	7.08 (dd, $J = 7.4$, 0.8 Hz, 1H)	7.04 (d, J = 7.6 Hz, 1H)
C4	6.99 (d, <i>J</i> = 7.4 Hz, 1H)	6.94 (d, <i>J</i> = 7.2Hz, 1H)
C4a′	_	_
C4a	_	_
C5′	6.49–6.41 (m, 2H)	6.45–6.40 (m, 2H)
C5	6.49–6.41 (m, 2H)	6.45-6.40 (m, 2H)
C6′	6.92 (app-dt, <i>J</i> = 7.7, 1.2Hz, 1H)	6.89 (app-t, $J = 7.4$ Hz, 1H)
C6	6.84 (app-dt, <i>J</i> = 7.6, 1.2Hz, 1H)	6.80 (app-t, $J = 7.2$ Hz, 1H)
C7′	6.28 (d, J = 7.8 Hz, 1H)	6.26 (d, J = 7.8 Hz, 1H)
C7	6.49 (d, <i>J</i> = 7.8 Hz, 1H)	$6.38 (d, J = 7.6 Hz, 1H)^{14}$
C7a′	_	_
C7a	-	
N8'-CH ₃	2.96 (s, 3H)	2.93 (s, 3H)
N8 -H	5.83 (s br, 1H)	5.90 (s br, 1H)
C8a′	4.45 (s, 1H)	4.44 (s, 1H)
C8a	4.55 (s, 1H)	4.54 (s, 1H)

 ¹³ L. E. Overman and E. A. Peterson, *Tetrahedron* 2003, **59**, 6905.
 ¹⁴ Our assignment of these resonances is supported by key gCOSY, HSCQ, and HMBC correlations.

Table S4. Comparison of ¹³C NMR data of (–)-calycanthidine (1) with literature data (DMSO-*d*₆):

Assignment	Overman's Report ¹³	This Work	Chemical Shift
8	(-)-calycanthidine	(-)-calycanthidine	Difference
	¹³ C NMR, 125.8 MHz	¹³ C NMR, 125.8 MHz	$\Delta \delta = \delta \text{ (this work)} - \delta \text{ (ref}$ 13)
	DMSO- <i>d</i> ₆ , 100 °C	DMSO- <i>d</i> ₆ , 100 °C	15)
N1'-CH ₃	36.9	36.9	0.0
N1-CH ₃	35.6	35.7	0.1
C2′	51.3	51.3	0.0
C2	51.2	51.2	0.0
C3′/3	34.9 or 34.6	34.9 or 34.6	0.0
C3a′	62.1	62.1	0.0
C3a	62.0	62.0	0.0
C4′	122.7	122.7	0.0
C4	123.1	123.1	0.0
C4a′	132.4	132.4	0.0
C4a	132.4	132.4	0.0
C5′	115.7	115.8	0.1
C5	115.9	116.0	0.1
C6′	127.0	127.1	0.1
C6	126.7	126.7	0.0
C7′	104.9	105.0	0.1
C7	107.2	107.3	0.1
C7a′	152.3	152.3	0.0
C7a	151.2	151.2	0.0
N8'-CH ₃	34.4	34.5	0.1
N8-H	_	-	0.0
C8a'	91.1	91.1	0.0
C8a	84.0	84.1	0.1

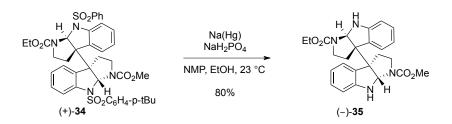
Application of diazene-directed fragment assembly to the enantioselective total synthesis and stereochemical assignment of (+)-desmethyl-*meso*chimonanthine and related heterodimeric alkaloids. Stephen P. Lathrop and Mohammad Movassaghi* Page S52 / S153

N1'-Carboxyethyl Heterodimer (+)-34:

A solution of lithium triethylborohydride in tetrahydrofuran (1.0 M, 530 µL, 530 µmol, 10.0 equiv,) was added via syringe to a solution of heterodimer (+)-**30** (47.0 mg, 52.9 µmol, 1 equiv) in tetrahydrofuran (2.70 mL) at 23 °C. The reaction flask was fitted with a reflux condenser and heated to 65 °C. After 11 h, another portion of lithium triethylborohydride (1.0 M in tetrahydrofuran, 265 µL, 265 µmol, 5.00 equiv,) was added and the mixture was stirred at 65 °C. After 12 h, the yellow solution was allowed to cool to 23 °C and a saturated aqueous ammonium chloride solution (10 mL) was added. The resulting suspension was extracted with dichloromethane (3 × 15 mL). The combined organic extracts were washed with brine (10 mL), were dried over anhydrous sodium sulfate, were filtered, and were concentrated under reduced pressure. The resulting residue was purified by flash column chromatography on silica gel (eluent: 10→25% acetone in hexanes) to afford the N1'-carboxyethyl heterodimer (+)-**34** (35 mg, 84.1%) as a white foam.

As a result of the slow conformational equilibration at ambient temperature, NMR spectra were collected at elevated temperature. Structural assignments were made using additional information from gCOSY, HSQC, and HMBC experiments also collected at elevated temperature.

¹H NMR (500 MHz, CD₃CN, 70 °C):


δ 7.88 (d, J = 7.5 Hz, 2H, N₈/SO₂Ph-*o*-H), 7.78 (d, J = 8.6 Hz, 2H, N₈SO₂Ar-*o*-H), 7.62 (t, J = 7.5 Hz, 1H, $N_{8'}SO_2Ph-p-H$), 7.57 (d, J = 8.8 Hz, 2H, N_8SO_2Ar -*m*-**H**), 7.52 (t, 2H, J = 8.0 Hz, N_8SO_2Ph *m*-**H**), 7.44–7.39 (m, 2H, C_{7/7}/**H**), 7.32–7.27 (m, 2H, C_{6/6}'H), 7.02–6.98 (m, 3H, C_{5/5}'H, C₄'H), 6.93 (br-s, 1H, C₄H), 6.44 (s, 1H, C_{8a}'H), 6.36 (s, 1H, C_{8a}H), 4.08 (app-dq, J = 7.1, 10.6 Hz,1H. $N1'CO_2CH_aH_bCH_3$, 3.96 (app-dq, J = 7.1, 10.6 Hz, 1H, N1'CO₂CH_aH_bCH₃), 3.80–3.76 (m, 2H, C_{2/2'}H_a), 3.54 (s, 3H, $N_1CO_2CH_3$), 2.67-2.56 (m, 2H, $C_{2/2'}H_b$), 2.06 (dd, J = 5.1, 12.2 Hz, 1H, $C_{3'}H_a$), 2.02 $(dd, J = 5.1, 12.3 Hz, 1H, C_3H_a), 1.94 - 1.84 (m, 2H)$ $C_{3/3}$ (H_b), 1.34 (s, 9H, C(CH₃)₃), 1.22 (t, J = 7.1 Hz, 3H, N_1 /CO2CH₂CH₃).

¹³C NMR (125.8 MHz, CD₃CN, 70 °C): δ 158.9 (N₈'SO₂Ar-*p*-C), 156.1 (N₁CO₂CH₃), 155.8 (N₁'CO₂CH₂CH₃), 145.2 (C_{7a'}), 145.0 (C_{7a}), 143.1 (N₈'SO₂Ph-*ipso*-C), 140.6 (N₈SO₂Ar-*ipso*-C), 134.9 (N₈'SO₂Ph-*p*-C), 132.8 (2C, C_{4a}, C_{4a'}), 131.4 (2C,

Application of diazene-directed fragment assembly to the enantioselective total synthesis and stereochemical assignment of (+)-desmethyl-*meso*chimonanthine and related heterodimeric alkaloids. Stephen P. Lathrop and Mohammad Movassaghi* Page S53 / S153

	C ₆ , C _{6'}), 131.1 (N ₈ 'SO ₂ Ph- <i>m</i> -C), 128.2 (N ₈ 'SO ₂ Ph- o-C), 128.1 (N ₈ SO ₂ Ar-o-C _{/meta}), 126.5 (C ₄), 126.4 (C _{4'}), 125.6 (2C, C ₅ , C _{5'}), 116.2 (C ₇ /C _{7'}), 116.0 (C ₇ /C _{7'}), 82.6 (2C, C _{8a} , C _{8a} '), 64.2 (2C, C _{3a} , C _{3a} '), 63.5 (N ₁ 'CO ₂ CH ₂ CH ₃), 54.0 (N ₁ CO ₂ CH ₃), 46.9 (2C, C ₂ , C _{2'}), 37.6 (C _{3'}), 37.5 (C ₃), 36.7 (C(CH ₃) ₃), 32.1 (C(CH ₃) ₃), 15.6 (N ₁ 'CO ₂ CH ₂ CH ₃).
FTIR (thin film) cm^{-1} :	2957 (w), 1712 (s), 1595 (w), 1477 (m), 1350 (m).
HRMS (ESI) (<i>m</i> / <i>z</i>):	calc'd for $C_{41}H_{44}N_4NaO_8S_2 [M+Na]^+: 807.2493$, found: 807.2492.
$[\alpha]_{D}^{24}$:	$+6.5 (c = 0.31, CH_2Cl_2).$
TLC (33% ethyl acetate in hexanes), Rf:	0.29 (UV, CAM).

Application of diazene-directed fragment assembly to the enantioselective total synthesis and stereochemical assignment of (+)-desmethyl-*meso*chimonanthine and related heterodimeric alkaloids. Stephen P. Lathrop and Mohammad Movassaghi* Page S54 / S153

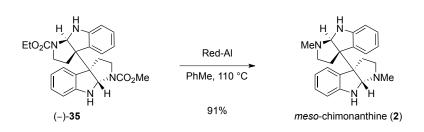
(-)-N1-Carboxymethyl-N1'-Carboxyethyl *meso*-Chimonanthine (35):

Sodium amalgam (5%-Na, 58.0 mg, 128 µmol, 20.0 equiv)⁸ was added to a suspension of sodium phosphate monobasic monohydrate (19.0 mg, 141.0 µmol, 22.0 equiv) and N1'-carboxyethyl heterodimer (+)-**34** (5.0 mg, 6.40 µmol, 1 equiv) in a mixture of ethanol-*N*-methylpyrrolidinone (2:1, 900 µL) at 23 °C. After 45 min, another portion of sodium phosphate monobasic monohydrate (19.0 mg, 141 µmol, 22.0 equiv) and sodium amalgam (5%-Na, 58.0 mg, 128 µmol, 20.0 equiv) were added. After an additional 1h, a final portion of sodium phosphate monobasic monohydrate (19.0 mg, 141 µmol, 22.0 equiv) and sodium amalgam (5%-Na, 58.0 mg, 128 µmol, 20.0 equiv) were added. After an additional 1h, a final portion of sodium phosphate monobasic monohydrate (19.0 mg, 141 µmol, 22.0 equiv) and sodium amalgam (5%-Na, 58.0 mg, 128 µmol, 20.0 equiv) were added. After 1 h, the reaction mixture was diluted with ethyl acetate (10 mL) and was washed with 5% aqueous sodium bicarbonate solution (5 mL). The aqueous phase was separated and extracted with ethyl acetate (2 × 10 mL). The combined organic layers were washed with brine (5 mL), were dried over anhydrous sodium sulfate, were filtered, and were concentrated under reduced pressure. The resulting residue was purified by flash column chromatography on silica gel (eluent: 33→50% ethyl acetate in hexanes) to afford (-)-N1-carboxymethyl-N1'-carboxyethyl *meso*-chimonanthine (**35**, 2.3 mg, 80.1%) as a white solid.

As a result of the slow conformational equilibration at ambient temperature, NMR spectra were collected at elevated temperature. Structural assignments were made using additional information from gCOSY, HSQC, and HMBC experiments also collected at elevated temperature.

¹H NMR (500 MHz CD₃CN, 75 °C):

δ 7.05 (app-t, J = 7.4 Hz, 2H, C₆H, C₆'H), 6.69 (d, J = 7.4 Hz, 1H, C₄), 6.66 (d, J = 6.8 Hz, 1H, C₄'), 6.61–6.57 (m, 2H, C₅H, C₅'H), 6.53–6.49 (m, 2H, C₇H, C₇'H), 5.39 (s, 1H), 5.38 (s, 1H), 5.06 (br-s, 2H, N₈H, N₈'H), 4.13 (q, J = 6.7, 13.7 Hz, 2H, N₁'CO₂CH₂CH₃), 3.71–3.65 (m, 5H, C₂H_a, C₂'H_a, N₁CO₂CH₃) 2.92–2.84 (m, 2H, C₂H_b, C₂'H_b), 2.40–2.32 (m, 2H, C₃H_a, C₃'H_a), 2.31–2.25 (m, 2H, C₃H_b, C₃'H_b), 1.26 (t, J = 6.6 Hz, 3H, N₁'CO₂CH₂CH₃).


¹³ C NMR (125.8 MHz, CD ₃ CN, 75 °C):	δ 152.7 (2C, C _{7a} , C _{7a} '), 131.4 (2C, C _{4a} , C _{4a} '), 130.6
	$(2C, C_6, C_{6'}), 126.1 (2C, C_4, C_{4'}), 120.0 (2C, C_5, C_{5'}))$
	$C_{5'}$), 110.7 (2C, C_7 , $C_{7'}$), 79.4 (2C, C_{8a} , $C_{8a'}$), 62.7
	(N ₁ /CO ₂ CH ₂ CH ₃), 53.6 (N ₁ CO ₂ CH ₃), 46.9 (2C, C ₂ ,
	C ₂ '), 35.6 (2C, C ₃ , C ₃ '), 15.9 (N ₁ 'CO ₂ CH ₂ CH ₃). ¹⁵

¹⁵ The C_{3a} , $C_{3a'}$, and the carbonyl carbons of the carbamates were not observed, due to signal broadening even at 75 °C. All expected signals were observed in the following compound, *meso*-chimonanthine (2).

Application of diazene-directed fragment assembly to the enantioselective total synthesis and stereochemical assignment of (+)-desmethyl-*meso*chimonanthine and related heterodimeric alkaloids. Stephen P. Lathrop and Mohammad Movassaghi* Page S55 / S153

FTIR (thin film) cm^{-1} :	3360 (br-m), 2953 (w), 1693 (m), 1451 (w), 1381 (w).
HRMS (ESI) (m/z) :	calc'd for $C_{25}H_{29}N_4O_4$ [M+H] ⁺ : 449.2183: found: 449.2182.
$[\alpha]_D^{24}$:	$-6.2 (c = 0.20, CH_2Cl_2).$
TLC (50% ethyl acetate in hexanes), Rf:	0.24 (UV, CAM).

Application of diazene-directed fragment assembly to the enantioselective total synthesis and stereochemical assignment of (+)-desmethyl-*meso*chimonanthine and related heterodimeric alkaloids. Stephen P. Lathrop and Mohammad Movassaghi* Page S56 / S153

meso-Chimonanthine (2):

(–)-N1-Carboxymethyl-N1'-carboxyethyl *meso*-chimonanthine (**35**, 30.0 mg, 66.9 μ mol, 1 equiv) was azeotropically dried from anhydrous benzene (2 × 5 mL) and the residue was dissolved in toluene (6.5 mL). Sodium bis(2-methoxyethoxy)aluminum hydride in toluene (Red-Al, 70% wt, 193 μ L, 670 μ mol, 10.0 equiv) was added via syringe at 23 °C. The reaction flask was fitted with a reflux condenser and heated to 110 °C. After 1.5 h, the reaction mixture was allowed to cool to 23 °C. Excess reducing reagent was quenched by the addition of 10% methanol in chloroform saturated with ammonium hydroxide. The resulting mixture was concentrated under reduced pressure. The resulting residue was purified by flash column chromatography on silica gel (eluent: 10% methanol in chloroform saturated with ammonium hydroxide) to afford *meso*-chimonanthine (**2**, 21.0 mg, 90.5%) as a white solid.

As a result of the slow conformational equilibration at ambient temperature, NMR spectra were collected at elevated temperature. Structural assignments were made using additional information from gCOSY, HSQC, and HMBC experiments also collected at elevated temperature.

¹ H NMR (500 MHz, CD ₃ OD, 55 °C):	δ 6.94 (app-t, J = 7.2 Hz, 2H, C ₆ H, C ₆ ·H), 6.47 (br-s, 2H, C ₅ H, C ₅ ·H), 6.45 (d, J = 7.8 Hz, C ₇ H, C ₇ ·H), 4.54 (s, 2H, C _{8a} H, C _{8a} ·H), 2.72 (ddd, J = 2.3, 6.1, 8.8 Hz, C ₂ H _a , C ₂ ·H _a), 2.54–2.46 (m, 2H, C ₃ H _a , C ₃ ·H _a), 2.41 (app-dt, J = 5.6, 8.9 Hz, 2H, C ₂ H _b , C ₂ ·H _b), 2.34 (s, 6H, N ₁ CH ₃ , N ₁ ·CH ₃), 2.05 (ddd, J = 2.9, 5.2, 11.8 Hz, 2H, C ₃ H _b , C ₃ ·H _b). ¹⁶
¹³ C NMR (125.8 MHz, CD ₃ OD, 55°C):	δ 153.7 (2C, C _{7a} , C _{7a} '), 134.3 (2C, C _{4a} , C _{4a} '), 129.2 (2C, C ₆ , C ₆ '), 125.5 (2C, C ₄ , C ₄ '), 118.8 (2C, C ₅ , C ₅ '), 109.7 (2C, C ₇ , C ₇ '), 84.7 (2C C _{8a} , C _{8a} '), 65.1 (2C, C _{3a} , C _{3a} '), 53.7 (2C, C ₂ , C ₂ '), 37.4 (2C, C ₃ , C ₃ '), 36.5 (N ₁ CH ₃ , N ₁ 'CH ₃).
¹ H NMR (500 MHz, DMSO- <i>d</i> ₆ , 120 °C):	δ 6.86 (app-t, J = 7.7 Hz, 2H, C ₆ H, C ₆ ·H), 6.54 (br-s, 2H, C ₄ H, C ₄ ·H), 6.40–6.33 (m, 4H, C ₅ H, C ₅ ·H, C ₇ H, C ₇ ·H), 5.45 (s, 1H, N ₈ H, N ₈ ·H), 4.58 (s, 2H, C _{8a} H, C _{8a} ·H), 2.69 (ddd, J = 1.8, 6.8, 8.8 Hz, C ₂ H _a , C ₂ ·H _a), 2.48–2.43 (m, 2H, C ₃ H _a , C ₃ ·H _a), 2.35–2.32 (m, 2H,

¹⁶ The C₄**H** and C_{4a}**H** were not observed, due to signal broadening even at 55 °C. All expected signals were observed in DMSO d_6 at 120 °C.

Application of diazene-directed fragment assembly to the enantioselective total synthesis and stereochemical assignment of (+)-desmethyl-*meso*chimonanthine and related heterodimeric alkaloids. Stephen P. Lathrop and Mohammad Movassaghi* Page S57 / S153

	C_2H_b , C_2H_b), 2.30 (s, 6H, N ₁ CH ₃ , N ₁ CH ₃), 1.88 (ddd, $J = 1.8$, 5.5, 11.6 Hz, 2H, C_3H_b , C_3H_b).
¹³ C NMR (125.8 MHz, DMSO- <i>d</i> ₆ , 120°C):	δ 151.9 (2C, C _{7a} , C _{7a'}), 132.3 (2C, C _{4a} , C _{4a'}), 126.7 (2C, C ₆ , C _{6'}), 123.1 (2C, C ₄ , C _{4'}), 115.4 (2C, C ₅ , C _{5'}), 106.7 (2C, C ₇ , C _{7'}), 82.5 (2C C _{8a} , C _{8a'}), 62.6 (2C, C _{3a} , C _{3a'}), 51.1 (2C, C ₂ , C _{2'}), 36.1 (2C, C ₃ , C _{3'}), 34.8 (N ₁ CH ₃ , N ₁ /CH ₃).
FTIR (thin film) cm^{-1} :	3380 (w), 2929 (w), 1604 (m), 1485 (m), 1347 (w).
HRMS (ESI) (m/z) :	calc'd for $C_{22}H_{27}N_4 [M+H]^+$: 347.223, found: 347.2232.

TLC (18% methanol, 2% ammonium hydroxide in chloroform), Rf: 0.3 (UV, CAM).

Application of diazene-directed fragment assembly to the enantioselective total synthesis and stereochemical assignment of (+)-desmethyl-mesochimonanthine and related heterodimeric alkaloids. Stephen P. Lathrop and Mohammad Movassaghi* Page S58 / S153

Table S5. Comparison of our ¹H NMR data for *meso*-chimonanthine (2) with literature data (CD₃OD):

Assignment	Overman's Report ¹⁷	This Work
_	meso-chimonanthine	meso-chimonanthine
	¹ H NMR, 500 MHz CD ₃ OD	¹ H NMR, 500 MHz
	CD30D	CD ₃ OD, 55 °C
N1-CH3/N1'-CH3	2.30 (br-s, 6H)	2.34 (s, 6H)
	2.49 (br-m, 4H)	2.72 (ddd, <i>J</i> = 2.3, 6.1, 8.8 Hz, 2H)
C2/2'		2.41 (app-dt, J = 5.6, 8.9 Hz, 2H)
	2.02 (br-m, 4H)	2.54–2.46 (m, 2H)
C3/3′		2.05 (ddd, <i>J</i> = 2.9, 5.2, 11.8 Hz, 2H)
C3a/3a′	_	_
C4a/4a′	_	_
C4/4′	6.89 (br-s, 4H)	16
C5/5′	6.39 (d, <i>J</i> = 7.7 Hz, 4H)	6.47 (br-s, 2H)
C6/6′	6.89 (br-s, 4H)	6.94 (app-t, <i>J</i> = 7.2 Hz, 2H)
C7/7′	6.39 (d, <i>J</i> = 7.7 Hz, 4H)	6.45 (d, <i>J</i> = 7.8 Hz, 2H)
C7a/7a′	_	_
N8/8′	4.38 (br-s, 2H)	_18
C8a/8a′	2.67 (br-s, 2H)	4.54 (br-s, 2H) ¹⁹

¹⁷ J. T. Link and L. E. Overman J. Am. Chem. Soc. 1996, **118**, 8166.

¹⁸ The resonance for this proton is not observed due to rapid deuterium exchange in CD₃OD. However, all expected signals are observed in DMSO- d_6 , see Table S7.

¹⁹ Our assignment of these resonances is supported by key HSCQ and HMBC correlations.

Application of diazene-directed fragment assembly to the enantioselective total synthesis and stereochemical assignment of (+)-desmethyl-*meso*chimonanthine and related heterodimeric alkaloids. Stephen P. Lathrop and Mohammad Movassaghi* Page S59 / S153

Table S6. Comparison of ¹³C NMR data of *meso*-chimonanthine (2) with literature data (CD₃OD):

Assignment	Overman's Report ¹⁷ <i>meso</i> -chimonanthine ¹ H NMR, 500 MHz CD ₃ OD	This Work <i>meso</i> -chimonanthine ¹ H NMR, 500 MHz CD ₃ OD, 55 °C	Chemical ShiftDifference $\Delta \delta = \delta$ (this work) - δ (ref 17)
N1-CH3/N1'-CH3	_	36.5 ¹⁹	_
C2/2'	53.5	53.7	0.2
C3/3′	37.1	37.4	0.3
C3a/3a'	64.8	65.1	0.3
C4a/4a'	133.8	134.3	0.5
C4/4'	125.4	125.5	0.1
C5/5′	118.6	118.8	0.2
C6/6′	129.1	129.2	0.1
C7/7′	109.4	109.7	0.3
C7a/7a'	153.5	153.7	0.2
N8/8′	—	—	—
C8a/8a′	84.2	84.7	0.4

Application of diazene-directed fragment assembly to the enantioselective total synthesis and stereochemical assignment of (+)-desmethyl-mesochimonanthine and related heterodimeric alkaloids. Stephen P. Lathrop and Mohammad Movassaghi* Page S60 / S153

Table S7. Comparison of our ¹H NMR data for *meso*-chimonanthine (2) with literature data (DMSO- d_6):

Assignment	Willis's Report ²⁰ <i>meso</i> -chimonanthine ¹ H NMR, 500 MHz DMSO- d_6 , 120 °C	This Work <i>meso</i> -chimonanthine ¹ H NMR, 500 MHz DMSO- <i>d</i> ₆ , 120 °C
N1-CH3/N1'-CH3	2.28 (s, 6H)	2.30 (s, 6H)
	2.74–2.64 (m, 2H)	2.69 (ddd, <i>J</i> = 1.8, 6.8, 8.8 Hz, 2H)
C2/2′	2.52–2.43 (m, 2H)	2.35–2.31 (m, 2H) ²¹
C3/3′	2.37–2.29 (m, 2H) 1.92–1.86 (m, 2H)	2.48–2.43 (m, 2H) ²¹ 1.88 (ddd, <i>J</i> = 1.8, 5.5, 11.6 Hz, 2H)
C3a/3a′	_	_
C4a/4a'	_	_
C4/4′	6.55 (br-s, 2H)	6.54 (br-s, 2H)
C5/5′	6.40–6.34 (m, 2H)	6.40–6.33 (m, 2H)
C6/6′	6.87 (dd, <i>J</i> = 7.6, 7.5 Hz, 2H)	6.86 (app-t, <i>J</i> = 7.7 Hz, 2H)
C7/7′	6.40–6.34 (m, 2H)	6.40–6.33 (m, 2H)
C7a/7a'	_	_
N8/8′	5.49 (br-s, 2H)	5.45 (br-s, 2H)
C8a/8a'	4.58 (s, 2H)	4.58 (s, 2H)

 ²⁰ R. H. Snell, R. L. Woodward, and M. C. Willis, *Angew. Chem., Int. Ed.* 2011, **50**, 9116.
 ²¹ Our assignment of these resonances is supported by key gCOSY, HSCQ, and HMBC correlations.

