Geometric and Electronic Structure of the Mn(IV)Fe(III) Cofactor in Class Ic Ribonucleotide Reductase: Correlations to the Class Ia Binuclear Non-Heme Iron Enzymes

Yeonju Kwak¹, Wei Jiang^{2,3}, Laura M.K. Dassama², Kiyoung Park¹, Caleb B. Bell, III.¹, Lei V. Liu¹, Shaun D. Wong¹, Makina Saito⁴, Yasuhiro Kobayashi⁴, Shinji Kitao⁴, Makoto Seto⁴, Yoshitaka Yoda⁵, E. Ercan Alp⁶, Jiyong Zhao⁶, J Martin Bollinger, Jr.^{*,2,3}, Carsten Krebs^{*,2,3}, and Edward I. Solomon^{*,1}

²Department of Biochemistry and Molecular Biology and ³Chemistry, The Pennsylvania State University,

University Park, Pennsylvania 16802, United States

¹Department of Chemistry, Stanford University, Stanford, California 94305, United States

⁴Research Reactor Institute, Kyoto University, Kumatori-Cho, Osaka 590-0494, Japan

⁵Spring 8/JASRI, 1-1-1 Kouto, Mikazuki-Cho, Sayo-gun, Hyogo 679-5198, Japan

⁶Advanced Photon Source, Argonne National Laboratory, Illinois 60439, United States

Figure S1. 4.2-K/0-mT Mössbauer spectrum of a sample containing the Mn^{IV}/Fe^{III} cofactor of *Ct* RNR-R2 (vertical bars).

The sample was prepared as previously described (ref.22) to maximize the yield of the cofactor and minimize the formation of catalytically inactive $Fe_2^{III/III}$ clusters. The solid red and blue spectra are simulations of the $Fe_2^{III/III}$ and Mn^{IV}/Fe^{III} components, respectively, using parameters provided in Table S 2.1. The solid black line is the sum of the red and blue spectra. The ratio of Mn^{IV}/Fe^{III} to $Fe_2^{III/III}$ is ~ 6.5:1, a yield comparable to the best preparations of the Mn^{IV}/Fe^{III} cofactor *in vitro*.

Parameter	Mn ^{IV} /Fe ^{III}	Fe ₂ ^{III/III}
δ (mm/s)	0.52	0.50
$\Delta E_Q (mm/s)$	1.35	0.80
Rel. Area (%)	