Application of diazene-directed fragment assembly to the enantioselective total synthesis and stereochemical assignment of (+)-desmethyl-*meso*chimonanthine and related heterodimeric alkaloids. Stephen P. Lathrop and Mohammad Movassaghi* Page S61 / S153

Table S8. Comparison of ¹³C NMR data of *meso*-chimonanthine (2) with literature data (DMSO-*d*₆):

Assignment	Willis's Report ²⁰ meso-chimonanthine ¹ H NMR, 500 MHz DMSO- d_6 , 120 °C	This Work <i>meso</i> -chimonanthine ¹ H NMR, 500 MHz DMSO- <i>d</i> ₆ , 120 °C	$\begin{array}{c} \textbf{Chemical Shift}\\ \textbf{Difference}\\ \Delta\delta = \delta \ (this \ work) - \delta \\ (ref \ 20) \end{array}$
N1-CH3/N1'-CH3	22.6 ²²	34.8	12.2
C2/2′	52.2	51.1	-1.1
C3/3′	35.9	36.1	0.2
C3a/3a'	63.7	62.6	-1.1
C4a/4a'	133.5	132.3	-1.2
C4/4′	124.3	123.1	-1.2
C5/5′	116.7	115.4	-1.3
C6/6′	127.8	126.7	-1.1
C7/7′	107.8	106.7	-1.1
C7a/7a'	153.1	151.9	-1.2
N8/8′	_	_	_
C8a/8a′	83.6	82.5	-1.1

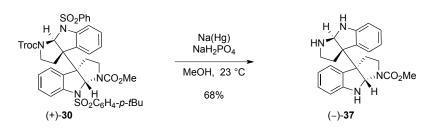
²² The reported signal at 22.6 ppm is not visible in the ¹³C NMR spectrum of *meso*-chimonanthine provided in ref 20; however, in the same spectrum an unreported peak is observed at \sim 35 ppm consistent with our observation.

Application of diazene-directed fragment assembly to the enantioselective total synthesis and stereochemical assignment of (+)-desmethyl-*meso*chimonanthine and related heterodimeric alkaloids. Stephen P. Lathrop and Mohammad Movassaghi* Page S62 / S153

meso-Calycanthine (36):

A solution of *meso*-chimonanthine (2, 20.0 mg, 57.7 µmol, 1 equiv) in a mixture of acetic acid- d_4 (17 µL, 0.43 M) in deuterium oxide (700 µL) was placed in a standard NMR tube, capped with a plastic cap, sealed with Teflon tape, and heated to 95 °C. After 24 h, the mixture was allowed to cool to 23 °C and partitioned between dichloromethane (10 mL) and saturated aqueous sodium bicarbonate solution (10 mL). The layers were separated, and the aqueous layer was extracted with dichloromethane (2 × 10 mL). The combined organic layers were washed with brine (5 mL), were dried over anhydrous sodium sulfate, were filtered, and were concentrated under reduced pressure. The resulting residue was purified by flash column chromatography on silica gel (eluent: 4.5% methanol, 0.5% ammonium hydroxide→9% methanol, 1% ammonium hydroxide in chloroform) to afford *meso*-calycanthine (**36**, 7.2 mg, 36.0 %) as a white solid. Structural assignments were made using additional information from gCOSY, HSQC, and HMBC experiments.

¹ H NMR (500 MHz, CD ₂ Cl ₂ , 20 °C):	δ 7.03–6.96 (m, 4H, C _{6/6} ·H, C _{4/4} ·H), 6.66 (dt, $J = 1.3$, 7.4 Hz, 2H, C _{5/5} ·H), 6.57 (dd, $J = 0.8$, 7.9 Hz, 2H, C _{7/7} ·H), 4.94 (br-s, 2H, N _{8/8} ·H), 4.28 (d, $J = 3.8$ Hz, 2H, C _{8a/8a} ·H), 2.36 (dd, $J = 2.1$, 7.9 Hz, 2H, C _{2/2} ·H _a), 2.29 (s, 6H, N _{1/1} ·CH ₃), 2.20–2.09 (m, 4H, C _{2/2} ·H _b , C _{3/3} ·H _a), 1.20–1.11 (m, 2H, C _{3/3} ·H _b).
¹³ C NMR (125.8 MHz, CD ₂ Cl ₂ , 20 °C):	δ 145.3 (2C, C _{7a} , C _{7a} '), 127.0 (2C, C _{4/6} , C _{4'/6'}), 126.9 (2C, C _{4/6} , C _{4'/6'}), 125.0 (2C, C _{4a} , C _{4a} '), 117.5 (2C, C ₅ , C _{5'}), 112.4 (2C, C ₇ , C _{7'}), 71.2 (2C C _{8a} , C _{8a} '), 46.5 (2C, C ₂ , C ₂ '), 42.4 (N ₁ CH ₃ , N ₁ 'CH ₃), 37.3 (2C, C _{3a} , C _{3a} '), 34.6 (2C, C ₃ , C ₃ ').
FTIR (thin film) cm^{-1} :	3438 (w br), 2964 (w), 1608 (m), 1487 (m), 1304 (w).
HRMS (ESI) (m/z) :	calc'd for $C_{22}H_{27}N_4 [M+H]^+$: 347.2230, found: 347.2214.


TLC (18% methanol, 2% ammonium hydroxide in chloroform), Rf: 0.63 (UV, CAM).

Assignment	Overman's Report ¹⁷ <i>meso</i> -chimonanthine ¹ H NMR, 500 MHz CD ₂ Cl ₂	This Work meso-chimonanthine ¹ H NMR, 500 MHz CD ₂ Cl ₂ , 20 °C
N1-CH ₃ /N1'-CH ₃	2.27 (s, 3H)	2.29 (s, 1H)
C2/2′	2.33 (m, 2H) 2.11 (m, 4H)	2.36 (dd, <i>J</i> = 2.1, 7.9 Hz, 2H) 2.20–2.09 (m, 4H)
C3/3′	2.11 (m, 4H) 1.14 (m, 2H)	2.20–2.09 (m, 4H) 1.20–1.11 (m, 2H)
C3a/3a'	-	_
C4a/4a'	-	_
C4/4′	6.97 (m, 4H)	7.03–6.96 (m, 4H)
C5/5′	6.63 (t, <i>J</i> = 7.5 Hz, 2H)	6.66 (app-dt, <i>J</i> = 1.3, 7.4 Hz, 2H)
C6/6′	6.97 (m, 4H)	7.03–6.96 (m, 4H)
C7/7′	6.54 (d, <i>J</i> = 7.9 Hz, 2H)	6.57 (dd, <i>J</i> = 0.8, 7.9 Hz, 2H)
C7a/7a′		_
N8/8′	4.91 (s, 2H)	4.94 (br-s, 2H)
C8a/8a'	4.25 (s, 2H)	4.28 (d, <i>J</i> = 3.8 Hz, 2H)

Assignment	Overman's Report ¹⁷ meso-chimonanthine ¹ H NMR, 500 MHz CD ₂ Cl ₂	This Work <i>meso</i> -chimonanthine ¹ H NMR, 500 MHz CD ₂ Cl ₂ , 20 °C	Chemical Shift Difference $\Delta \delta = \delta$ (this work) $-\delta$ (ref 17)
N1-CH ₃ /N1'-CH ₃	42.2	42.4	0.2
C2/2'	46.3	46.3	0.0
C3/3′	34.4	34.6	0.2
C3a/3a'	37.2	37.3	0.1
C4a/4a′	124.9	125.0	0.1
C4/4′	126.9 or 126.7	127.0 or 126.9	0.0-0.3
C5/5′	117.4	117.5	0.1
C6/6′	126.9 or126.7	127.0 or 126.9	0.0-0.3
C7/7′	112.3	112.4	0.1
C7a/7a′	145.1	145.3	0.2
N8/8′	_	_	_
C8a/8a′	71.1	71.2	0.1

Table S10. Comparison of ¹³C NMR data of *meso*-calycanthine (36) with literature data:

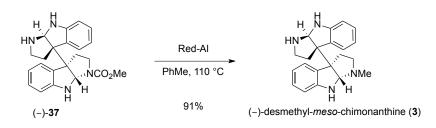
Application of diazene-directed fragment assembly to the enantioselective total synthesis and stereochemical assignment of (+)-desmethyl-*meso*chimonanthine and related heterodimeric alkaloids. Stephen P. Lathrop and Mohammad Movassaghi* Page S65 / S153

(-)-N1-Carboxymethyl Desmethyl-meso-Chimonanthine (37):

Sodium amalgam (5%-Na, 583 mg, 1.27 mmol, 25.0 equiv)⁸ was added to a suspension of sodium phosphate monobasic monohydrate (196 mg, 1.43 mmol, 28.0 equiv) and heterodimer (+)-**30** (45.0 mg, 50.7 µmol, 1 equiv) in methanol at 23 °C. After 1 h, another portion of sodium phosphate monobasic monohydrate (84.0 mg, 612 µmol, 12.0 equiv) and sodium amalgam (5%-Na, 235 mg, 510 µmol, 10.0 equiv) were added sequentially. After an additional 1 h, the reaction mixture was diluted with ethyl acetate (20 mL) and washed with a 5% aqueous sodium bicarbonate solution (10 mL). The aqueous phase was separated and extracted with ethyl acetate ($2 \times 20 \text{ mL}$). The combined organic layers were washed with brine (10 mL), were dried over anhydrous sodium sulfate, were filtered, and were concentrated under reduced pressure. The resulting residue was purified by flash column chromatography on silica gel (eluent: 9% methanol, 1.0% ammonium hydroxide \rightarrow 18% methanol, 2.0% ammonium hydroxide in chloroform) to afford the heterodimer (–)-N1-carboxymethyl desmethyl-*meso*-chimonanthine (**37**, 13.0 mg, 67.7%) as a white solid.

As a result of the slow conformational equilibration at ambient temperature, NMR spectra were collected at elevated temperature. Structural assignments were made using additional information from gCOSY, HSQC, and HMBC experiments also collected at elevated temperature.

¹H NMR (500 MHz, CD₃CN, 75 °C):


δ 7.04 (app-t, J = 7.6 Hz, 1H, C₆H), 6.96 (app-t, J = 8.5 Hz, 1H, C₆·H), 6.77 (d, J = 13.1Hz, 1H, C₄H), 6.59 (app-t, J = 7.4 Hz, 1H, C₅H), 6.52–6.46 (m, 3H, C₅·H, C₇H, C₄·H), 6.44 (d, J = 7.8 Hz, 1H, C₇·H), 5.32 (s, 1H, C_{8a}H), 5.01 (br-s, 1H, NH), 4.92 (s, 1H, C_{8a}·H), 3.74–3.67 (m, 1H C₂H_a), 3.69 (s, 3H, N₁CO₂CH₃), 3.00 (dd, J = 6.9, 10.3Hz, 1H, C₂·H_a), 2.94 (app-dt, J = 6.3, 11.1 Hz, 1H, C₂H_b), 2.58 (app-dt, J = 5.3, 10.9 Hz, 1H, C₂·H_b), 2.47 (app-dt, J= 8.3, 12.1Hz, 1H, C₃H_a), 2.40–2.05 (br-s, 1H, N₁·H) 2.32 (dd, J = 6.2, 12.4 Hz, 1H, C₃H_b), 2.18 (app-dt, J = 6.7, 11.7 Hz, 1H, C₃·H_a), 2.07 (dd, J = 5.2, 11.8 Hz, 1H, C₃·H_b).

¹³ C NMR (125.8 MHz, CD ₃ CN, 75 °C):	δ 155.6 (N ₁ CO ₂ CH ₃), 154.1 (C _{7a'}), 152.7 (C _{7a}),
	133.1 ($C_{4a'}$), 132.6 (C_{4a}), 130.3 (C_6), 129.9 ($C_{6'}$),
	126.4 ($C_{4'}$), 126.1 (C_{4}), 119.8 (C_{5}), 119.2 ($C_{5'}$),
	110.4 (C_7), 109.7 ($C_{7'}$), 81.9 ($C_{8a'}$), 79.8 (C_{8a}), 65.7

Application of diazene-directed fragment assembly to the enantioselective total synthesis and stereochemical assignment of (+)-desmethyl-*meso*chimonanthine and related heterodimeric alkaloids. Stephen P. Lathrop and Mohammad Movassaghi* Page S66 / S153

	(2C, C_{3a} , $C_{3a'}$), 53.5 (N ₁ CO ₂ CH ₃), 47.2 (C _{2'}), 46.8 (C ₂), 40.3 (C _{3'}), 36.2 (C ₃).
FTIR (thin film) cm^{-1} :	3350 (br-m), 2954 (w), 1692 (s), 1606 (w), 1451 (m), 1385 (w).
HRMS (ESI) (<i>m</i> / <i>z</i>):	calc'd for C ₂₂ H ₂₅ N ₄ O ₂ [M+H] ⁺ : 377.1972, found: 377.1976
$[\alpha]_D^{24}$:	$-223 (c = 0.32, CH_2Cl_2).$
TLC (10% methanol in chloroform), Rf:	0.18 (UV, CAM).

Application of diazene-directed fragment assembly to the enantioselective total synthesis and stereochemical assignment of (+)-desmethyl-*meso*chimonanthine and related heterodimeric alkaloids. Stephen P. Lathrop and Mohammad Movassaghi* Page S67 / S153

(-)-Desmethyl-meso-Chimonanthine (3):

(–)-N1-Carboxymethyl-N1'-desmethyl-*meso*-chimonanthine (**37**, 20.0 mg, 53.1 µmol, 1 equiv) was azeotropically dried from anhydrous benzene ($2 \times 5 \text{ mL}$) and the residue was dissolved in toluene (5.0 mL). A solution of sodium bis(2-methoxyethoxy)aluminum hydride in toluene (Red-Al, 70% wt, 153 µL, 530 µmol, 10.0 equiv) was added via syringe at 23 °C. The reaction flask was fitted with a reflux condenser and heated to 110 °C. After 1.5 h, the reaction mixture was allowed to cool to 23 °C. Excess reducing reagent was quenched by the addition of 10% methanol in chloroform saturated with ammonium hydroxide and then concentrated under reduced pressure. The resulting residue was purified by flash column chromatography on silica gel (eluent: gradient, 10% methanol in chloroform \rightarrow 10% methanol in chloroform saturated with ammonium hydroxide) to afford (–)-desmethyl-*meso*-chimonanthine (**3**, 16.0 mg, 90.8%) as a white solid.

As a result of the slow conformational equilibration at ambient temperature, NMR spectra were collected at elevated temperature. Structural assignments were made using additional information from gCOSY, HSQC, and HMBC experiments also collected at elevated temperature.

Characterization in CDCl ₃ at 50 $^{\circ}C^{23}$:	
¹ H NMR (500 MHz, CDCl ₃ , 50 °C):	δ 7.04–6.91 (m, 2H, C ₆ H, C ₆ 'H), 6.64–6.50 (m, 4H,
	$C_5H, C_{5'}H, C_4H, C_{4'}H), 6.46$ (app t, $J = 7.1$ Hz, 4H,
	C ₇ H, C ₇ 'H), 5.02 (br-s, 1H, C _{8a} 'H), 4.57 (br-s, 1H,
	C_{8a} H), 3.07 (dd, $J = 6.7$, 10.6 Hz, 1H, C_2 · H _a), 2.78
	$(ddd, J = 1.9, 6.6, 8.5 Hz, 1H, C_2H_a), 2.72 (app-dt, J)$
	= 5.1, 11.1 Hz, 1H, $C_{2'}H_b$), 2.52–2.39 (m, 2H, C_2H_b ,
	C_3H_a), 2.37 (s, 3H, N ₁ CH ₃), 2.31 (app-dt, $J = 6.9$,
	11.8 Hz, 1H, $C_{3'}H_a$), 2.15 (dd, $J = 5.1$, 11.9 Hz, 2H,
	$C_{3'}H_b$), 2.10–2.04 (m, 1H, C_3H_b).
¹³ C NMR (125.8 MHz, CDCl ₃ , 50 °C):	δ 152.0 (2C, C _{7a} , C _{7a}), 133.4 (C _{4a}), 132.2 (C _{4a}),
	128.4 (2C, C_6 , $C_{6'}$), 124.9 ($C_{4/4'}$), 124.6 ($C_{4/4'}$),
	118.7 (2C, C ₅ , C ₅), 109.1 ($C_{7/7'}$), 108.8 ($C_{7/7'}$), 83.9
	$(C_{8a}), 80.4 (C_{8a'}), 64.7 (C_{3a'}), 64.0 (C_{3a}), 52.5 (C_2),$
	$45.8 (C_{2'}), 38.7 (C_{3'}), 37.1 (C_3), 35.9 (N_1CH_3).$

Characterization in DMSO- d_6 at 50 °C²⁴

²³ We found data collection in CDCl₃ at 50 °C provided optimal resolution for ¹³C and ¹H NMR.

 $^{^{24}}$ ¹H and 13 C NMR were also obtained in DMSO- d_6 for comparison with other natural products synthesized in this report.

Application of diazene-directed fragment assembly to the enantioselective total synthesis and stereochemical assignment of (+)-desmethyl-*meso*chimonanthine and related heterodimeric alkaloids. Stephen P. Lathrop and Mohammad Movassaghi* Page S68 / S153

¹H NMR (500 MHz, DMSO-*d*₆, 100 °C):

δ 6.90–6.84 (m, 2H, C₆H, C₆'H), 6.63 (br-s, 1H, C₄H), 6.45–6.30 (m, 5H, C₄'H, C₅H, C₅'H, C₇H, C₇H), 5.52 (s, 1H, N₈H), 5.40 (s, 1H, N₈'H), 4.92 (s, 1H, C_{8a}'H), 4.51 (s, 1H, C_{8a}H), 2.97 (app-t, J = 9.1Hz, 1H, C₂'H_a), 2.69 (app-t, J = 7.6 Hz, 1H, C₂H_a), 2.45–2.25 (m, 4H, C₂H_b, C₂'H_b, C₃H_a, C₃'H_a), 2.29 (s, 3H, N₁CH₃), 1.98 (dd, J = 5.1, 12.1Hz, 1H, C₃'H_b), 1.90 (dd, J = 5.1, 11.5 Hz, 1H, C₃H_b).

¹³ C NMR (125.8 MHz, DMSO- <i>d</i> ₆ , 100 °C):	δ 151.9 (2C, C _{7a} , C _{7a}), 132.6 (C _{4a}), 131.4 (C _{4a})
	126.8 (2C, C ₆ , C ₆ '), 123.2 (C ₄), 123.6 (C ₄ '), 115.7
	(2C, C ₅ , C ₅ '), 106.8 (C ₇), 106.3 (C ₇ '), 82.6 (C _{8a}),
	79.2 (C _{8a'}), 63.1 (C _{3a'}), 62.3 (C _{3a}), 51.2 (C ₂), 44.2
	$(C_{2'})$, 37.7 $(C_{3'})$, 36.4 (C_3) . 35.0 (N_1CH_3) .

<u>Characterization in CDCl₃ at $-40 \degree C^{25}$ </u> ¹H NMR (500 MHz, CDCl₃, $-40 \degree C$):

Major Rotamer: δ 7.35–7.28 (m, 1H, C₄'H), 7.09 (app-t, J = 7.6 Hz, 1H, C₆'H), 6.91 (app-t, J = 6.9 Hz, 1H, C₆H), 6.80 (app-t, J = 7.4 Hz, 1H, C₅'H), 6.51–6.43 (m, 2H, C_{7/7}'H), 6.30 (app-t, J = 7.2 Hz, 1H, C₅H), 5.71–5.63 (m, 1H, C₄H), 5.30 (br-s, 1H, C_{8a}H), 4.93 (br-s, 1H, N₁'H), 4.55 (br-s, 1H, N₈H), 4.29 (br-s, 1H, C_{8a}'H), 3.77 (br-s, 1H, N₈'H), 3.16–3.02 (m, 2H, C₂'H_b, C₂'H_a), 2.60–2.45 (m, 2H, C₃'H_a, C₃'H_b), 2.27 (s, 3H, N₁CH₃), 2.25–2.10 (m, 2H, C₂H_a, C₂H_b), 2.10–2.03 (m, 2H, C₃H_a, C₃H_b).

Minor Rotamer: δ 7.35–7.28 (m, 1H, C₄H), 7.09 (app-t, J = 7.6 Hz, 1H, C₆·H), 6.91 (app-t, J = 6.9 Hz, 1H, C₆H), 6.80 (app-t, J = 7.4 Hz, 1H, C₅·H), 6.51–6.43 (m, 2H, C_{7/7}·H), 6.28 (app-t, J = 7.2 Hz, 1H, C₅H), 5.71–5.63 (m, 1H, C₄·H), 5.30 (br-s, 1H, C_{8a}·H), 4.93 (br-s, 1H, N₁·H), 4.55 (br-s, 1H, N₈·H), 4.29 (br-s, 1H, C_{8a}H), 3.77 (br-s, 1H, N₈H), 3.16–3.02 (m, 2H, C₂·H_b, C₂·H_a), 2.87–2.69 (m, 2H, C₂H_a, C₂H_b), 2.60–2.45 (m, 2H, C₃·H_a, C₃·H_b), 2.43 (s, 3H, N₁CH₃), 2.10–2.03 (m, 2H, C₃H_a, C₃H_b).

¹³ C NMR (125.8 MHz, CDCl ₃ , -40 °C):	Major Rotamer: δ 151.97 (C _{7a}), 150.87 (C _{7a}),
	132.95 ($C_{4a'}$), 130.91 (C_{4a}), 128.44 (C_6), 128.11
	$(C_{6'}), 124.80 (C_4), 124.18 (C_{4'}), 118.52 (C_{5'}),$
	117.94 (C ₅), 109.21 (C _{7'}), 108.08 (C ₇), 83.01 (C _{8a}),

²⁵ ¹H and ¹³C NMR were obtained in CDCl₃ at –40 °C for comparison to the data provided in the isolation report, see V. Jannic, F. Guéritte, O. Laprévote, L. Serani, M.-T. Martin, T. Sévenet, and P. Potier, *J. Nat. Prod.* 1999, **62**, 838. However, we found ¹H and ¹³C NMR data collected at –40 °C difficult to analyze and less informative than data collected at 50 °C; see footnote 23.

Application of diazene-directed fragment assembly to the enantioselective total synthesis and stereochemical assignment of (+)-desmethyl-*meso*chimonanthine and related heterodimeric alkaloids. Stephen P. Lathrop and Mohammad Movassaghi* Page S69 / S153

	79.74 ($C_{8a'}$), 64.40 (C_{3a}), 63.05 ($C_{3a'}$), 52.09 (C_2), 45.62 (C_2), 39.13 (C_3), 36.14 ($C_{3'}$), 35.56 (N_1CH_3).
	<i>Minor Rotamer:</i> δ 151.20 ($C_{7a'}$), 151.07 (C_{7a}), 132.05 ($C_{4a/4a'}$), 131.87 ($C_{4a/4a'}$), 128.63 ($C_{6'}$), 127.98 (C_{6}), 124.49 (C_{4}), 124.36 ($C_{4'}$), 118.89 (C_{5}), 117.77 ($C_{5'}$), 109.21 (C_{7}), 108.08 ($C_{7'}$), 82.53 (C_{8a}), 79.88 ($C_{8a'}$), 63.88 ($C_{3a'}$), 63.62 (C_{3a}), 51.89 (C_{2}), 45.14 ($C_{2'}$), 38.12 ($C_{3'}$), 37.03 (C_{3}), 35.48 (N_{1} CH ₃).
FTIR (thin film) cm^{-1} :	3377 (br-m), 2931 (w), 1604 (m), 1485 (m), 1247 (w).
HRMS (ESI) (m/z) :	calc'd for $C_{21}H_{25}N_4 [M+H]^+$: 333.2074, found: 333.2075.
$[\alpha]_D^{24}$:	$-1.8 (c = 0.21, \text{EtOH}).^{26}$ $-13.7 (c = 0.20, \text{CH}_2\text{Cl}_2).$

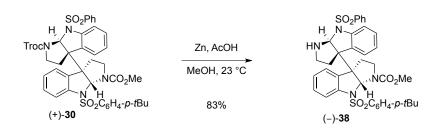
TLC (10% methanol in chloroform saturated with ammonium hydroxide), Rf: 0.26 (UV, CAM).

²⁶ Literature value: $[\alpha]_{D}^{24} = +0.5 (c 1, EtOH)$, see V. Jannic, F. Guéritte, O. Laprévote, L. Serani, M.-T. Martin, T. Sévenet, and P. Potier, *J. Nat. Prod.* 1999, **62**, 838.

Assign-	Guéritte's Report ²⁶	This Work	Dalko's Report ²⁷	This Work
ment	(+)-desmethyl- <i>meso</i> - chimonanthine	(–)-desmethyl- <i>meso</i> - chimonanthine	(±)-desmethyl- <i>meso</i> - chimonanthine	(–)-desmethyl- <i>meso</i> - chimonanthine ¹ H NMR, 500 MHz
	¹ H NMR, 400 MHz CDCl ₃ , -40 °C * denotes minor conformer	¹ H NMR, 500 MHz CDCl ₃ , -40 °C * denotes minor conformer	¹ H NMR, 300 MHz CDCl ₃	CDCl ₃ , 50 °C
N1' -H	5.02 (s, 1H)	4.93 (s, 1H)	_	-
	5.02 (s, 1H)*	4.93 (s, 1H)*		
N1-CH ₃	2.32 (s, 3H)	2.27 (s, 3H)	2.30 (s, 3H)	2.37 (s, 3H)
	2.47 (s, 3H)*	2.43 (s, 3H)*		
C2′	3.18-2.73 (m, 2H)	3.16-3.02 (m, 2H)	3.02 (dd, <i>J</i> = 6.6, 10.5 Hz, 1H)	3.07 (dd, <i>J</i> =6.7, 10.6 Hz, 1H)
	3.18 (m, 2H)*	3.16-3.02 (m, 2H)*	2.66–2.63 (m, 1H)	2.72 (app-dt, <i>J</i> = 5.1, 11.1 Hz, 1H)
C2	2.10 (m, 2H)	2.25-2.10 (m, 2H)	2.74–2.70 (m, 1H)	2.78 (ddd, J = 1.9, 6.6, 8.5 Hz, 1H)
	2.82–2.42 (m, 2H)*	2.87–2.69 (m, 2H)*	2.44-2.38 (m, 1H)	2.52-2.39 (m, 2H)
C3′	2.60-2.40 (m, 2H)	2.60-2.45 (m, 2H)	2.30-2.20 (m, 2H)	2.31 (app-dt, $J = 6.9$, 11.8 Hz, 1H)
	2.10 (m)*	2.60–2.45 (m, 2H)*	2.10 (dd, <i>J</i> = 5.1, 11.7 Hz, 1H)	2.15 (dd, <i>J</i> = 5.1, 11.9 Hz, 1H)
C3	2.10 (m)	2.10-2.03 (m, 2H)	2.30-2.20 (m, 2H)	2.52-2.39 (m, 2H)
	2.10 (m)*	2.10-2.03 (m, 2H)*	2.01 (dd, <i>J</i> = 1.8, 10.0 Hz, 1H)	2.10-2.04 (m, 1H)
C3a	_	_	_	_
C3a′	_	_	_	_
C4′	7.28 (d, 1H)	7.35–7.28 (m, 2H)	6.60–6.42 (m, 3H)	6.64–6.50 (m, 4H)
	5.62 (d, 1H)*	5.71-5.63 (m, 2H)*		
C4	5.67 (d, 1H)	5.71-5.63 (m, 2H)	6.60–6.42 (m, 3H)	6.64–6.50 (m,4H)
	7.32 (d, 1H)*	7.35–7.28 (m, 2H)*		
C4a′	_	_	_	_
C4a	-	-	_	-
C5′	6.80 (t, 1H)	6.80 (app-t, J = 7.4 Hz, 1H)	-	-
	6.28 (t, 1H)*	6.28 (app-t, J = 7.2 Hz, 1H)*		
C5	6.30 (t, 1H)	6.30 (app-t, J = 7.2 Hz, 1H)	_	-
	6.82 (t, 1H)*	6.80 (app-t, J = 7.4 Hz, 1H)*		
C5/5′	_	_	6.60–6.42 (m, 3H)	6.64–6.50 (m,4H)
			6.98-6.88 (m, 3H)	
C6′	7.10 (t, 1H)	7.09 (app-t, J = 7.6 Hz, 1H)	6.98–6.88 (m, 3H)	7.04–6.91 (m, 2H)
	6.91 (t, 1H)*	6.91 (app-t, J = 6.9 Hz, 1H)*		
C6	6.91 (t, 1H)	6.91 (app-t, J = 6.9 Hz, 1H)	6.98–6.88 (m, 3H)	7.04–6.91 (m, 2H)
	7.10 (t, 1H)*	7.09 (app-t, J = 7.6 Hz, 1H)*		
C7′	6.46 (d, 1H)	6.51–6.43 (m, 1H)	6.41 (d, <i>J</i> = 7.9 Hz, 1H)	6.46 (app t, $J = 7.1$ Hz, 2H)
	6.49 (d, 1H)*	6.51–6.43 (m, 1H)*		

Table S11. Comparison of our ¹H NMR data for (–)-desmethyl-*meso*-chimonanthine (3) with literature data (CDCl₃):

²⁷ C. Menozzi, P. I. Dalko, and J. Cossy, Chem. Commun. 2006, 4638.

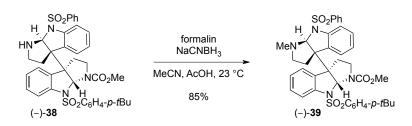

Application of diazene-directed fragment assembly to the enantioselective total synthesis and stereochemical assignment of (+)-desmethyl-*meso*chimonanthine and related heterodimeric alkaloids. Stephen P. Lathrop and Mohammad Movassaghi* Page S71 / S153

C7	6.48 (d, 1H) 6.48 (d, 1H)*	6.51–6.43 (m, 1H) 6.51–6.43 (m, 1H)*	6.40 (d, <i>J</i> = 7.7 Hz, 1H)	6.46 (app t, <i>J</i> = 7.1 Hz, 2H)
C7a′	_	-	_	_
C7a	_	_	-	_
N8'-H	3.80 (s, 1H)	3.77 (s, 1H)	-	-
	4.62 (s, 1H)*	4.55 (s, 1H)*		
N8-H	4.64 (s, 1H)	4.55 (s, 1H)	_	-
	3.80 (s, 1H)*	3.77 (s, 1H)*		
C8a′	4.32 (s, 1H)	4.29 (s, 1H)	4.97 (s, 1H)	5.02 (br-s, 1H)
	5.42 (s, 1H)	5.30 (s, 1H)*		
C8a	5.42 (s, 1H)	5.30 (s, 1H)	4.46 (s, 1H)	4.57 (br-s, 1H)
	4.32 (s, 1H)*	4.29 (s, 1H)*		

Application of diazene-directed fragment assembly to the enantioselective total synthesis and stereochemical assignment of (+)-desmethyl-*meso*chimonanthine and related heterodimeric alkaloids. Stephen P. Lathrop and Mohammad Movassaghi* Page S72 / S153

Table S12. Comparison of ¹³C NMR data of (–)-desmethyl-*meso*-chimonanthine (3) with literature data (CDCl₃):

Assign-	terature data (CL Guéritte's Report ²⁶	This Work	Chemical Shift	Dalko's Report ²⁷	This Work	Chemical Shift
ment	(–)-desmethyl- <i>meso</i> - chimonanthine	(–)-desmethyl- <i>meso</i> - chimonanthine	Difference $\Delta \delta = \delta$ (this work)	(±)-desmethyl- <i>meso</i> -chimonanthine	(-)-desmethyl- <i>meso</i> - chimonanthine	Difference $\Delta \delta = \delta$ (this work)
	¹³ C NMR, 100 MHz	¹³ C NMR, 125 MHz	$-\delta$ (ref 26)	¹³ C NMR, 300 MHz	¹³ C NMR, 125 MHz	$-\delta$ (ref 27)
	CDCl ₃ , – 40 °C	CDCl ₃ , -40 °C		CDCl ₃	CDCl ₃ , 50 °C	
	*denotes minor	*denotes minor				
N11/ 11	conformer _	conformer _		_		_
N1'-H	35.12	35.56	0.44	35.7	35.9	0.2
N1-CH ₃	35.12*	35.48*	0.36*	55.7	55.9	0.2
C2′	44.87	45.62	0.75	45.6	45.8	0.2
	44.57*	45.14*	0.57*			
C2	51.85	52.09 51.89*	0.24 0.23*	52.2	52.5	0.3
	51.66* 35.73	36.14	0.23	38.0	38.7	0.7
C3′	37.59*	38.12*	0.53*	50.0	50.7	0.7
C3 C3a'	38.06	39.13	1.07	36.5	37.1	0.6
	36.37*	37.03*	0.66*			6.2
	62.85 63.63*	63.05 63.88*	0.2 0.25*	64.4	64.7	0.3
C3a	63.95	64.40	0.25*	63.6	64.0	0.4
	63.30*	63.62*	0.32*	05.0	01.0	0.1
C4′	123.91	124.18	0.27	_	_	_
04	124.25*	124.36*	0.11*			
C4	124.43 124.06*	124.80	0.37 0.43*	-	-	_
CA/AI	-	124.49*	- 0.43	124.7, 124.3	124.9, 124.6	-0.1-0.6
C4/4′	132.22	132.95	0.73	131.4	132.2	0.8
C4a′	131.31*	131.87*	0.56	151.1	152.2	0.0
C4a	130.04	130.91	0.87	131.5	133.4	1.9
Clu	131.31*	131.87*	0.56			
C5′	118.45 117.73*	118.52 117.77*	0.07 0.04	-	-	-
	117.97	117.94	-0.03	_	_	_
C5	118.83*	118.89*	0.06			
C5/5′	-	-	_	118.8, 118.3	118.7, 118.7	-0.1-0.4
C6′	128.19	128.11	-0.08	128.1	128.4	0.3
	128.65*	128.63*	-0.02	120.1	129.4	0.2
C6	128.43 127.95*	128.44 127.98*	0.01 0.03	128.1	128.4	0.3
C7′	109.10	109.21	0.11	-	-	_
	108.19*	108.08*	0.11			
C7	108.19	108.08	-0.11	-	-	_
07/07/	109.10*	- 109.21*	-0.11	108.8, 108.4	109.1, 108.8	0-0.7
C7/C7′	151.75	151.97	0.22	151.6	152.0	0.4
C7a′	151.04*	151.20*	0.22	131.0	132.0	0.4
C7a	150.30 151.51*	150.87 152.01*	0.57	151.6	152.0	0.4
N8′ -H	-	-	-	_	-	_
N8-H	-	_	_	_	_	_
	79.30	79.74	0.44	80.1	80.4	0.3
C8a′	82.36*	79.88*	-2.48			
C8a	82.36	83.01	0.65	83.4	83.9	0.5
	82.36*	82.53*	0.17			


N1'-H Heterodimer (–)-38:

Activated zinc dust (106 mg, 1.62 mmol, 20.0 equiv) and acetic acid (185 μ L, 3.24 mmol, 40 equiv) were added sequentially to a solution of heterodimer (+)-**30** (72 mg, 81.1 μ mol, 1 equiv) in methanol (7.0 mL) at 23 °C. After 1.5 h, an aqueous solution of sodium hydroxide (1 N, 10 mL) was added and the resulting suspension was extracted with dichloromethane (3 × 20 mL). The combined organic extracts were washed with brine (10 mL), were dried over anhydrous sodium sulfate, were filtered, and were concentrated under reduced pressure. The resulting residue was purified by flash column chromatography on silica gel (eluent: 30 \rightarrow 50% ethyl acetate in hexanes) to afford the N1'-H heterodimer (-)-**38** (48.0 mg, 83.1%) as a white foam.

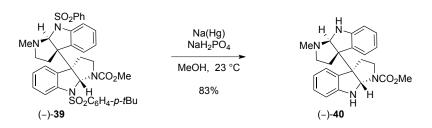
As a result of the slow conformational equilibration at ambient temperature, NMR spectra were collected at elevated temperature. Structural assignments were made using additional information from gCOSY, HSQC, and HMBC experiments also collected at elevated temperature.

¹ H NMR (500 MHz, DMSO- <i>d</i> ₆ , 80°C):	δ 7.89 (d, $J = 7.1$ Hz, 2H, N ₈ SO ₂ Ar- <i>o</i> - H), 7.68 (d, $J = 8.3$ Hz, 2H, N ₈ SO ₂ Ar- <i>m</i> - H), 7.51 (t, $J = 7.2$ Hz, 1H, N ₈ 'SO ₂ Ph- <i>p</i> - H), 7.35–7.10 (m, 9H, N ₈ 'SO ₂ Ph- <i>m</i> - H , N ₈ 'SO ₂ Ph- <i>o</i> - H , C ₇ H , C ₇ ' H , C ₆ ' H , C ₄ ' H), 7.02 (app-t, $J = 6.9$ Hz, 1H, C ₆ H), 6.95 (br-s, 1H, C ₅ ' H), 6.54 (br-s, 1H, C _{8a} H), 6.37 (br-s, 1H, C ₅ H), 6.01 (br-s, 1H, C ₄ H), 4.85 (br-s, 1H, C _{8a} ' H), 3.92 (dd, $J = 7.5$, 11.4 Hz, 1H, C ₂ H _a), 3.66 (s, 3H, N ₁ CO ₂ CH ₃), 3.16 (s, 1H, N ₁ ' H), 3.11–3.03 (m, 1H, C ₂ ' H _a), 2.70 (app-dt, $J = 5.0$, 11.8 Hz, 1H, C ₂ H _b), 2.61 (br-s, 1H, C ₂ ' H _b), 2.43–2.31 (m, 1H, C ₃ H _a), 2.11–1.85 (m, 3H, C ₃ H _b , C ₃ ' H _a , C ₃ ' H _b), 1.29 (s, 9H, C(CH ₃) ₃).
¹³ C NMR (125.8 MHz, DMSO- <i>d</i> ₆ , 80 °C):	δ 156.4 (N ₈ 'SO ₂ Ar- <i>p</i> -C), 153.2 (N ₁ CO ₂ CH ₃), 141.7 (N ₈ 'SO ₂ Ph- <i>ipso</i> -C), 141.1 (C _{7a}), 138.0 (C _{7a} '), 136.1 (N ₈ SO ₂ Ar- <i>ipso</i> -C), 132.4 (N ₈ 'SO ₂ Ph- <i>p</i> -C), 131.7 (C _{4a} '), 130.6 (C _{4a}), 128.9 (C ₆), 128.7 (N ₈ 'SO ₂ Ph- <i>m</i> - C), 128.5 (C ₆ '), 126.2 (N ₈ SO ₂ Ar- <i>o</i> -C), 126.0 (N ₈ SO ₂ Ar- <i>m</i> -C), 125.8 (N ₈ 'SO ₂ Ph- <i>o</i> -C), 124.5 (C ₄ '), 123.8 (C ₄), 122.8 (C ₅), 122.5 (C ₅ '), 112.2 (C ₇), 111.2 (C ₇ '), 84.2 (C _{8a} '), 80.0 (C _{8a}), 62.0 (C _{3a}), 60.8 (C _{3a} '), 52.0 (N ₁ CO ₂ CH ₃), 44.2 (C ₂), 43.2 (C ₂ '),

	37.2 ($C_{3'}$), 37.0 (C_{3}), 34.5 ($C(CH_{3})_{3}$), 30.2 ($C(CH_{3})_{3}$).
FTIR (thin film) cm ⁻¹ :	2956 (m), 1713 (s), 1595 (m), 1477 (m), 1447 (m).
HRMS (ESI) (m/z) :	calc'd for $C_{38}H_{41}N_4O_6S_2$ [M+H] ⁺ : 713.2462, found: 713.2470.
$[\alpha]_D^{24}$:	$-13 (c = 0.65 \text{ CH}_2\text{Cl}_2).$
TLC (33% ethyl acetate in hexanes), Rf:	0.13 (UV, CAM).

N1'-Methyl Heterodimer (-)-39:

Formalin (37% wt, 1.28 mL, 16.8 mmol, 235 equiv) and sodium cyanoborohydride in tetrahydrofuran (1.0 M, 219 μ L, 219 μ mol, 3.00 equiv) were added sequentially via syringe to a solution of N1'-H heterodimer (–)-**38** (52.0 mg, 74.4 μ mol, 1 equiv) in acetonitrile–acetic acid (10:1, 7.70 mL) at 23 °C. After 30 min, another portion of sodium cyanoborohydride (1.0 M in tetrahydrofuran, 146 μ L, 146 μ mol, 2.00 equiv) was added via syringe. After an additional 30 min, saturated aqueous sodium bicarbonate solution (10 mL) was added and the resulting mixture was extracted with dichloromethane (3 × 20 mL). The combined organic extracts were washed with brine (15 mL), were dried over anhydrous sodium sulfate, were filtered and were concentrated under reduced pressure. The resulting residue was purified by flash column chromatography on silica gel (eluent: 25–50% ethyl acetate in hexanes) to afford the N1'-methyl heterodimer (–)-**39** (45.0 mg, 84.9%) as a white foam.


As a result of the slow conformational equilibration at ambient temperature, NMR spectra were collected at elevated temperature. Structural assignments were made using additional information from gCOSY, HSQC, and HMBC experiments also collected at elevated temperature.

¹H NMR (500 MHz, CD₃CN, 70 °C):

δ 7.88 (d, J = 8.7 Hz, 2H, N₈SO₂Ar-*o*-**H**), 7.64 (d, J = 8.3 Hz, 2H, N₈SO₂Ar-*m*-**H**), 7.56–7.47 (m, 3H, N₈'SO₂Ph-*p*-**H**, N₈'SO₂Ph-*o*-**H**), 7.45 (d, J = 8.0 Hz, 1H, C₇**H**), 7.38–7.32 (m, 2H, N₈'SO₂Ph-*m*-**H**), 7.29–7.15 (m, 4H, C₆**H**, C₆'**H**, C₄'**H**, C₇'**H**), 7.02 (app-t, J = 7.4 Hz, 1H, C₅'**H**), 6.59 (br-s, 1H, C₅**H**), 6.52 (s, 1H, C_{8a}**H**), 6.33 (br-s, 1H, C₄**H**), 5.20 (s, 1H, C_{8a}'**H**), 3.81 (dd, J = 7.7, 11.2 Hz, 1H, C₂**H**_a), 3.59 (s, 3H, N₁CO₂C**H**₃), 2.77–2.71 (m, 1H, C₂'**H**_a), 2.68 (app-dt, J = 5.3, 11.8 Hz, 1H, C₂**H**_b), 2.56 (s, 3H, N₁'C**H**₃), 2.40 (app-dt, J = 5.0, 10.2 Hz, 1H, C₂'**H**_b), 2.21–2.08 (m, 1H, C₃**H**_a), 1.98–1.84 (m, 3H, C₃**H**_b C₃'**H**_a C₃'**H**_b), 1.33 (s, 9H, C(C**H**₃)₃).

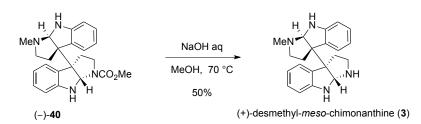
¹³ C NMR (125.8 MHz, CD ₃ CN, 70 °C):	δ 159.1 (N ₈ SO ₂ Ar- <i>p</i> -C), 156.0 (N ₁ CO ₂ CH ₃), 144.6
	$(2C C_{7a}, C_{7a'}), 141.3 (N_8 SO_2 Ph-ipso-C), 139.7$
	(N ₈ SO ₂ Ar- <i>ipso</i> -C), 135.2 (C _{4a} '), 134.6 (N ₈ 'SO ₂ Ph- <i>p</i> -
	C), 133.3 (C _{4a}), 131.2 (C ₆), 131.0 (N ₈ /SO ₂ Ph- <i>m</i> -C),
	130.6 ($C_{6'}$), 129.1 (N ₈ ·SO ₂ Ph- <i>o</i> -C), 128.3
	(N ₈ SO ₂ Ar- <i>o</i> -C, N ₈ SO ₂ Ar- <i>m</i> -C), 126.7 (2C, C ₄ , C ₄ '),
	125.6 (C ₅), 125.3 (C _{5'}), 115.8 (C ₇), 115.5 (C _{7'}), 91.2

	$(C_{8a'}), 82.7 (C_{8a}), 64.7 (C_{3a'}), 64.3 (C_{3a}), 54.0 (N_1CO_2CH_3), 53.3 (C_{2'}), 46.7 (C_2), 39.3 (C_3), 39.0 (C_{3'}), 38.8 (N_1'CH_3), 36.7 (C(CH_3)_3), 32.1 (C(CH_3)_3).$
FTIR (thin film) cm^{-1} :	2956 (m) ,1713 (s), 1595 (m), 1477 (m), 1447 (m).
HRMS (ESI) (m/z) :	calc'd for $C_{39}H_{43}N_4O_6S_2$ [M+H] ⁺ : 727.2619, found: 727.2627.
$[\alpha]_D^{24}$:	$-15 (c = 0.96, CH_2Cl_2).$
TLC (50% ethyl acetate in hexanes), Rf:	0.55 (UV, CAM).

(-)-N1-Carboxymethyl-meso-Chimonanthine (40):

Sodium amalgam (5%-Na, 443 mg, 963 µmol, 20.0 equiv)⁸ was added to a suspension of sodium phosphate monobasic monohydrate (146 mg, 1.06 mmol, 22.0 equiv) and N1'-methyl heterodimer (–)-**39** (35.0 mg, 49.1 µmol, 1 equiv) in methanol at 23 °C. After 1 h, another portion of sodium phosphate monobasic monohydrate (146 mg, 1.06 mmol, 22.0 equiv) and sodium amalgam (5%-Na, 443 mg, 963 µmol, 20.0 equiv) were added sequentially. After an additional 1 h, sodium phosphate monobasic monohydrate (146 mg, 1.06 mmol, 22.0 equiv) and sodium amalgam (5%-Na, 443 mg, 0.963 µmol, 20.0 equiv) were added. After 1 h, the reaction mixture was diluted with ethyl acetate (20 mL) and was washed with 5% aqueous sodium bicarbonate solution (10 mL). The aqueous layer was separated and extracted with ethyl acetate (2 × 20 mL). The combined organic layers were washed with brine (10 mL), were dried over anhydrous sodium sulfate, were filtered, and were concentrated under reduced pressure. The resulting residue was purified by flash column chromatography on silica gel (eluent: gradient, 5% methanol→9% methanol, 1.0% ammonium hydroxide in chloroform) to afford the heterodimer (–)-N1-carboxymethyl-*meso*-chimonanthine (**40**, 15.5 mg, 82.6%) as a white solid.

As a result of the slow conformational equilibration at ambient temperature, NMR spectra were collected at elevated temperature. Structural assignments were made using additional information from gCOSY, HSQC, and HMBC experiments also collected at elevated temperature.


¹H NMR (500 MHz, CD₃CN, 75 °C):

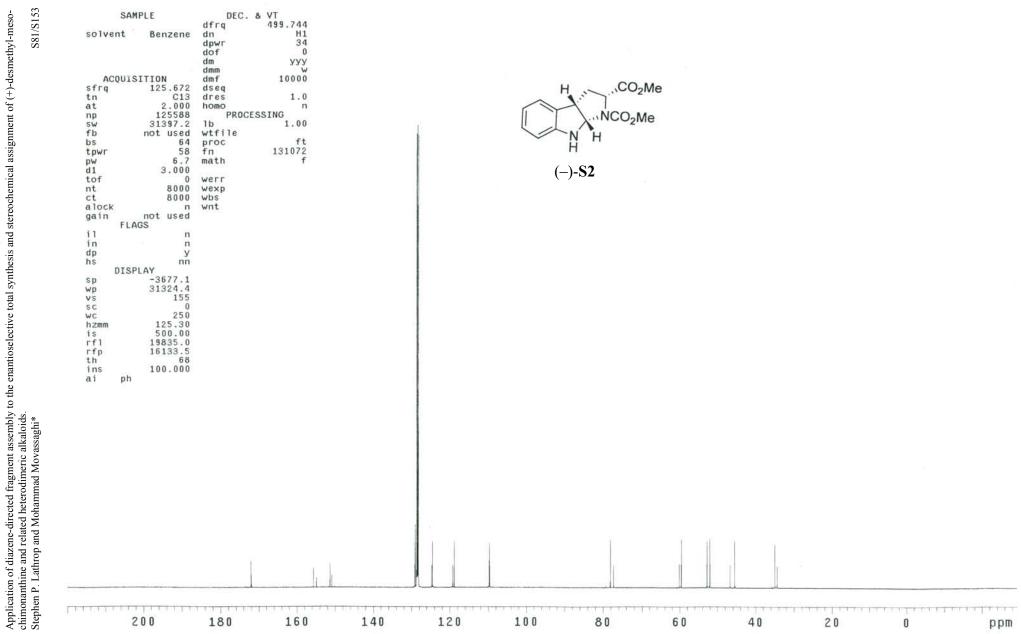
δ 7.02 (app-t, J = 7.5 Hz, 1H, C₆H), 6.98 (app-t, J = 7.5 Hz, 1H, C₆·H), 6.70–6.58 (m, 2H, C₄H, C₄·H), 6.57–6.47 (m, 3H, C₅H, C₅·H, C₇H), 6.45 (d, J = 8.0 Hz, 1H, C₇·H), 5.35 (br-s, 1H, C_{8a}H), 5.03 (br-s, 1H, N₈H), 4.56 (s, 2H, C_{8a}·H, N₈·H), 3.73–3.65 (m, 4H, C₂H_a, N₁CO₂CH₃), 2.91 (app-dt, J = 6.4, 10.9 Hz, 1H, C₂H_b), 2.76–2.67 (m, 1H, C₂·H_a), 2.52 (app-dt, J = 8.5, 11.8 Hz, 1H, C₃H_a), 2.43–2.36 (m, 2H, C₂·H_b, C₃·H_a), 2.34 (s, 3H, N₁·CH₃), 2.28 (dd, J = 6.3, 12.3 Hz, 1H, C₃H_b), 2.03–1.96 (m, 1H, C₃·H_b).

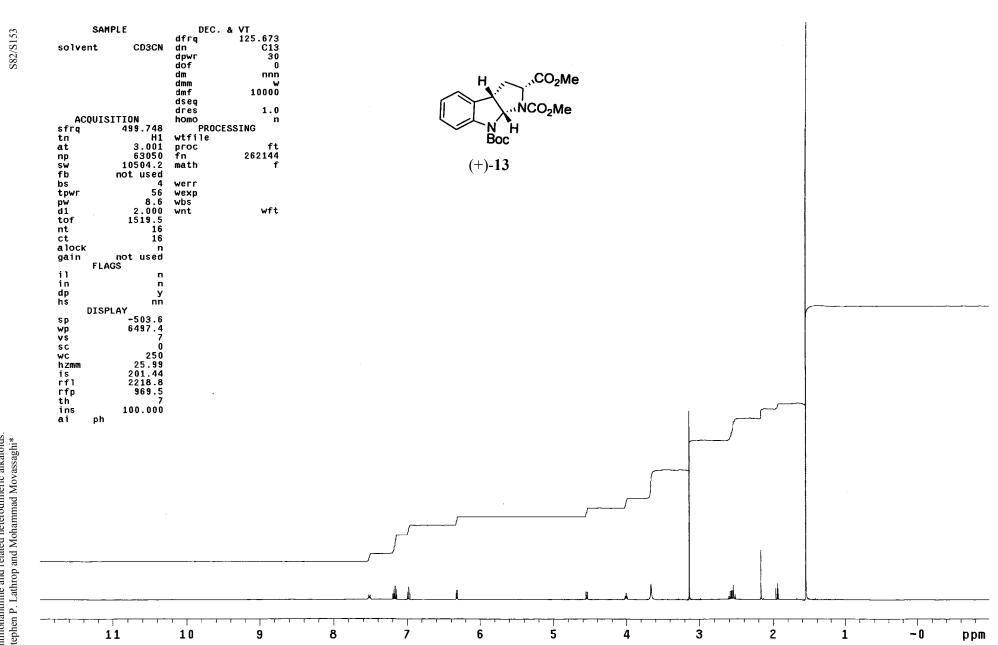
¹³C NMR (125.8 MHz, CD₃CN, 75 °C):
$$\delta$$
 156.7 (N₁CO₂CH₃), 154.2 (C_{7a'}), 152.8 (C_{7a}), 134.2 (C_{4a'}), 132.4 (C_{4a'}), 130.3 (C₆), 129.8 (C₆), 126.2 (2C, C₄, C₄), 119.8 (C₅), 119.3 (C_{5'}), 110.4 (C₇), 110.1 (C_{7'}), 85.3 (C_{8a'}), 79.7 (C_{8a}), 65.1 (2C, C_{3a}, C_{3a'}), 53.9 (C_{2'}), 53.5 (N₁CO₂CH₃), 46.8 (C₂), 38.6 (C_{3'}), 36.9 (C₃), 36.2 (N₁'CH₃).

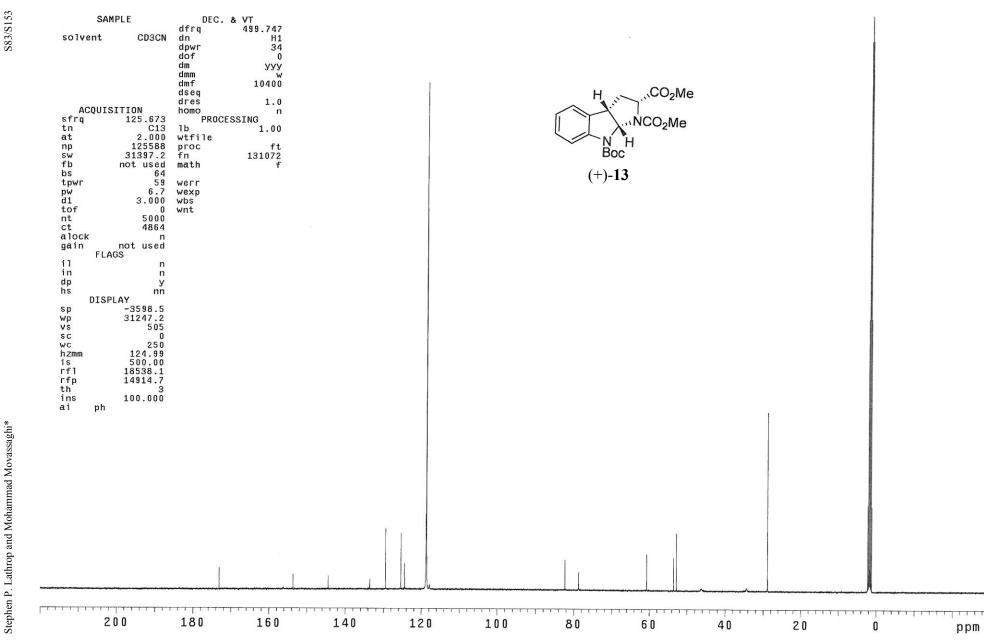
FTIR (thin film) cm^{-1} :	3372 (br-m), 2955 (m), 1696 (s), 1606 (m), 1451 (s),1386 (s).
HRMS (ESI) (m/z) :	calc'd for $C_{23}H_{27}N_4O_2$ [M+H] ⁺ : 391.2129, found: 391.2132.
$[\alpha]_{D}^{24}$:	$-202 (c = 0.95, CH_2Cl_2).$

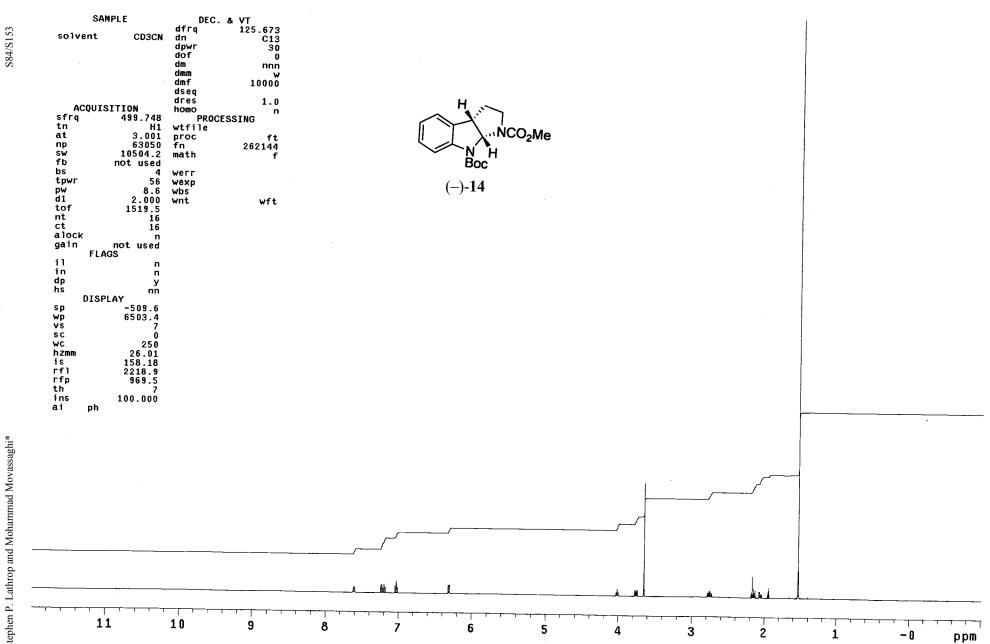
TLC (9% methanol, 1% ammonium hydroxide in chloroform), Rf: 0.40 (UV, CAM).

(+)-Desmethyl-meso-Chimonanthine (3):

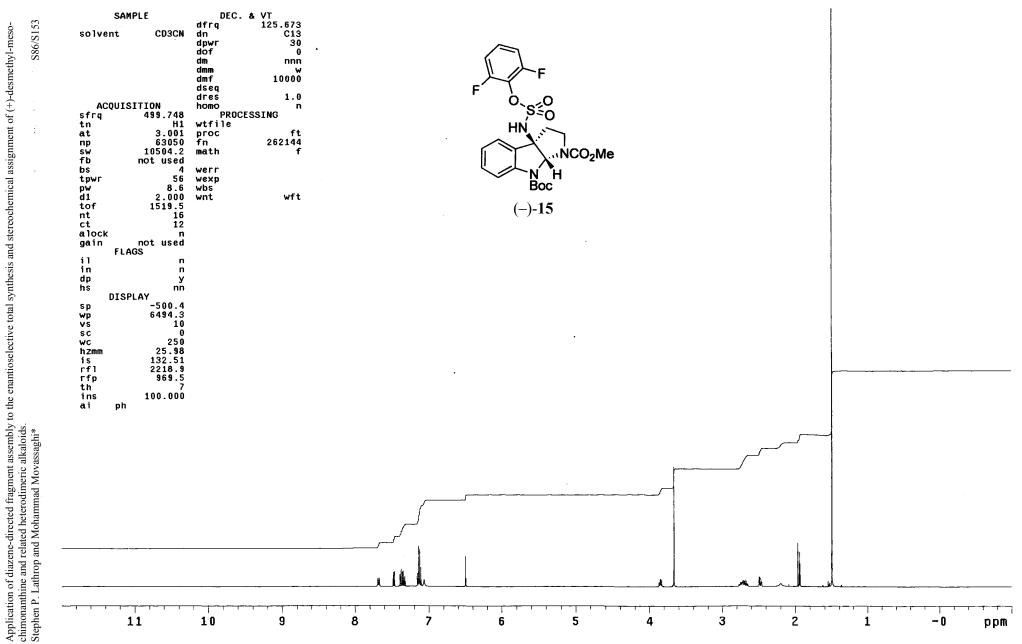

An aqueous solution of sodium hydroxide (5 N, 1.5 mL) was added to solution of (–)-N1carboxymethyl-*meso*-chimonanthine (**40**, 18.0 mg, 46.1 µmol, 1 equiv) in methanol (3 mL) in a sealed tube at 23 °C. The reaction vessel was sealed and heated to 70 °C. After 26 h, the brown mixture was allowed to cool to 23 °C and was extracted with dichloromethane (2×20 mL). The combined organic extracts were washed with brine (10 mL), were dried over anhydrous sodium sulfate, were filtered, and were concentrated under reduced pressure. The resulting residue was purified by flash column chromatography on silica gel (eluent: 4.5% methanol, 0.5% ammonium hydroxide \rightarrow 18% methanol, 2.0% ammonium hydroxide in chloroform) to afford the (+)desmethyl-*meso*-chimonanthine (**3**, 7.7 mg, 50.4%) as a white solid.

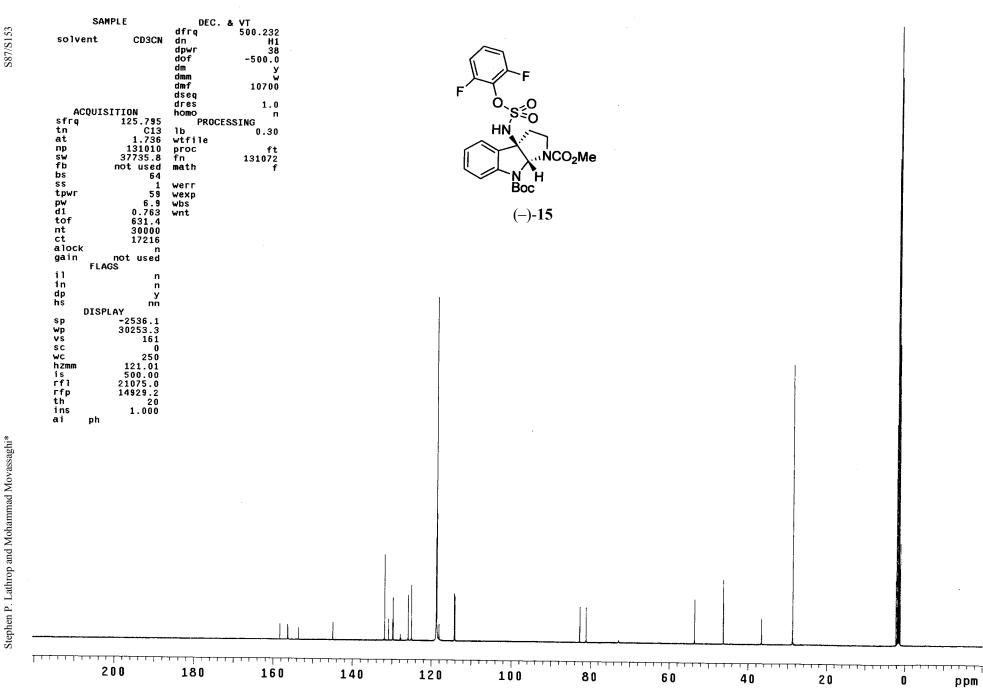

The corresponding enantiomer, (–)-desmethyl-*meso*-chimonanthine (**3**, 16 mg, 91%) was obtained by Red-Al reduction of (–)-N1-carboxymethyl desmethyl-*meso*-chimonanthine (**37**). For full characterization of compound **3**, see pages S67–S72.

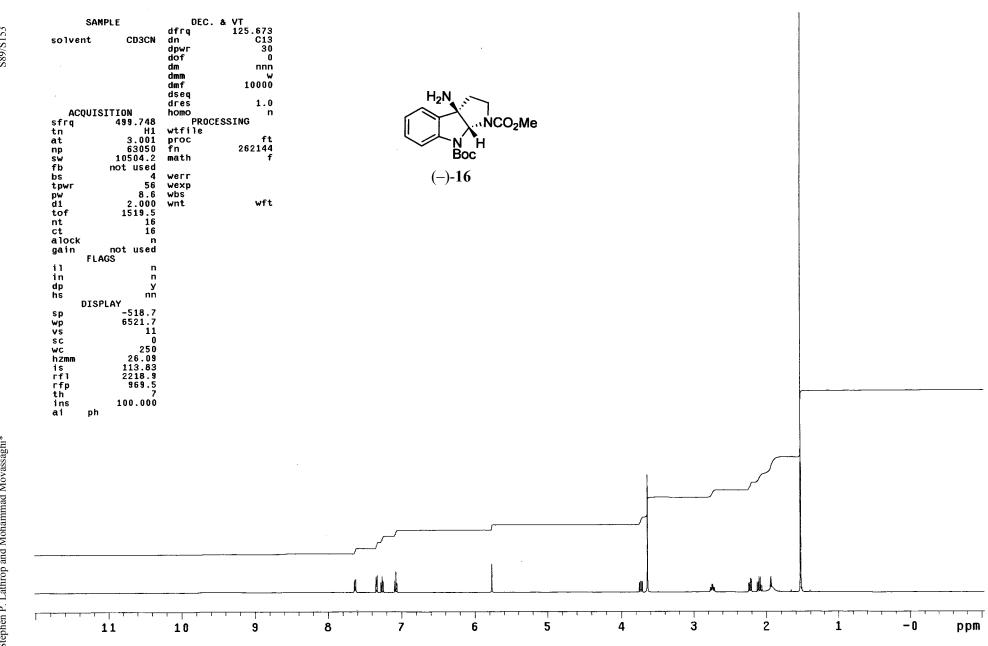

$[\alpha]_{\rm D}^{24}$:	$+2.7 (c = 0.13, \text{EtOH}).^{26}$
	$+13.7 (c = 0.13, CH_2Cl_2).$


$\begin{array}{c} & \underset{f \in \mathcal{A}}{\operatorname{dec}} & 1000\\ & \underset{f \in \mathcal{A}}{\operatorname{dec}} & 1.0\\ & f \in $	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
in n dp y hs nn DISPLAY sp -11.0 wp 6003.5 vs 25 sc 0 wc 250 hzmm 24.01 is 143.89 rfl 4784.7 rfp 3578.2 th 7 ins 100.000	in n dp y hs nn DISPLAY sp -11.0 wp 6003.5 vs 25 sc 0 wc 250 hzmm 24.01	
	th 7 ins 100.000	

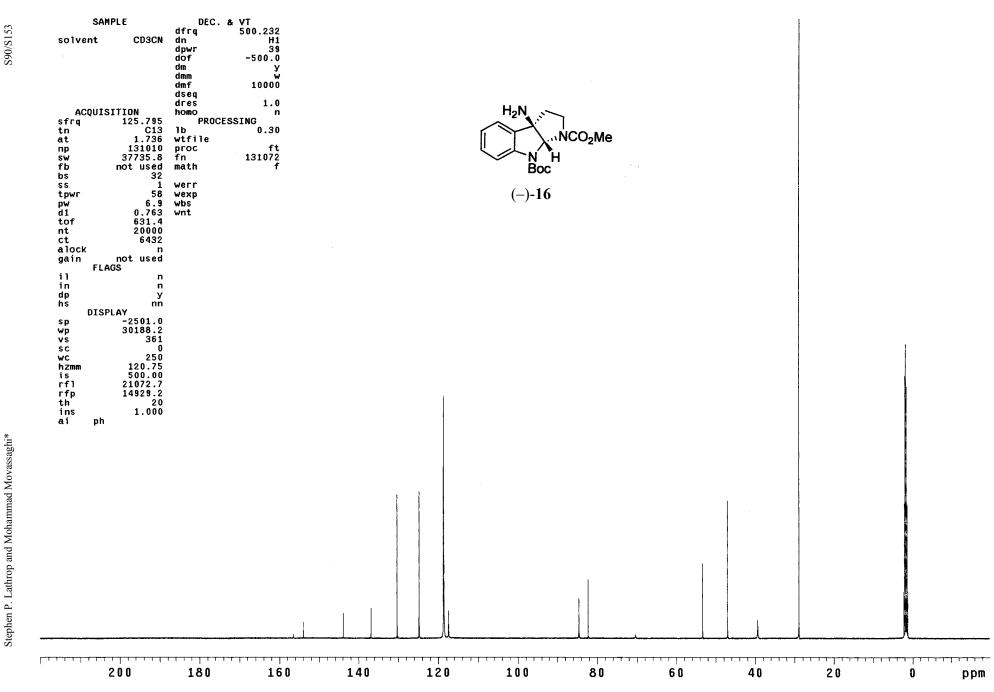
S80/S153

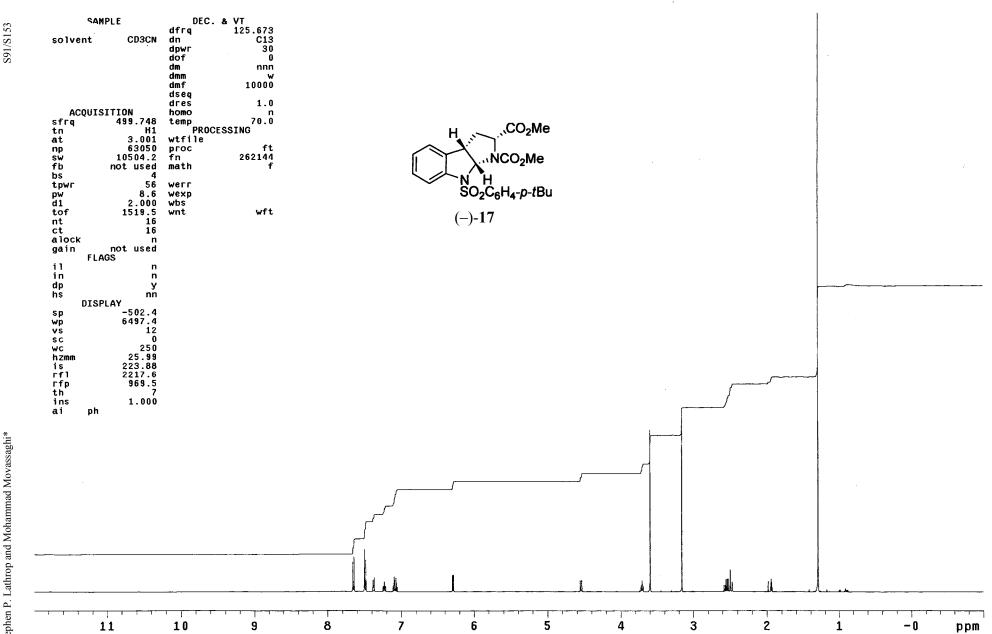





sc 0 wc 250 hzmm 120.80 is 500.00 rfl 21073.8 rfp 14929.2 th 20 ins 1.000 ai ph	S85/S153	SAMPLE solvent CD3CN ACQUISITION sfrq 125.795 tn C13 at 1.736 np 131010 sw 37735.8 fb not used bs 32 ss 1 tpwr 5.8 pW 6.9 d1 0.763 tof 631.4 nt 10000 ctof 10000 ctof 10000 ctof 51.4 nt 10000 ctof 9.4 fLAGS n ii n in n dps nn dps nn fb not used FLAGS n ii n in n py 30200.3 vs 710	fn 1310 math	H1 39 0.0 y w 000 1.0 n .30 ft		H N H Boc (-)-14	2Me		
	Stephen P. Lathrop and Mohammad Movassaghi*	sc 0 wc 250 hzmm 120.80 is 500.00 rfl 21073.8 rfp 14929.2 th 20 ins 1.000 ai ph							

SAMPLE solvent CD3C	dpwr 30 dof 0 dm nnn					
ACQUISITION sfrq 282.38 tn F1 at 0.30	19 1b 0.30 10 wtfile	F	F O ₁ O			
sw 100000. fb 5500 bs	36 proc ft .0 fn 262144 .0 8 werr .6 wexp		S ^S O HN			
pw 11. d1 4.00 tof 29637. nt 6	0 wbs 00 wnt 2 4		N H Boc			
alock gain notuse FLAGS	L6 n ed		(-)-15			
in dp DISPLAY sp -42485.	n y s					
wp 84781. vs 7 sc 25 wc 25 hzmm 339.1	26 0 50					
is 500.0 rfl 49703. rfp	00 .3 .0 20					
nm ph						
الما استعمار والمركز على المركز من الله الله والمكانية والمركز المركز والمركز والمركز المركز المركز المركز الم المركز المركز المركز والمركز المركز	en else her en i de men den del de en melon din el de través por la de de ser en de here grande al gradie la re La grande de la verge men en de grande men de ser a porte andre grande de ser a grande de la grande de la grande	lan dem allen har sin farsen fan yn syn af stein yn her stein ar bei yn benetik at huwer far an stein fan astr Yn syn yn ar ar yn ar gwar syn ar war a'r yn yn ar yn har farf ar gyn a'r gwar ar y san ar ar ar ar ar ar ar ar	การแก่สาวประวัตร และสาวประสารที่สาวประสารที่สาวประสารได้เสียได้เสียงการและสาวได้ได้ และเอาได้ได้ และ สาวประการที่สาวประการและสาวประการที่สาวประการให้การและได้เสียได้เสียงการเกลา ประการประการที่สาวประการที่สาวประก	د بر محمد بر میرد بر میرد بر میرد بر میرد بر میروند. ایروند میرد میروند میروند میروند میروند میروند میروند میر مربو میروند و بر میروند و میروند و میروند و میروند میروند میروند و میروند و میروند و میروند و میروند و میروند و	ad mangin sama ang mangina kang mangina kang mangina na mangina sa	المراجع والمراجع والمراجع المراجع المراجع المراجع المراجع والمراجع والمراجع والمراجع والمراجع والمراجع والمراجع ومراجع المراجع والمراجع المراجع المراجع والمراجع والمراجع والمراجع والمراجع والمراجع والمراجع والمراجع والمراجع

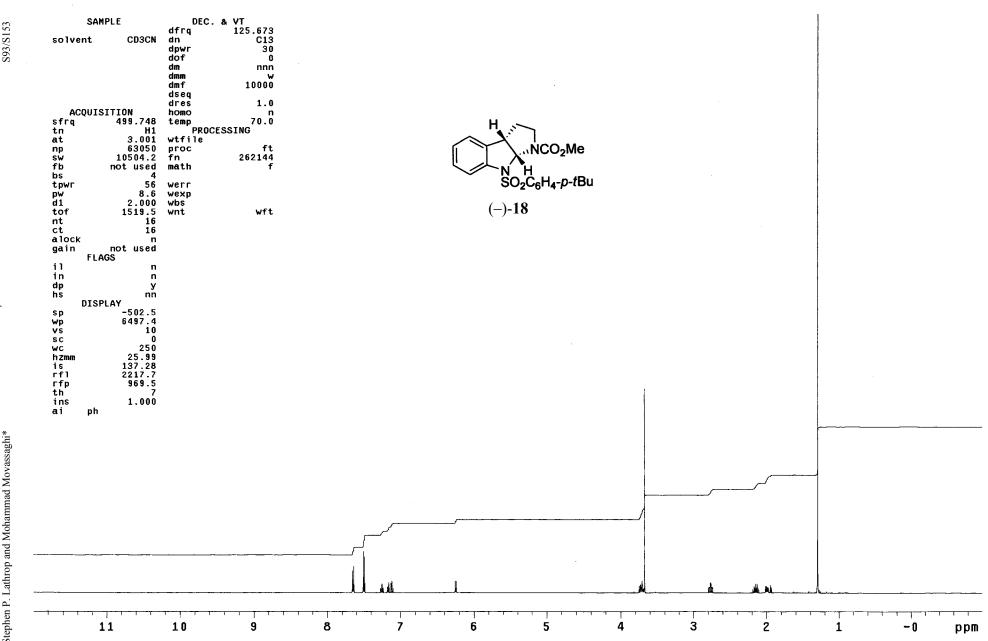

Application of diazene-directed fragment assembly to the enantioselective total synthesis and stereochemical assignment of (+)-desmethyl-meso-chimonanthine and related heterodimeric alkaloids.



S89/S153

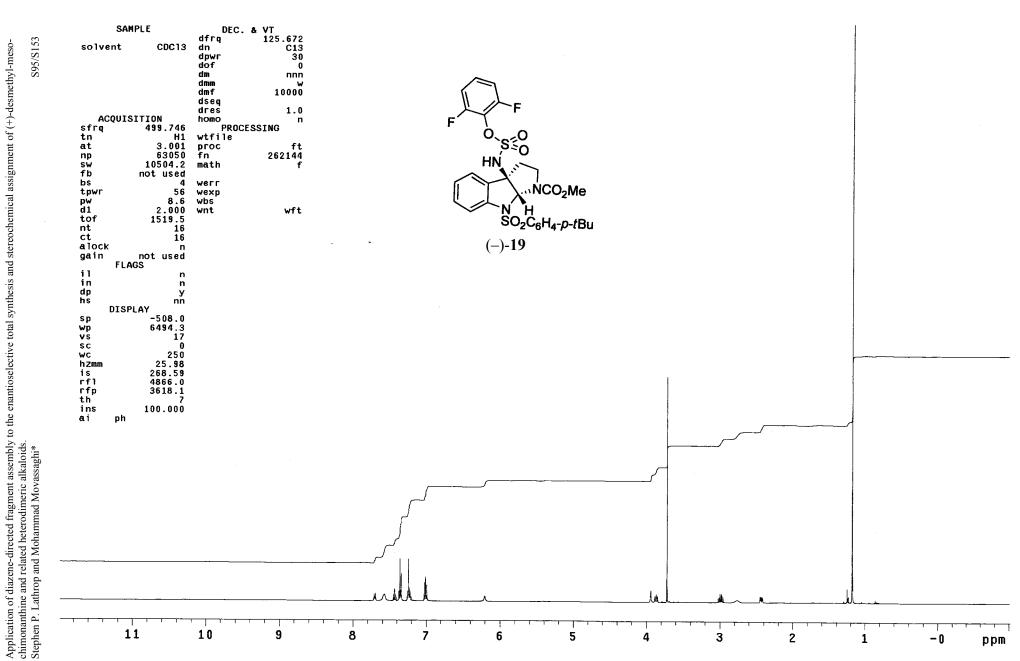
Application of diazene-directed fragment assembly to the enantioselective total synthesis and stereochemical assignment of (+)-desmethyl-meso-chimonanthine and related heterodimeric alkaloids. Stephen P. Lathrop and Mohammad Movassaghi*

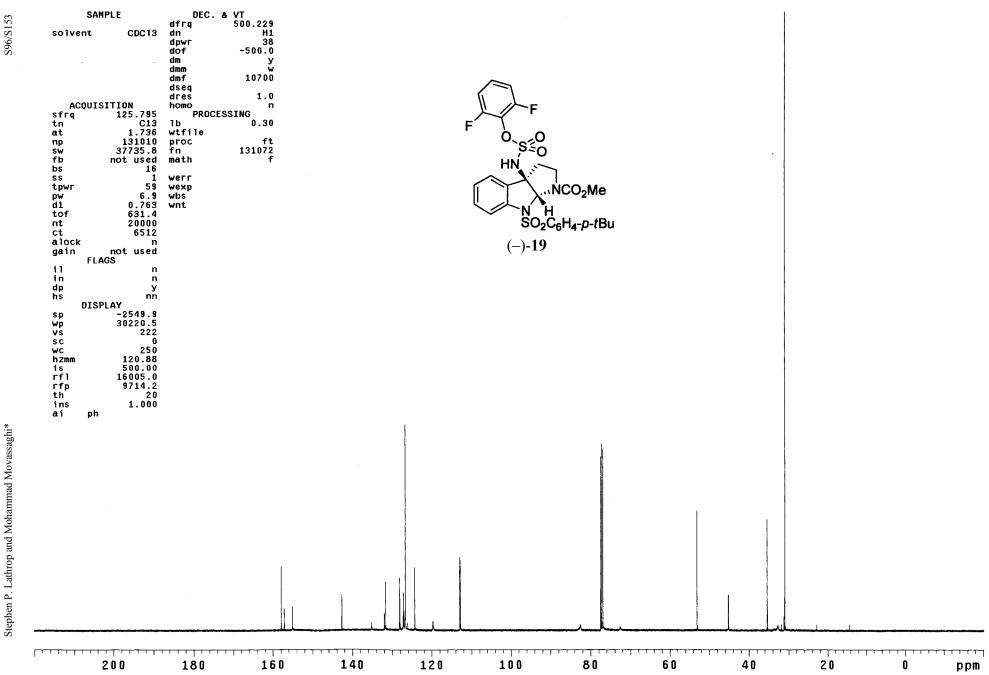
.



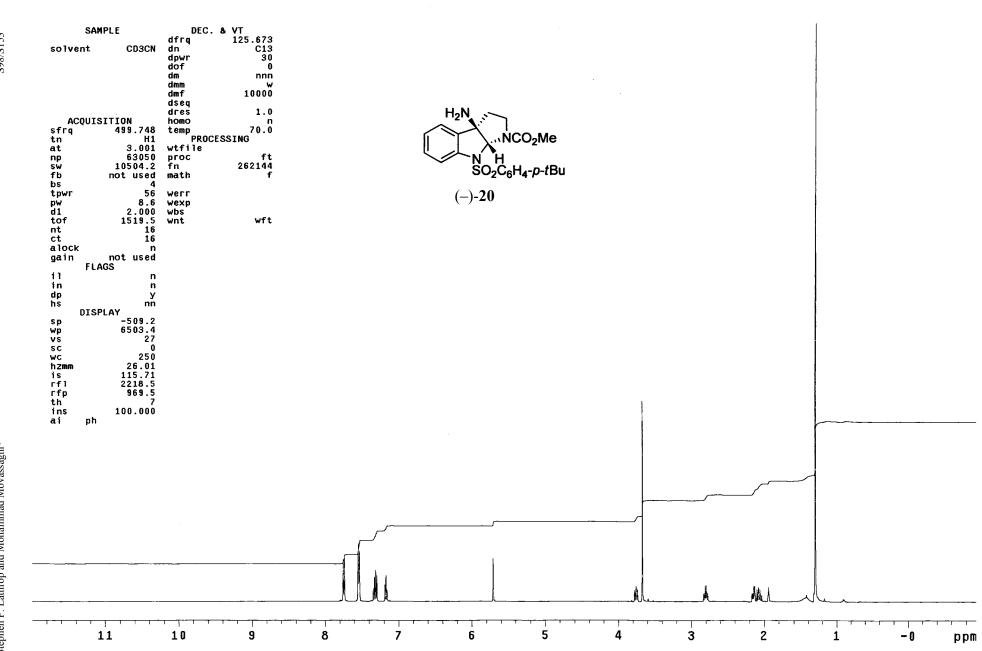
S91/S153

SAMPLE solvent CD3	dpwr dof dm dmm dmm	& VT 500.232 H1 38 -500.0 y 10700					
55	10 wtfile 5.8 proc ed fn 16 math 1	1.0 70.0 0.30 ft 131072 f		H NCO ₂ Me N H SO ₂ C ₆ H ₄ - <i>p</i> - <i>t</i> Bu			
pw 6 d1 0.7 tof 631 nt 100 ct 29	12 n			(–)-17			
dp hs DISPLAY sp -2522 wp 30199 vs 3 sc wc 2 hzmm 120. is 500.	y nn .3 .7 33 0 50 80 00						
rfl 21013 rfp 14929 th ins 1.0 ai ph	.1 20						
				1			
ng barangan ang mang mang mang mang mang mang							
<u> </u>	180	160	140 120	100 80	1	40 20	, , , , , , , , , , , , , , , , , , ,


Application of diazene-directed fragment assembly to the enantioselective total synthesis and stereochemical assignment of (+)-desmethyl-meso-chimonanthine and related heterodimeric alkaloids.

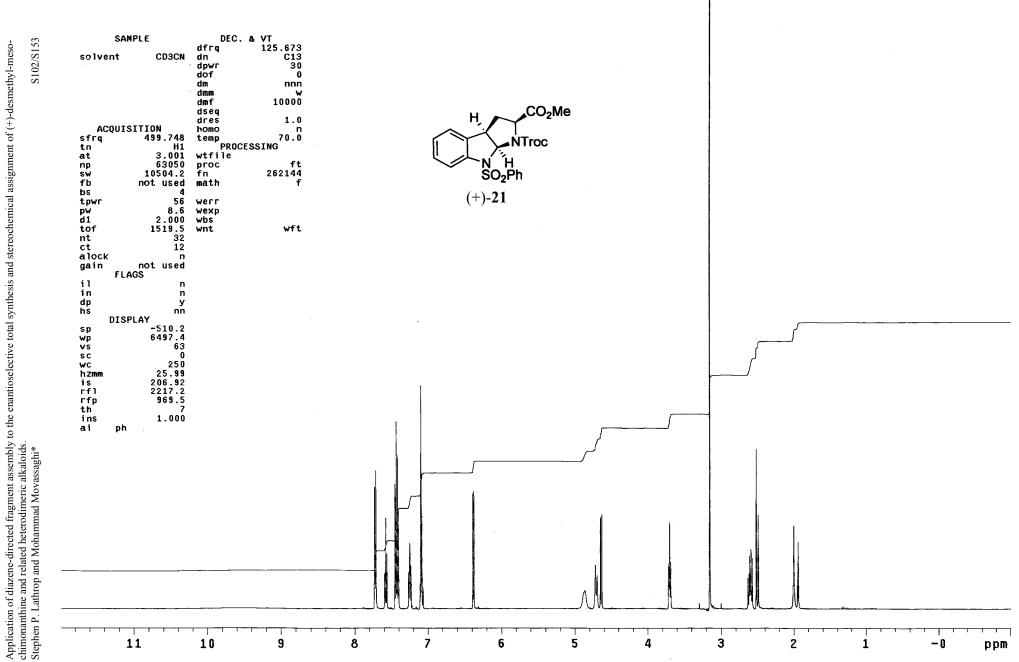


S93/S153


SAMPLE solvent CD3CN	DEC. & dfrq dn dpwr dof dm dm dm dmf	VT 500.232 H1 38 -500.0 Y W 10700					
ss 1 tpwr 59 pw 6.9	dseq dres homo temp PROCESS lb wtfile proc fn math werr wexp	1.0 n 70.0			H N H SO ₂ C ₆ H ₄ - <i>p</i> - <i>t</i> Bu (-)-18		
tof 631.4 nt 10000 ct 1856 alock n gain not used FLAGS il n in n dp y hs nn DISPLAY	wbs wnt						
sp -2553.4 wp 30264.2 vs 126 sc 250 hzmm 121.06 is 500.00 rfl 21012.2 rfp 14929.1 th 20 ins 1.000 ai ph							
ar pi							
200	180	160	<u>,,,,,,,,,,,,</u> 140	 120	100 80	 ••••••••••••••••••••••••••••••••••••••	 - X

Application of diazene-directed fragment assembly to the enantioselective total synthesis and stereochemical assignment of (+)-desmethyl-meso-chimonanthine and related heterodimeric alkaloids.

tn at np sw 10 fb bs tpwr pw d1 tof 2 nt ct alock gain nc fLAGS il in dp DISPLAY sp -2 wp & sc wc hzmm is rfl 4 rfp	d CDC13 d d d d d d d d d d d d d d d d d d d	n pwr of m m PROCESSI b tfile roc	100.107 H1 30 0 nnn C 200				- Ο Ο Ν Ν Ο ₂ C ₆ H ₄ -ρ-	ſe tBu						
uu kitki a saka shared dhadhidh di Qaaba ya ay	sl, no t successories data da gaggi terra a successories a successories data 	and a start and		n dela dela postaciana del conse 1992 : en su conserva del conserva del conserva del conserva del conserva del 1993 : en su conserva del conserv		kuduspuoli kuu kilin kiljandisedis 19 tuupp gevoingisensense 19 tuupp gevoingisensense	on de la de seu de seu de seu 	al an internet de lateration also	Michigi ang tugo kang tang ta ng yang tang tang tang tang tang tang tang t	an film an	ин е е е боло и и и е е е е е е е е е е е е е е е е			n and a state of a sta
	120	100	80	60	40	20		-20	-40	-60	-80	-100	-120	ppm


S98/S153

wid 3773.4 proc 13107 bis with 13107 (-)-20 ss 4 0.763 with top 58 with (-)-20 ss 6 (-)-20 with 10107 (-)-20 sp 10 (-) sp -2538.4 (-) ys -2010.4 (-) ys -1000.6 (-) itim 1.000 (-) ail ph (-)	tn C13 at 1.736 np 131010	DEC. & VT dfrq 500.232 dn H1 dpwr 39 dof -500.0 dm y dmf 10000 dseq dres 1.0 homo n temp 70.0 PROCESSING 1b 0.30 wtfile proc ft fn 131072		H	N H SO ₂ C ₆ H ₄ -p-tE	ə Bu		
th 20 in ph	bs 64 ss 1 tpwr 6.9 d1 0.763 tof 631.4 nt 25000 ct 16896 alock n gain not sil n in n dp Y hs nn DISPLAY 50 sc 0 wc 2538.4 wp 30188.2 vs 629 sc 0 wc 250 nzmm 120.75 is 500.00 rfl 21011.6 rfp 14929.1	math f werr wexp wbs			(-)-20			
	th 20 ins 1.000 ai ph		,					

Application of diazene-directed fragment assembly to the enantioselective total synthesis and stereochemical assignment of (+)-desmethyl-meso-chimonanthine and related heterodimeric alkaloids.

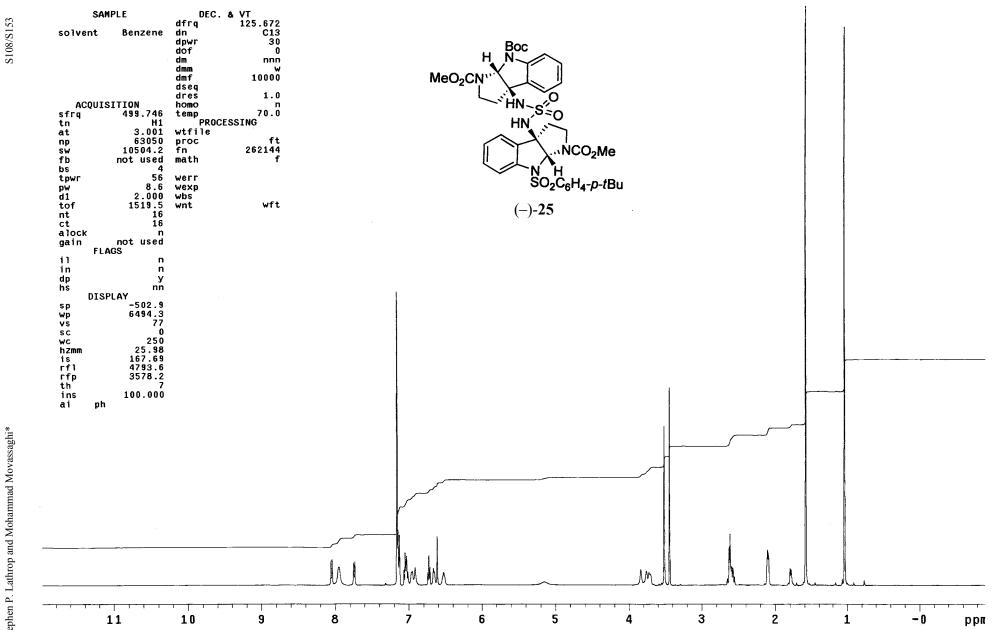
S99/S153

SAMPLE	DEC. & VT dfrq 125.672	
solvent Benzene	dn C13 dpwr 30 dof 0	
ACQUISITION	dan nnn daam w	
sfrq 499.746	dseq dres 1.0	
at 3.001 np 63050 sw 10504.2 fb not used	homo n PROCESSING wtfile proc ft	
fb notused bs 4 towr 56	proc ft fn 262144 math f	
d1 2.000	werr	
CT 10	wexp wbs wnt wft	
alock n gain not used FLAGS		
il n in n		С <u>N</u> Н (+)- S4
hs nn DTSPLAY		(+)- S4
sp -501.3 wp 6501.7 vs 17		
sp -501.3 wp 6501.7 vs 17 sc 0 wc 250 hzmm 26.01 is 141.88		
FT1 4794.0		
th 7 ins 100.000		
ai ph		
	<u> </u>	
<u></u>	10 9 8	7 6 5 4 3 2 1 -0

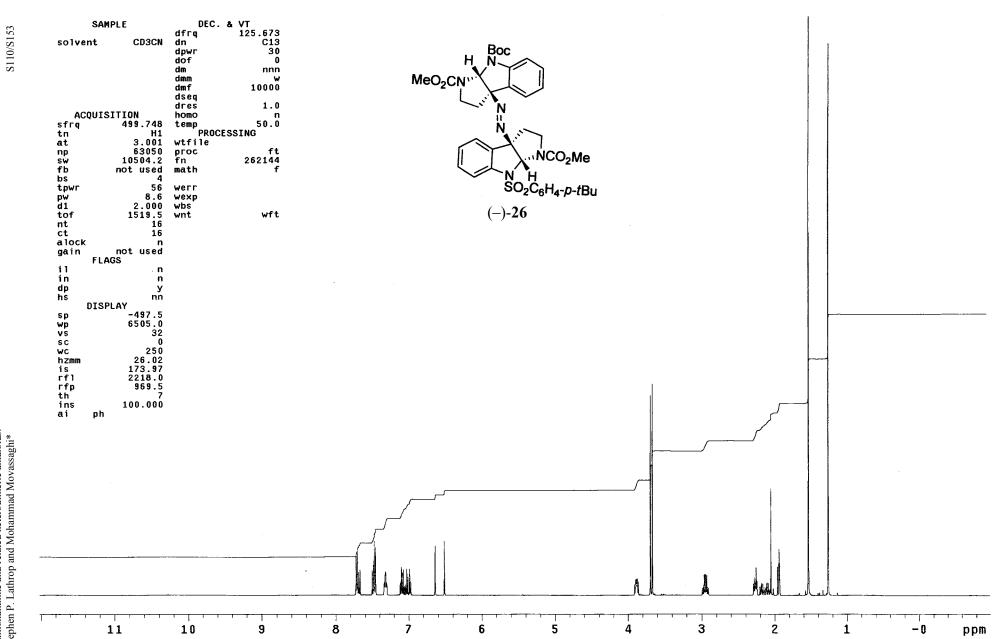
SAMPLE solvent CD3CN	DEC. & dfrq dn dpwr dof dm dmm dmm	VT 500.232 H1 38 -500.0 y w 10700								
pw 6.9 d1 0.763	dseq dres homo temp PROCESS lb wtfile proc fn math werr wexp wbs	1.0 n 70.0			H N H SO ₂ Ph	9₂Me ≎				
tof 631.4 nt 10000 ct 2384 alock n gain not used FLAGS il n n dp y hs nn	wnt				SO ₂ Ph (+)-21					
sp -2543.9 wp 30229.1 vs 232 sc 0 wc 250 hzmm 120.92 is 500.00 rfl 21012.0 rfp 14876.8 th 2 ins 1.000 ai ph										
		der te set and the second second			-					
<u> </u>	180	160 1 60	<u>140</u>	120	100	، ، ، ، ، ، ، ، ، ، ، ، ، ، ، ، ، ، ، 	 60	 	<u> </u>	᠇᠇᠇᠊

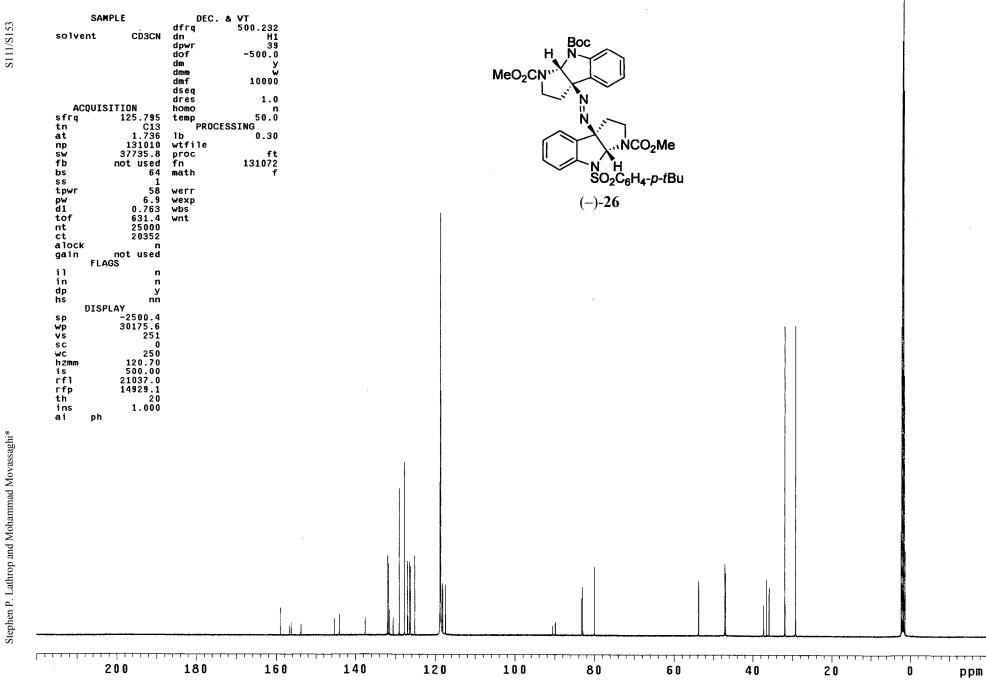
S103/S153

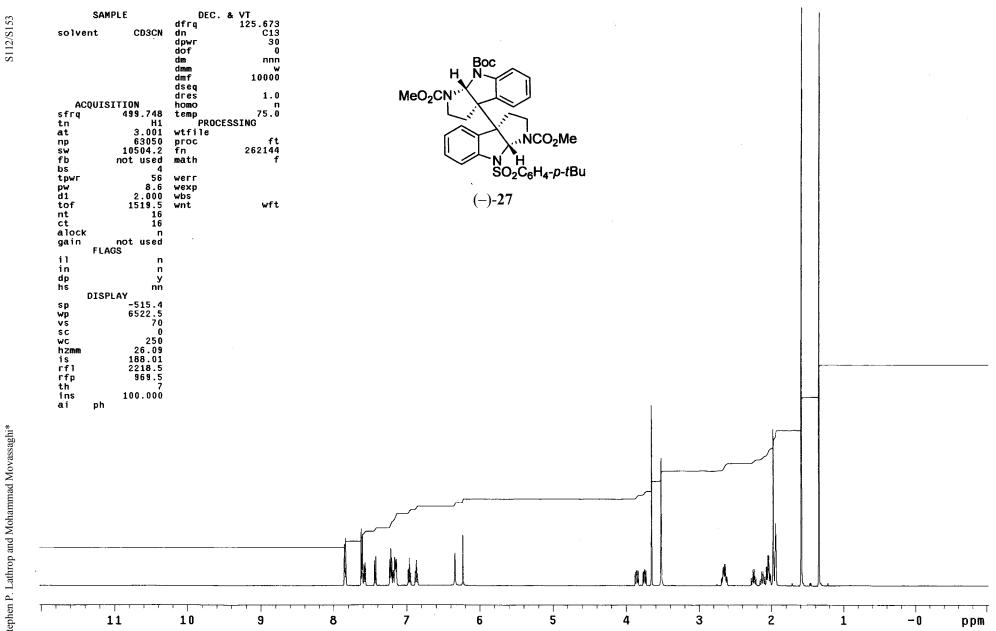
SAMPLE solvent CD3CN	DEC. & VT dfrq 125.673 dn C13 dpwr 30 dof 0 dm nnn dmm w dmf 10000 dseq 10000		~ ^H .				
ACQUISITION sfrq 499.748 tn H1 at 3.001 np 63050 sw 10504.2 fb not used	dres 1.0 homo n temp 70.0 PROCESSING wtfile		N H SO ₂ Ph (+)-22	Ггос			
DS 4 tpwr 56 pw 8.6 d1 2.000	werr wexp		(+)-22				
tof 1519.5 nt 16 ct 16 alock n gain not used FLAGS il n in n dp y							
hs nn DISPLAY sp -503.1 wp 6505.7 vs 55 sc 0							
wc 250 hzmm 26.02 is 160.27 rfl 2218.2 rfp 969.5 th 7 ins 100.000						 	
ai ph		I			 		
				lu		ler	

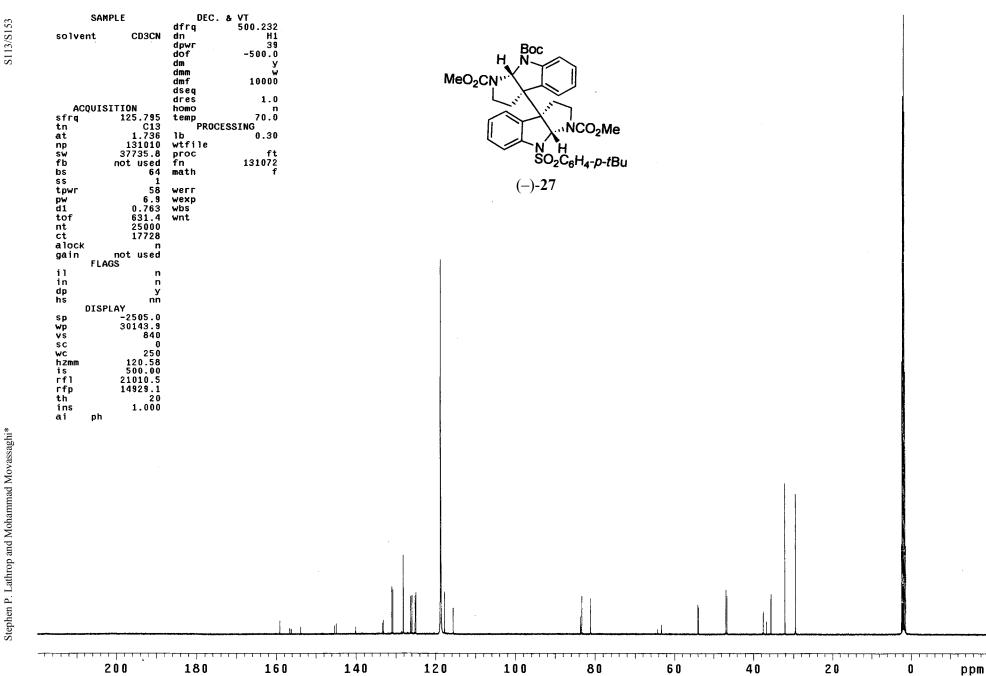

sp - 30231.1 wp 302231 sc 250 hzmn 120.92 is 500.00 rfl 21012.8 rfp 14929.1 th 20 al pD	pw 6.9 d1 0.763 tof 631.4 nt 20000 ct 3264 alock n gain not used FLAGS il in n dp y hs nn DISPLAY DISPLAY	dm dmm dmf 10 dseq dres homo temp 7 PROCESSING lb 0 wtfile proc fn 131 math werr wexp wbs	H1 38 30.0 y 0700 1.0 n 70.0		H N N SO ₂ Ph (+)-22	c			
	vs 121 sc 0 wc 250 hzmm 120.92 is 500.00 rfl 21012.8 rfp 14929.1 th 20 ins 1.000								

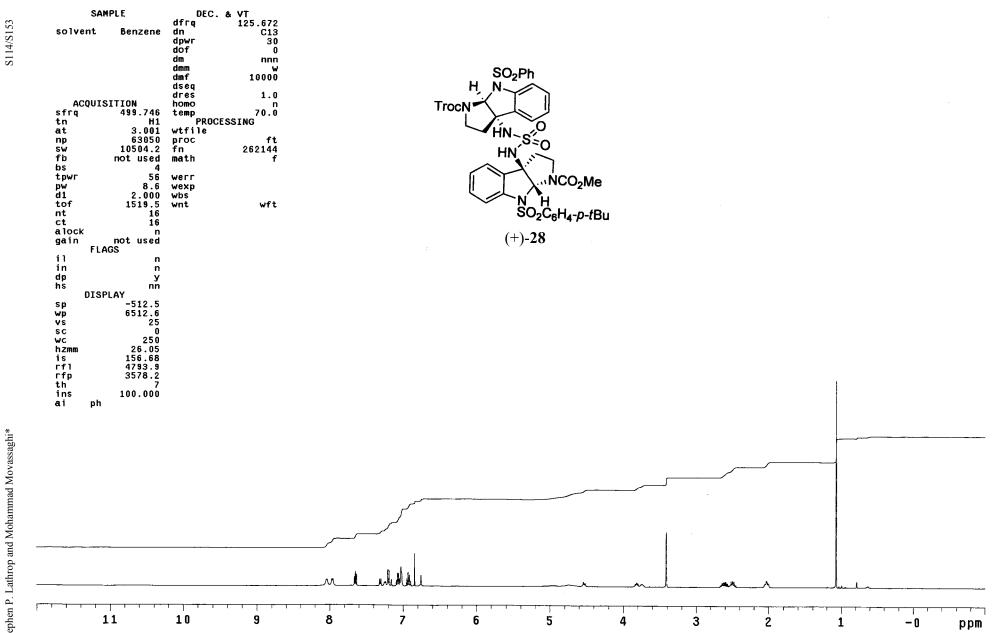
•

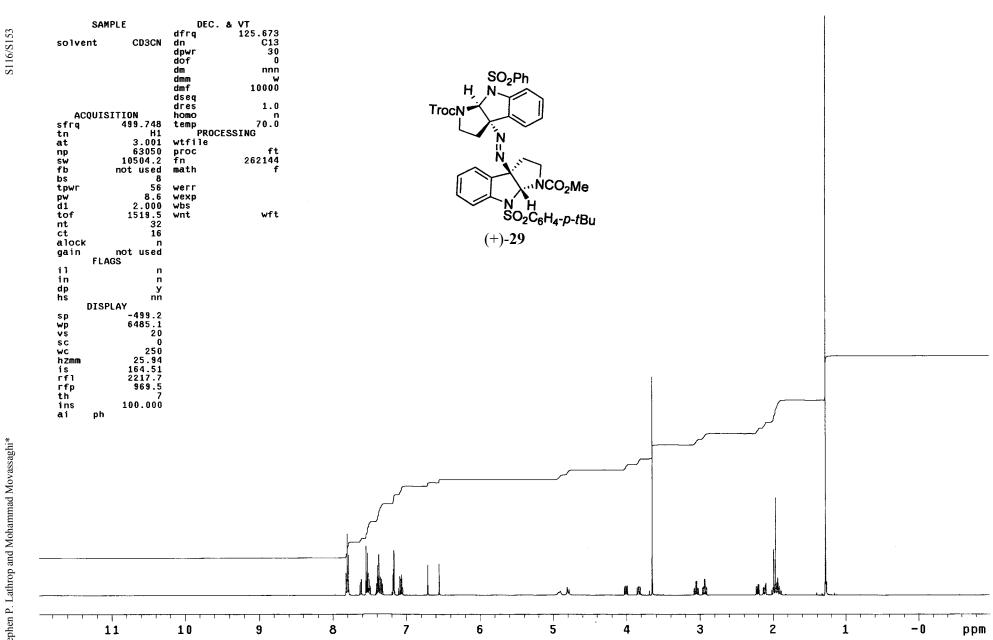

SAMPLE solvent CD3CN	DEC. & VT dfrq 125.673 dn C13 dpwr 30 dof 0 da nnn dmm w dmf 10000 dseq 4	H ₂ N,				
ACQUISITION sfrq 499.748 tn H1 at 3.001 np 63050 sw 10504.2 fb not used bs 4 tpwr 56 pw 8.6	dres 1.0 homo n temp 70.0 PROCESSING wtfile proc ft fn 262144 math f		NTroc h			
d1 2.000 tof 1519.5 nt 16 ct 16	wbs	(+)-24				
alock n gain notused FLAGS il n in n dp y hs nn DISPLAY						
sp -518.1 wp 6494.3 vs 98 sc 0 wc 250 bzmm 25 98						
12000 120000 1200000 1200000 1200000 1200000 1200000 1200000 1200000 1200000 1200000 1200000 1200000 120000 1200000 1200000 1200000 120000000 1200000000						
			1			
			A	Å		

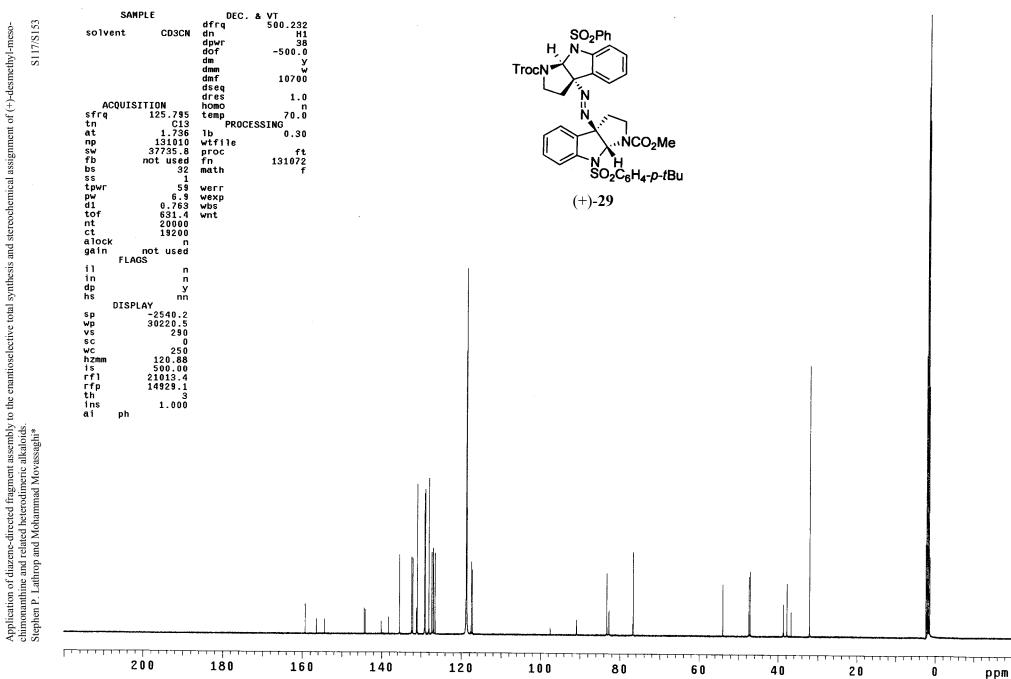

at 1.736 np 1.51010 sw 37735.8 fb not used bs 64 ss 1 tpwr 58 pw 6.9 d1 0.763 tof 631.4 nt 20000 ct 19904 alock n gain not used FLAGS il n n dp y hs nn DISPLAY sp -2556.0 wp 30230.3 vs 602 sc 0 wc 250 hzmm 120.92 is 500.00 rfl 21011.4 rfp 14930.9 th 20 ins 1.000 ai ph	wtfile proc ft fn 131072 math f werr wexp wbs	$\begin{array}{c} H_2N, \\ \downarrow \downarrow, \\ N, \\ N, \\ SO_2Ph \\ (+)-24 \end{array}$	

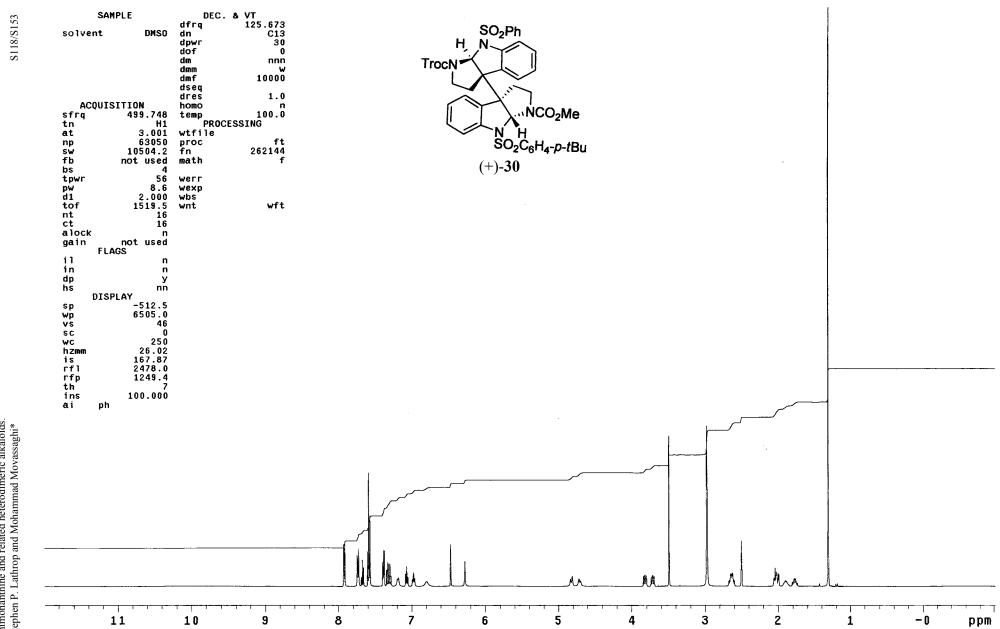



SAMPLE solvent Benzene	dof -500. dm dmm dmf 1000	1 9 0 9 9 9 W		Ĩ	Вос		
at 1.736 np 131010 sw 37735.8 fb not used bs 32 ss 1 tpwr 58	temp 70. PROCESSING 1b 0.3 wtfile proc f fn 13107 math werr wexp	n 0 t)	
tof 631.4 nt 20000 ct 6560 alock n gain not used FLAGS il n in n dp y hs nn DISPLAY	wnt				N H SO ₂ C ₆ H ₄ -p-tE (-)-25	3u	
sp -2533.9 wp 30188.2 vs 1147 sc 0 wc 250 hzmm 120.75 is 500.00 rfl 22358.4 rfp 16149.2 th 20 ins 1.000							,
ai ph							
<u></u>	180 1	60 140	120	100 80			 •0 pp

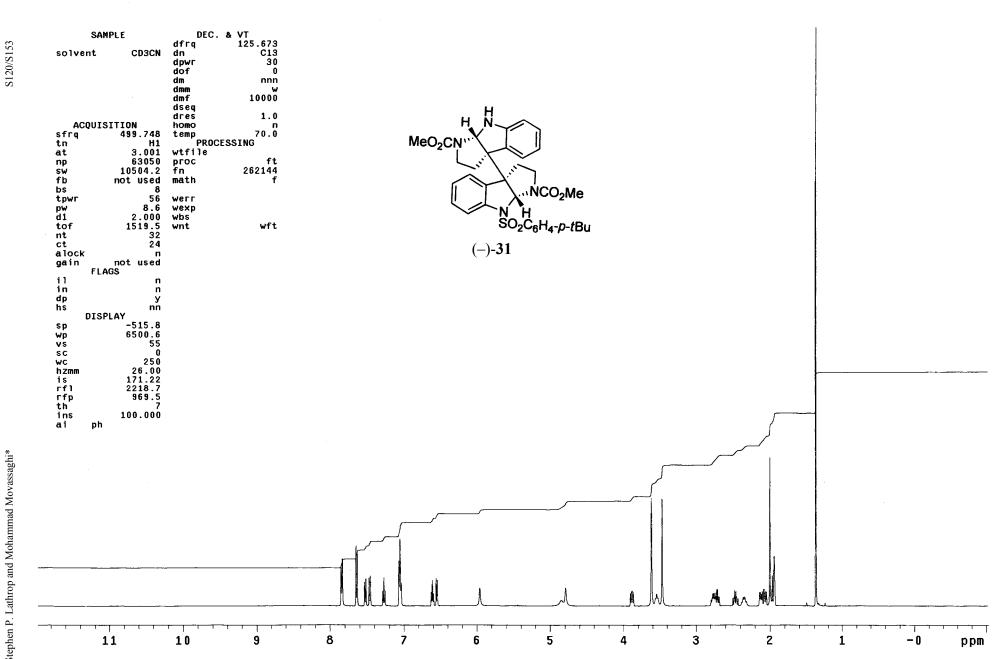

I

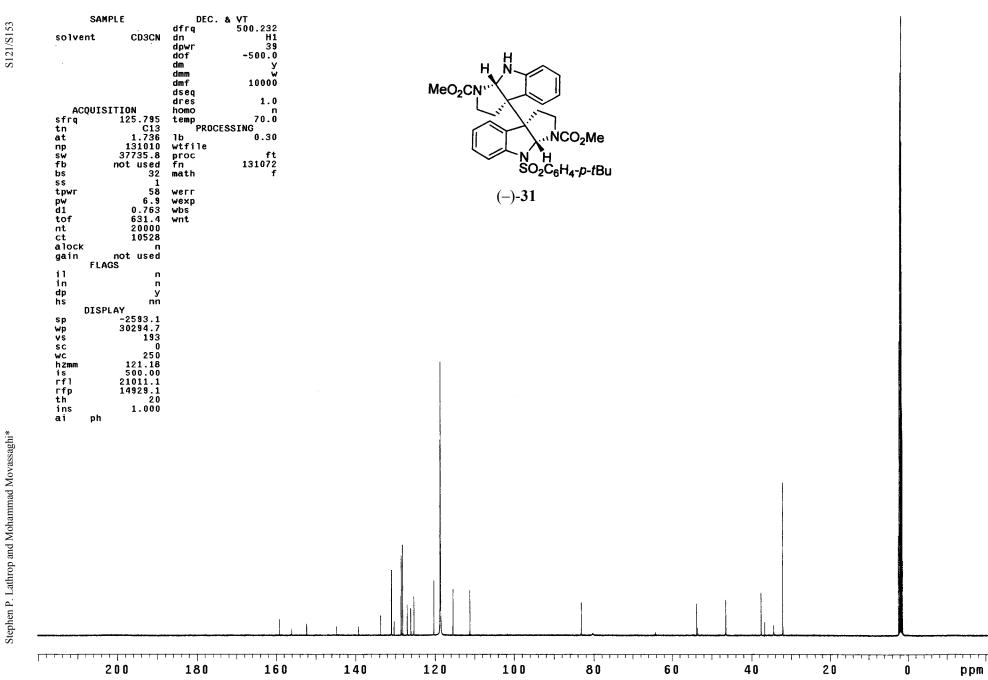


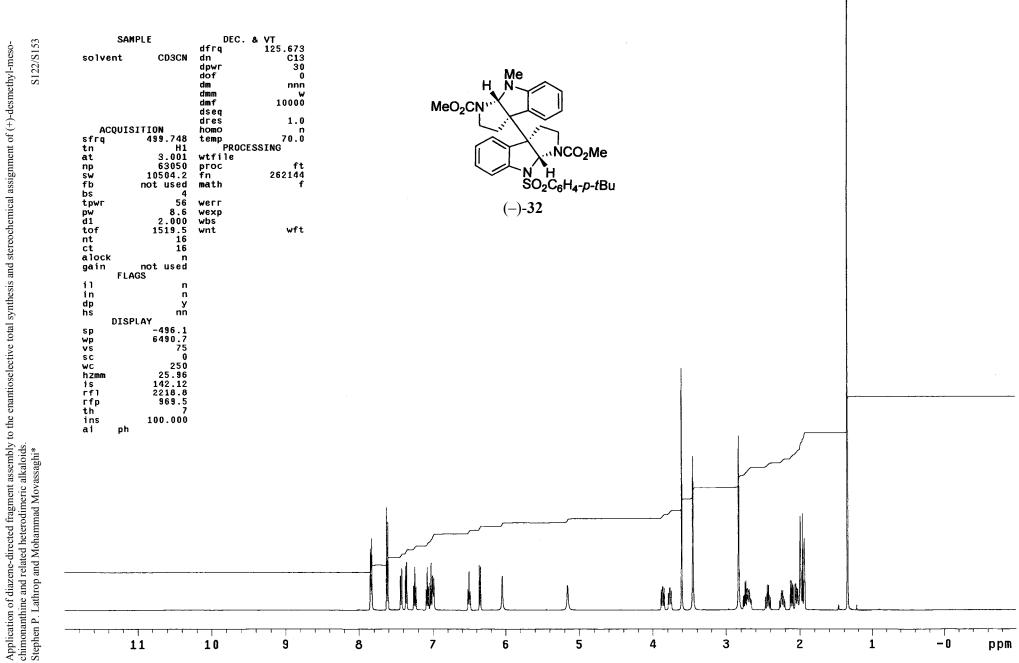


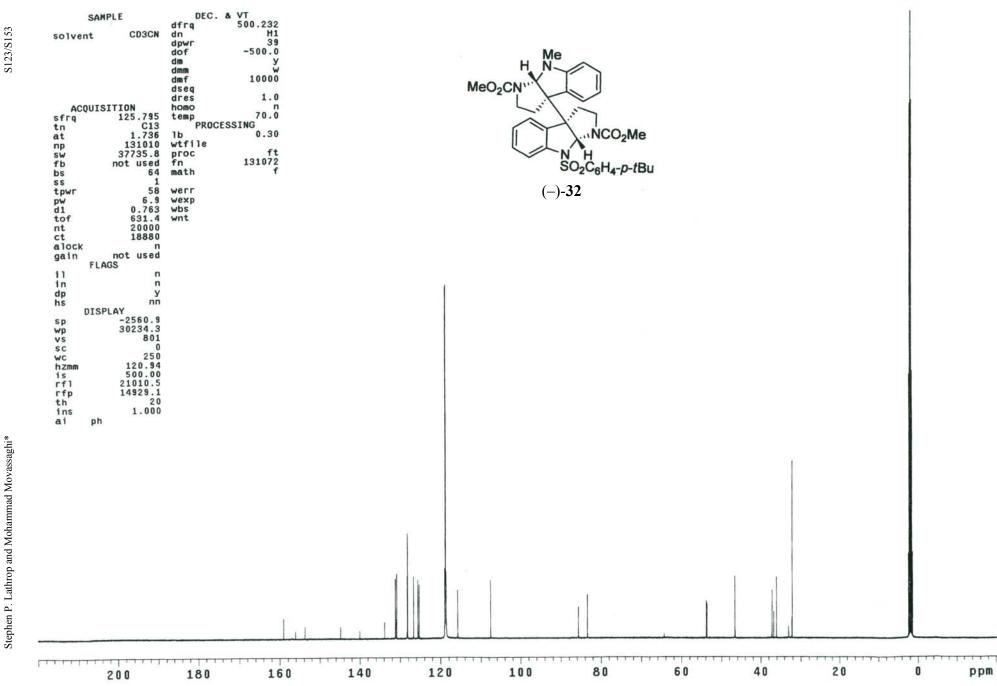


ACQUISITION sfrq 125.795 tn C13 at 1.736 np 13100 sw 37735.8 fb not used bs 32 ss 1 tpwr 58 pw 6.9 d1 0.763 tof 631.4 nt 20000 ct 6784 alock n gain not used FLAGS il n 1 n	dseq dres homo temp PROCESS lb wtfile proc fn math werr wexp wbs wnt	1.0 70.0 SING 0.30 ft 131072 f		TrocN*	HN-S=0 HN-S=0 HN	O₂Me ₄- <i>p-t</i> Bu	-	
Image: sp in the image: sp								
				ł				

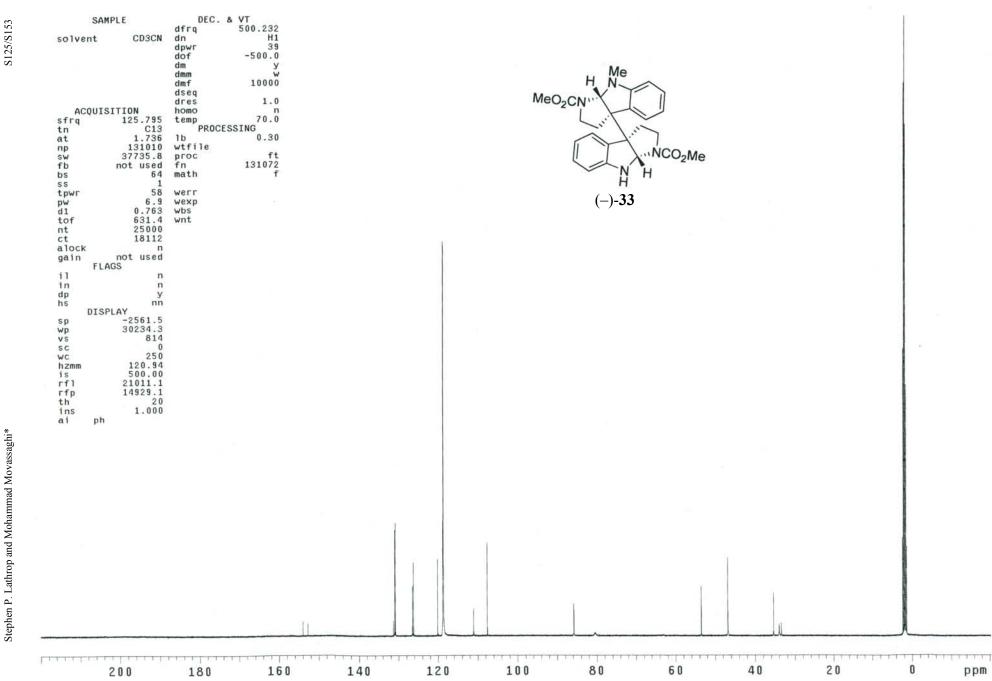

Application of diazene-directed fragment assembly to the enantioselective total synthesis and stereochemical assignment of (+)-desmethyl-meso-chimonanthine and related heterodimeric alkaloids. Stender P. Tathron and Makammad Marammad Marammad Marammad Marammad Marammad Marammad Marammad Marammad Marammad

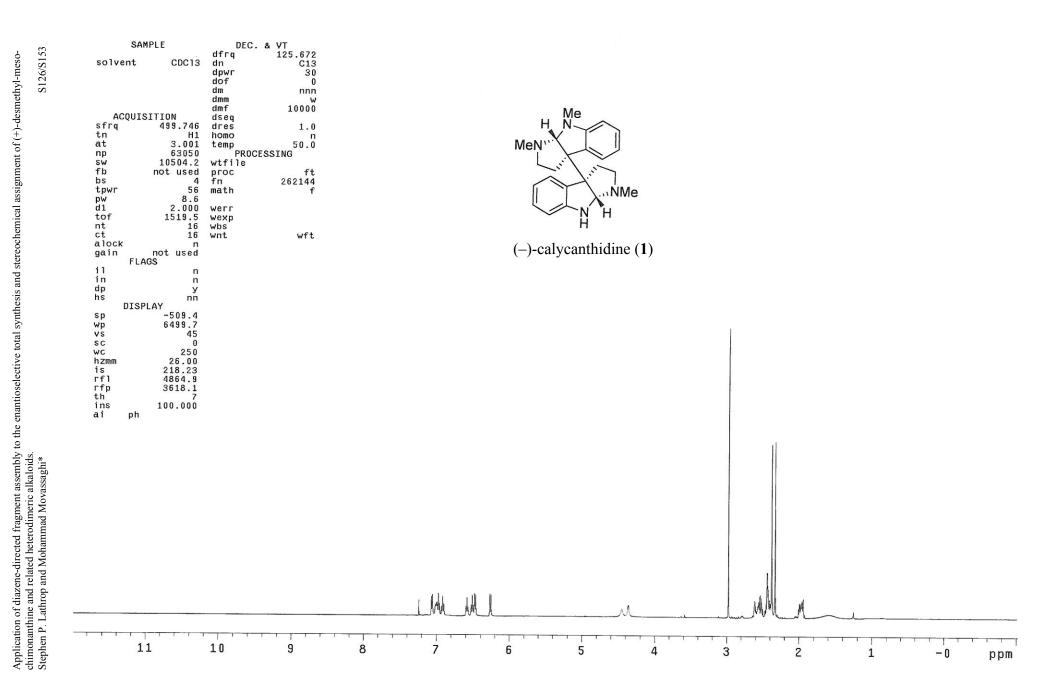






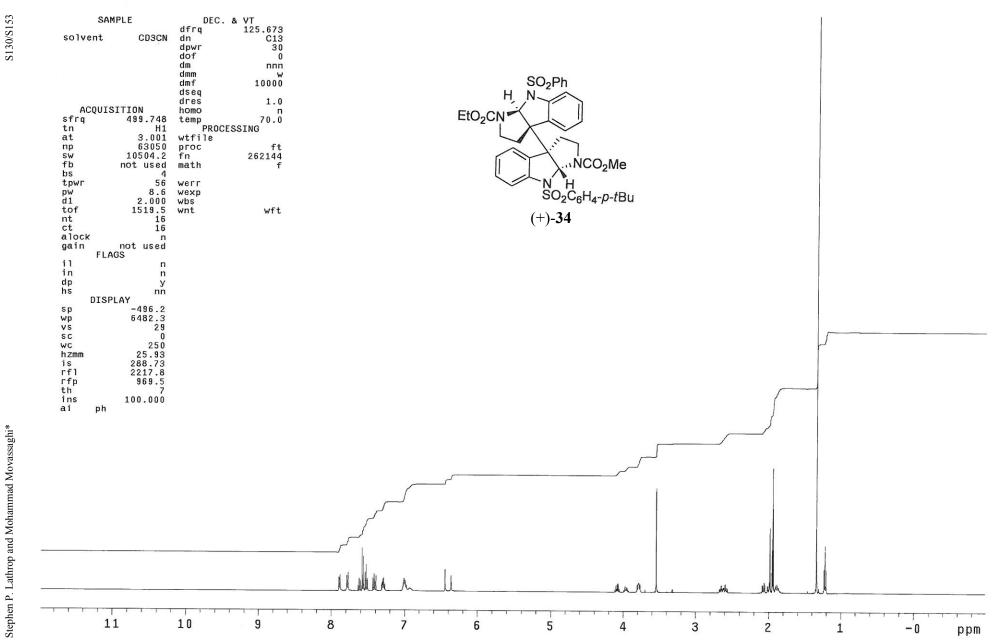
Stephen P. Lathrop and Mohammad Movassaghi* S119/S153	tn C13 at 1.736 np 131010 sw 37735.8 fb not used bs 32 ss 1 tpwr 59	dm dmm dmf 10 dseq dres homo temp 10 PROCESSING b 0 wtfile proc fn 131 math werr wexp wbs	38 00.0 y 0700 1.0 n 00.0		Troc		NCO ₂ Me 6H ₄ -p-tBu				
		antigenera ang dang dipungan pang kang kang				nya katalaka sa gilanna daga sa kata					na kategorija je poslata je je poslata
Г	200	180	160	140	120	100	80	60	40	20	mqq 0



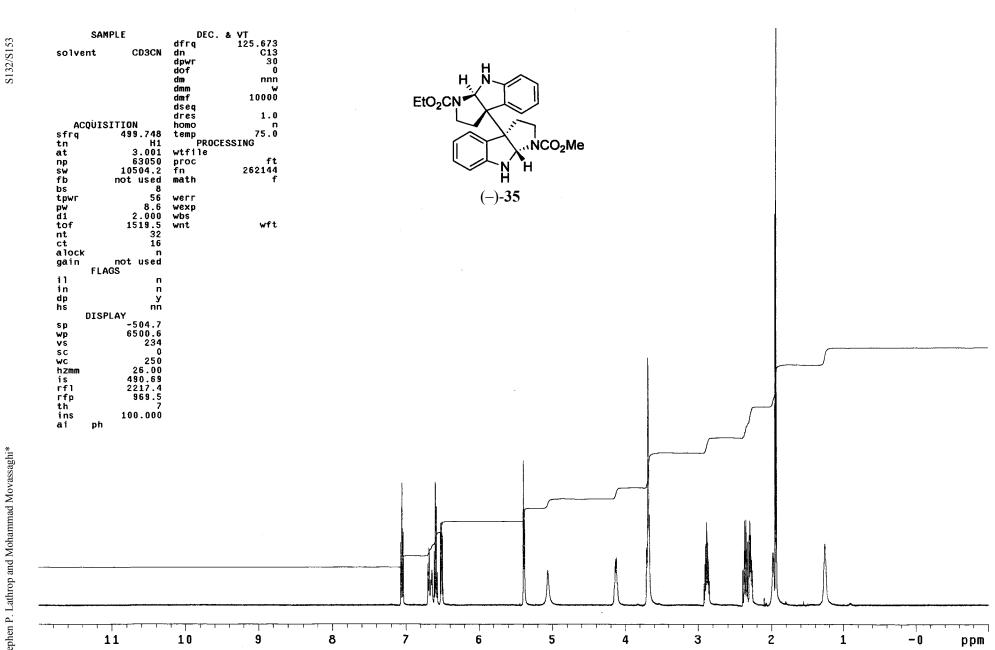




np 63050 sw 10504.2 fb not used bs 4 tpwr 56 pw 8.6 d1 2.000 tof 1519.5 nt 16 ct 16 alock n gain not used FLAGS i1 n in n dp y bs nn	dpwr 30 dof 0 dm nnn dmm w dmf 10000 dseq dres 1.0 homo n temp 70.0 PROCESSING wtfile proc ft fn 262144 math f werr wexp wbs wnt wft		BO_2CN	ICO ₂ Me			
DISPLAY sp -498.0 wp 6492.9 vs 45 sc 0 wc 250 hzmm 25.97 is 152.95 rf1 2218.5 rfp 969.5 th 7 ins 100.000 ai ph					part of the second of the seco		
Stephen P. Lathrop and Mohammad Movassagni*							
	10 9	8 7 6	5	4	3 2	1	-0 ppm

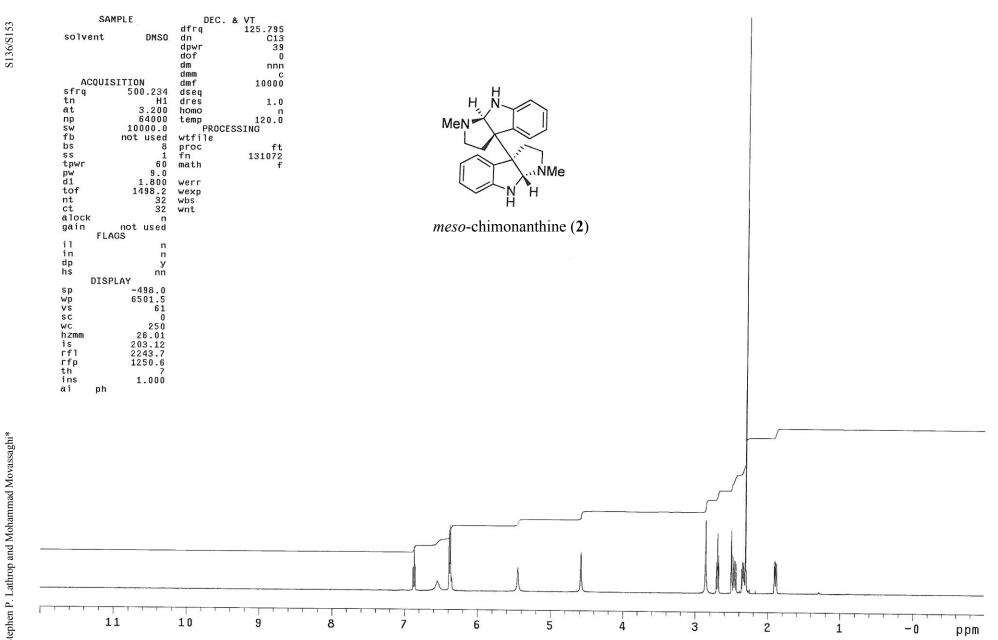


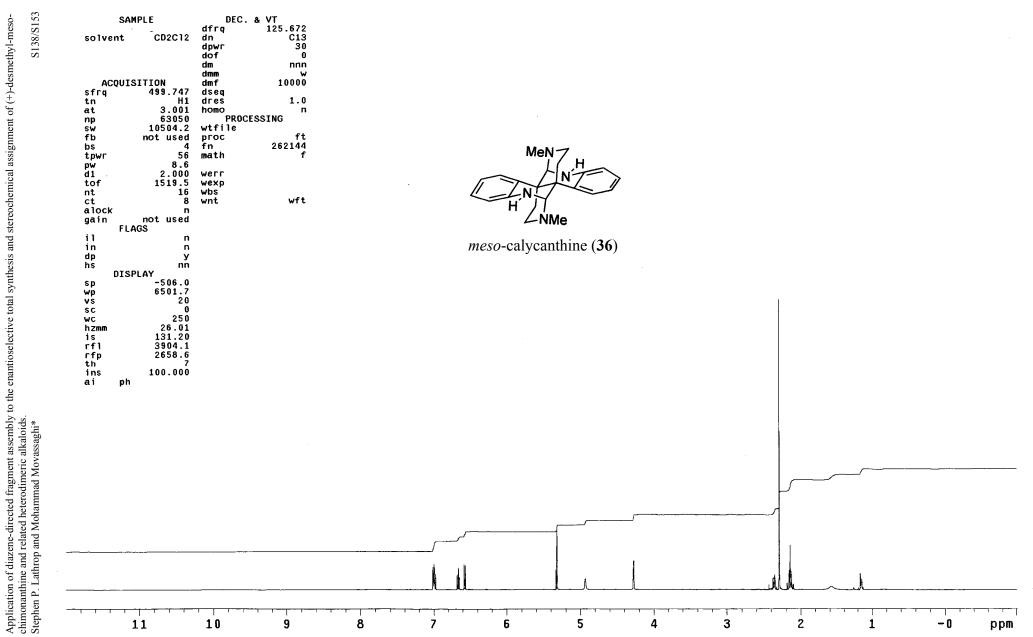
n p DISPLAY m sp 2537.7 v5 2577.7 v5 2712 sc 0 wc 115.80 ham	ACQUISITION sfrq 125.795 tn C13 at 1.736 np 131010 sw 37735.8 fb not used bs 64 ss 1 tpwr 58 pw 6.9 d1 0.763 tof 631.4 nt 25000 ct 21696	DEC. & VT dfrq 500.229 dn H1 dpwr 39 dof -500.0 dm y dmf 10000 dseq 1.0 homo n temp 50.0 PROCESSING 1b 0.30 wtfile 0.30 wtfile fn 131072 math f werr wexp wbs wnt		MeN	H Ne NMe NH H alycanthidine (
	bisplay sp -2578.7 wp 28957.7 vs 2712 sc 0 wc 250 hzmm 115.83 is 500.00 rfl 15988.9 rfp 9714.2 th 20 ins 1.000						
			и И. И.				



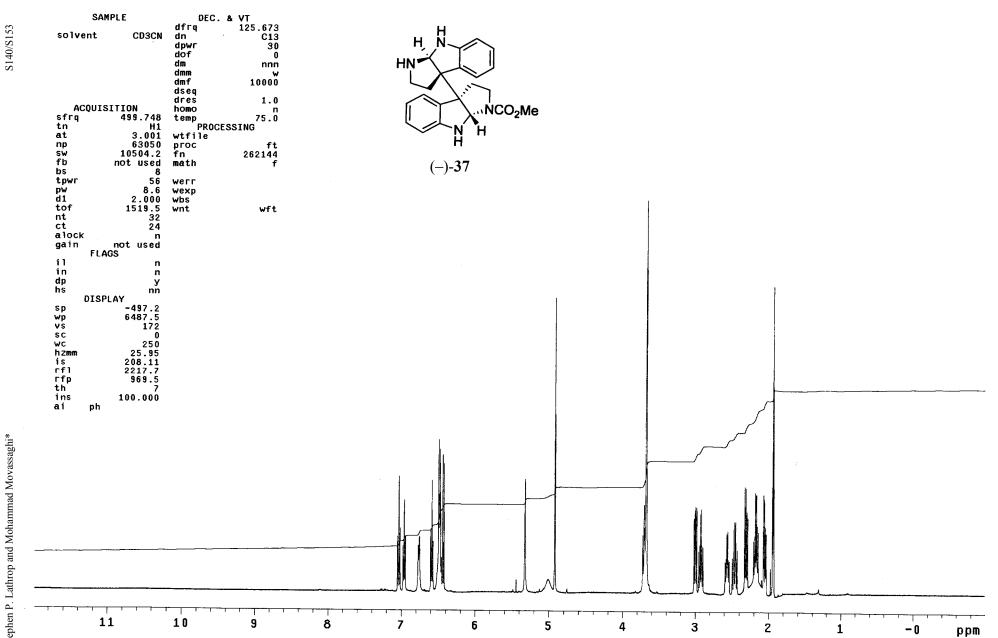
S128/S153

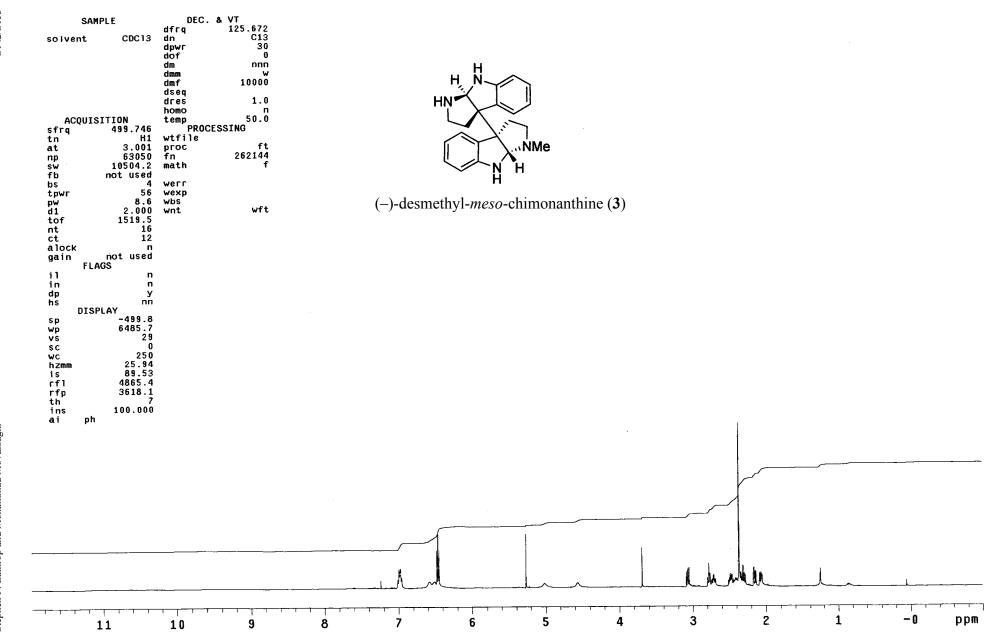
bs 64 ss 1 tpwr 58 pw 6.9 d1 0.763 tof 631.4 nt 20000 ct 17280 alock n gain not il n in n dp y hs nn DISPLAY DISPLAY	math f werr wexp		H N MeN (-)-calycant	NMe H hidine (1)		
sp -2545.7 wp 30228.5 vs 1671 sc 0 wc 250 hzmm 120.91 is 500.00 rfl 11413.6 rfp 4969.7 th 20 ins 1.000 ai ph						

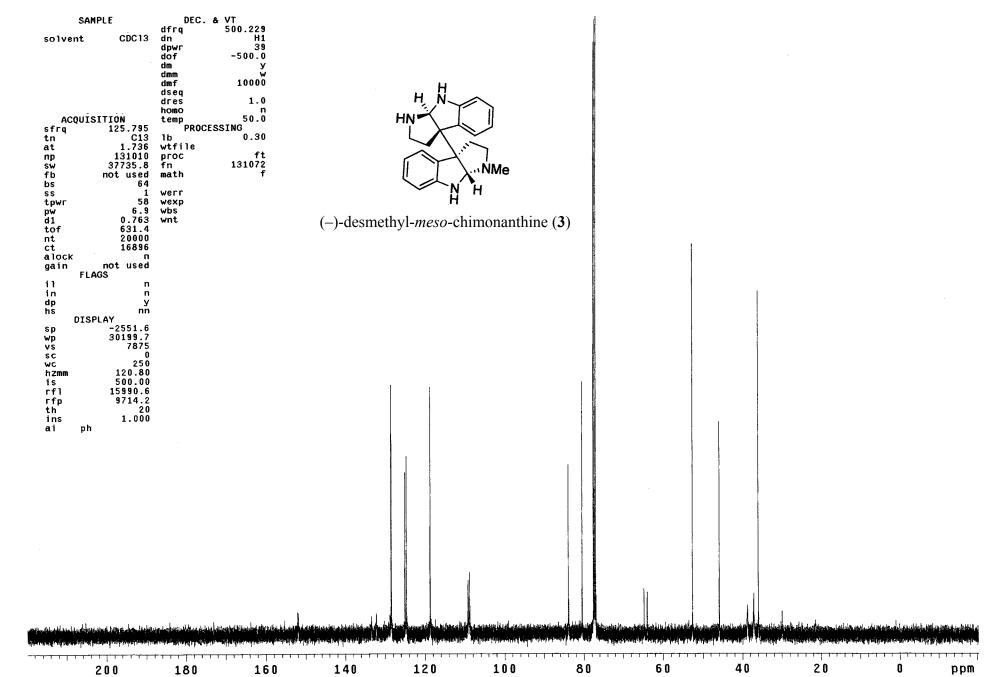

SAMPLE solvent CD3CN	DEC. & VT dfrq 500.232 dn H1 dpwr 38 dof -500.0 dm Y dmm w dmf 10700	EtO ₂ CN	2Ph		
ACQUISITION sfrq 125.795 tn C13 at 1.736 np 131010 sw 37735.8 fb not used bs 32 ss 1 tpwr 59 pW 6.9 d1 0.763	proc ft fn 131072 math f werr wexp		NCO ₂ Me N H SO ₂ C ₆ H ₄ - <i>p</i> - <i>t</i> Bu		
tof 631.4 nt 25000 ct 20992 alock n gain not used FLAGS il in n dp y hs nn DISPLAY DISPLAY	wnt				
sp -2522.3 wp 30188.2 vs 2423 sc 0 wc 250 hzmm 120.75 is 500.00 rfl 21011.6 rfp 14929.1 th 20 ins 1.000 ai ph					
ai ph					


SAMPLE solvent CD3CN	DEC. & VT dfrq 500.232 dn H1 dpwr 39 dof -500.0 dm y dmm w dmf 10000 dseq -	H H	
ACQUISITION sfrq 125.795 tn C13 at 1.736 np 131010 sw 37735.8 fb not used bs 64 ss 1 tpwr 58 pu 6.9 d1 0.763 tof 631.4 nt 25000 ct 17216	dres 1.0 homo n temp 75.0 PROCESSING lb 0.30 wtfile proc ft fn 131072 math f	EtO_2CN NCO_2Me $(-)-35$	
alock n gain not used FLAGS i1 n ip y br DISPLAY sp -2586.2 wp 30223.3 vs 892 sc 0 wc 250 hzmm 120.89 is 500.00			
is 500.00 rfl 21004.2 rfp 14929.1 th 20 ins 1.000 ai ph			

$\frac{1}{11} \frac{1}{10} \frac{1}{9} \frac{1}{8} \frac{1}{8} \frac{1}{7} \frac{1}{10} \frac{1}{9} \frac{1}{10} \frac{1}{10} \frac{1}{9} \frac{1}{10} 1$	ACQUISITION sfrq 499.748 tn H1 at 3.001 np 63050 sw 10504.2 fb not used bs 4 tpwr 56 pw 8.6 d1 2.000	proc ft fn 262144 math f werr wexp wbs	H, H, MeN, L,	NMe H nanthine (2)
	in n dp y hs nn DISPLAY sp -508.9 wp 6508.2 vs 65 sc 0 wc 250 hzmm 26.03 is 210.20 rfl 2283.1 rfp 1654.1 th 7 ins 100.000 ai ph		а	

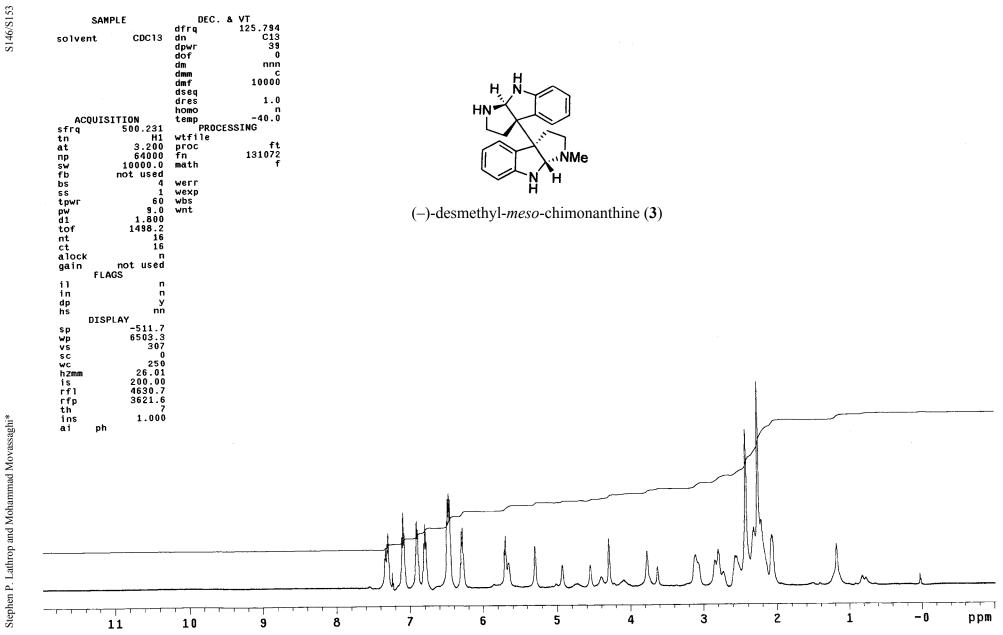

SAMPLE solvent CD30D ACQUISITION sfrq 125.795 tn C13 at 1.736 np 131010 sw 37735.8 fb not used bs 64 ss 1 tpwr 58 pW 6.9 d1 0.763 tof 631.4 nt 18000 ct 16832 alock n gain not used FLAGS 1 ii n n n in n DISPLAY sp -2573.3 wp 30249.8 vs 2412 o vc 200 0 wc 250 wp 30249.8 vs 2412 o vs 2412 o o o sis 50.000 rfl 121.000 is s o is 50.000 rfl 6182.5 th 20 ins 1.000 ai ph	dpwr 3 dof -500. dm dmm dmf 1000 dseq dres 1. homo temp 55. b PROCESSING b 0.3 wtfile proc f fn 13107 math werr wexp wbs wnt	1 9 0 9 0 0 0 0 0	meso-chin	\mathbf{H} nonanthine (2)		
۲۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰	180 16	50 140				


di 0.763 with tor 25003 diotk gain ruse p Sp 2508.8 vc 250 hzem 10.680 171 114280 rff 14280 rff 14280 rff 14280 rff 1.000 di ph	np 131010 sw 37735.8 fb not used bs 32 ss 1 tpwr 58 pw 6.9	dseq dres 1 homo temp 12(PROCESSING b 0. wtfile proc fn 1310 math werr wexp	000 1.0 0.0 .30 ft 072 f			NMe		
	tof 631.4 nt 25000 ct 16192 alock n gain not used FLAGS il n n in n n dp y hs nn DISPLAY sp -2508.8 wp 30170.4 vs 537 sc 0 wc 250 hzmm 120.68 is 500.00 rfl 11428.0 rfp 3837.7 th 2000	wnt		<i>m</i> t	H			
			1					

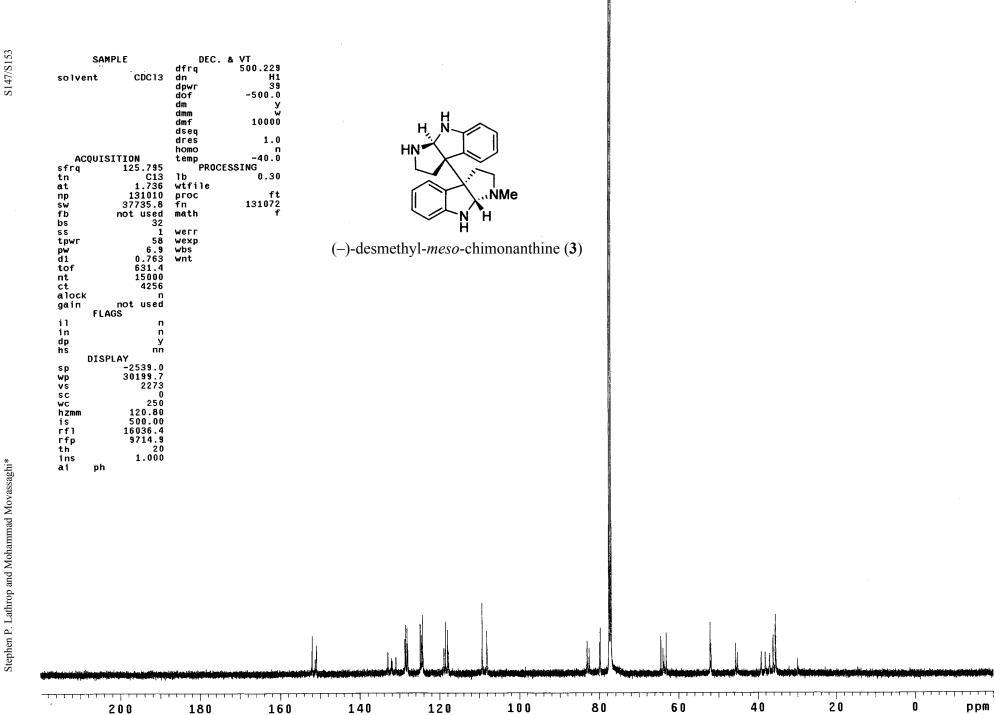

fb not used bs 64 ss 1 tpwr 58 pw 6.9 d1 0.763	DEC. & VT dfrq 500.230 dn H1 dpwr 39 dof -500.0 dm y dmm w dmf 10000 dseq dres 1.0 homo n PROCESSING 1b 0.30 wtfile proc ft fn 131072 math f werr wexp wbs wnt	Men H H NW meso-calyca		

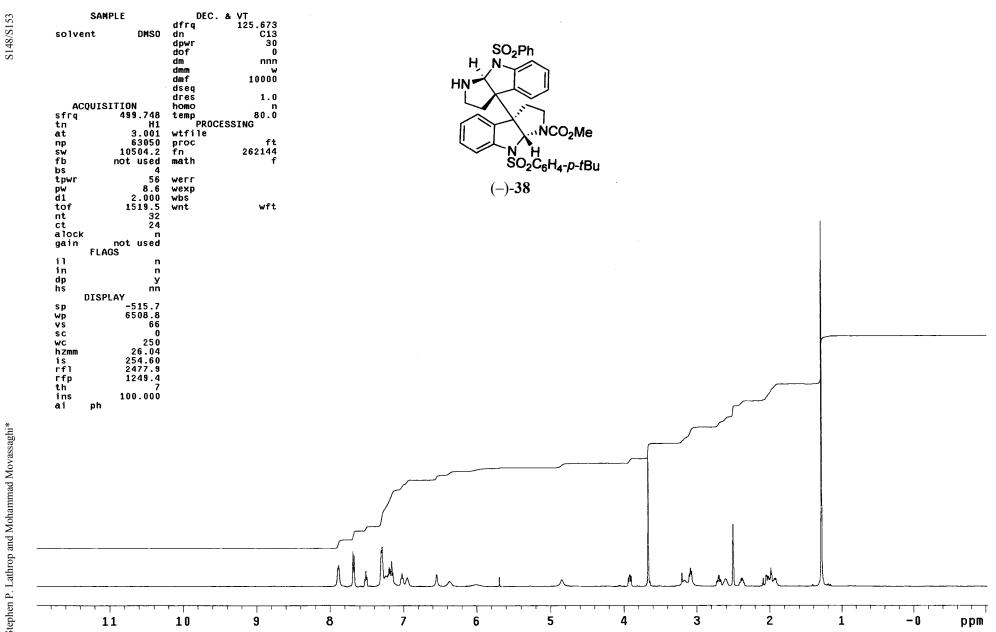
tn at np 1: sw 37 fb not bs ss tpwr d1 tof nt ct alock	5.795 temp C13 PROCESS: 1.736 lb 31010 wtfile 735.8 proc used fn 32 math 1 59 werr 6.9 werr 6.9 werp 0.763 wbs 0.763 wbs 0.31.4 wnt 00000 24608 n used n	W 10700 1.0 75.0 ING 0.30 131072 f		H 7		
dp hs DISPLAY \$p -2! wp 300 vs sc sc kzm 12 is 50 rfl 210 rfp 145 th	n y nn 223.3 749 0 250 20.89 00.00 008.2 129.1 20 000					

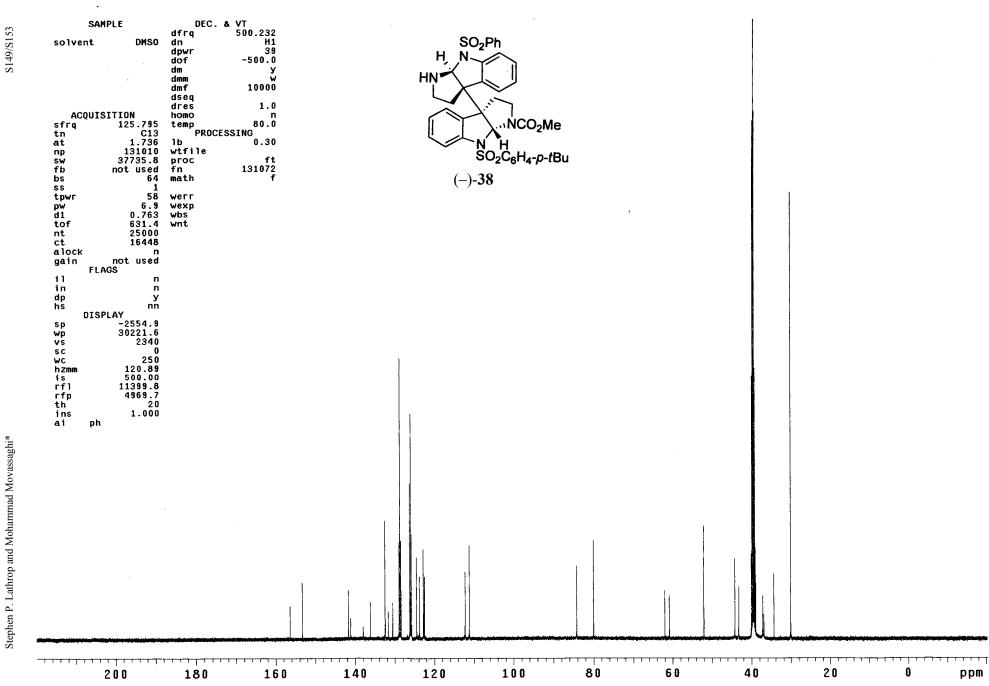

S142/S153

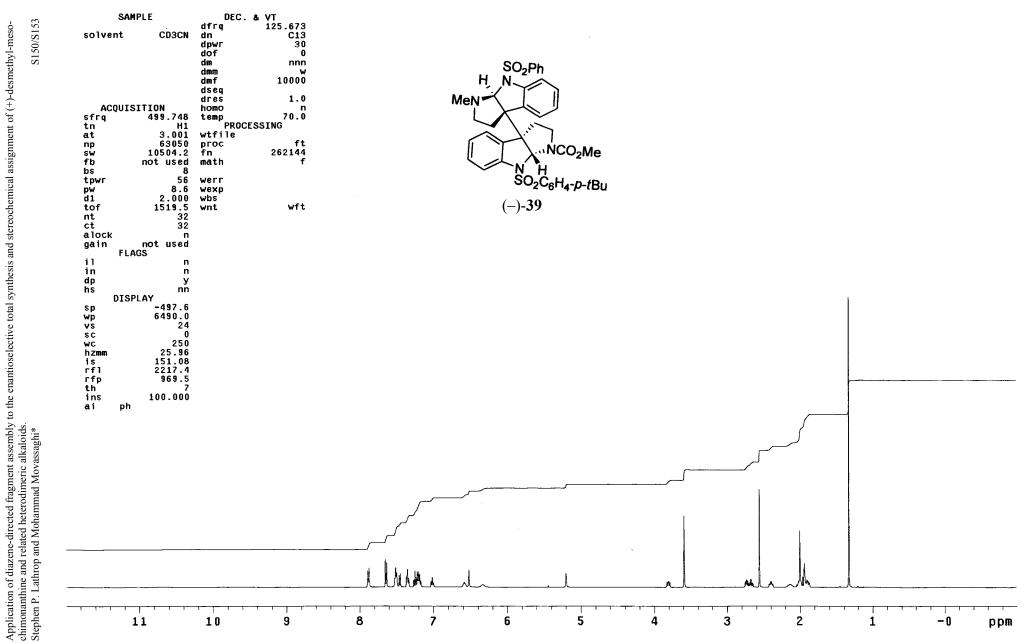

S143/S153

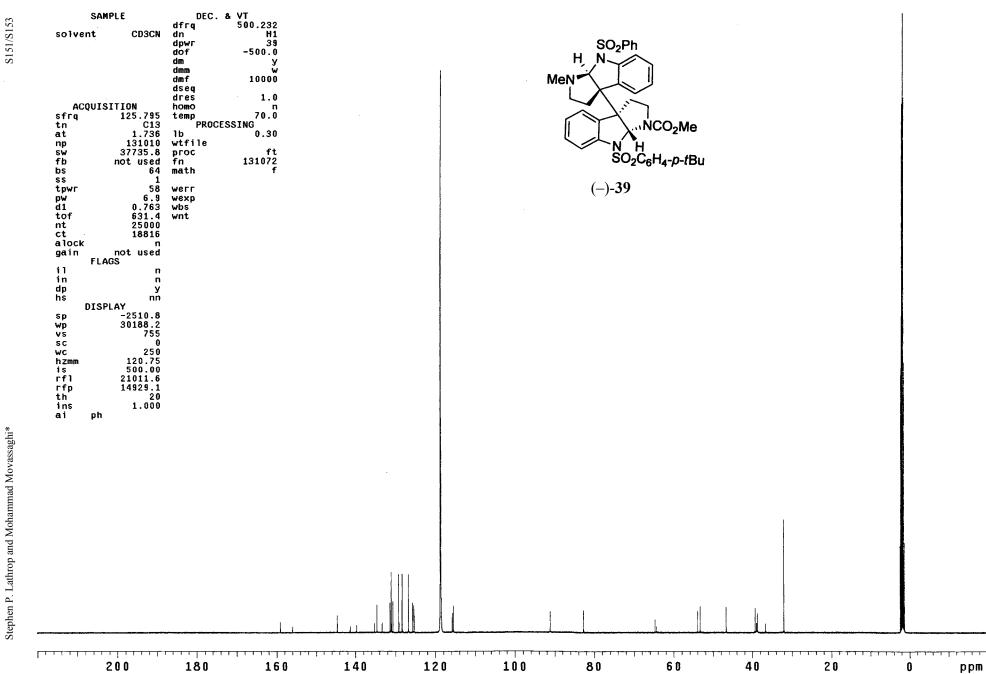
SAMPLE solvent DMS	dfrq 0 dn dpwr dof dm dmm dmf dseq	. & VT 125.673 30 0 nnn W 10000	HN
tpwr 5 pw 8. d1 2.00 tof 1519. nt 3 ct 2 alock 2 gain not use FLAGS 1 in 0 dp -497. wp 6493. vs 6 sc 25 hzmm 25.9 is 107.8 rf1 2478. rfp 1249. th 1249.	1 wtfile 1 proc 0 fn 2 math d werr 6 wexp 6 wbs 0 wnt 5 2 4 n 9 7 0 0 7 1 7 4 7 4 7	1.0 n 100.0 CESSING ft 262144 f wft	(-)-desmethyl- <i>meso</i> -chimonanthine (3)
ins 100.00 ai ph			

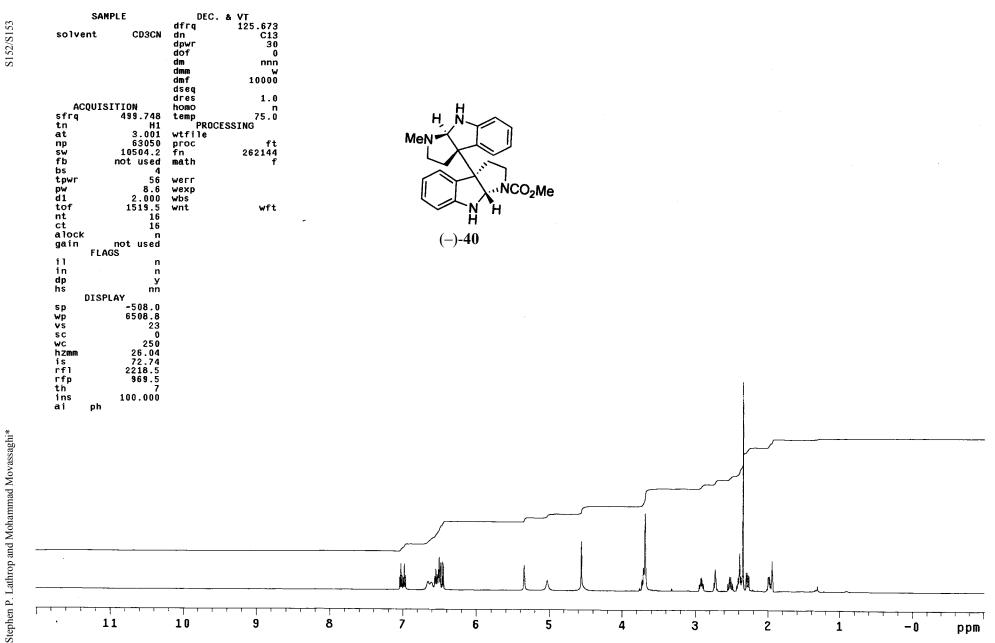

Application of diazene-directed fragment assembly to the enantioselective total synthesis and stereochemical assignment of (+)-desmethyl-meso-chimonanthine and related heterodimeric alkaloids.

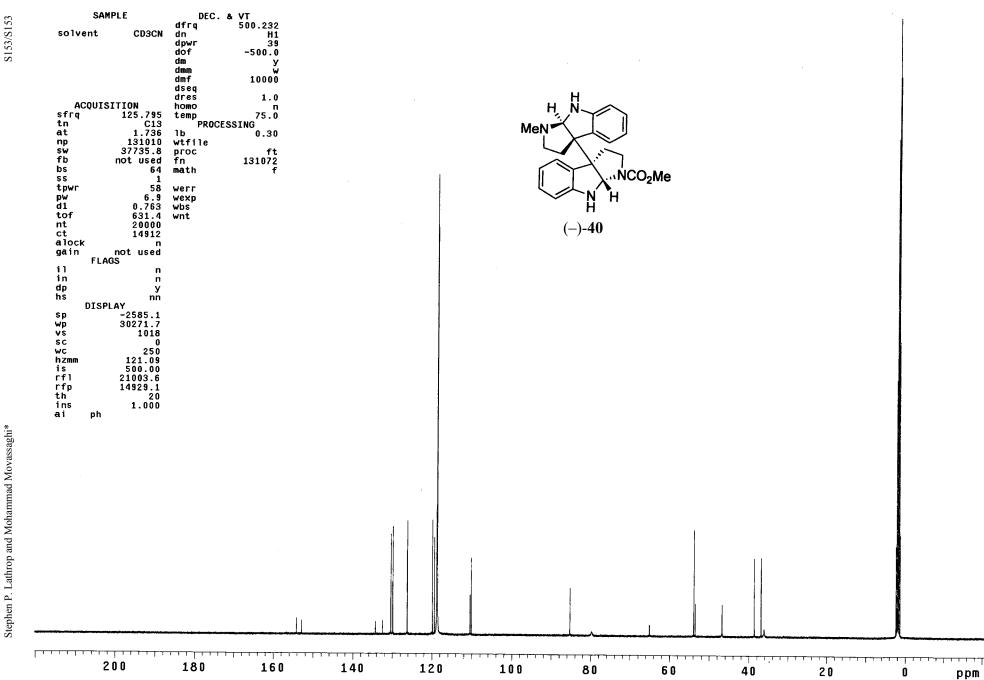



S145/S153




-





.

.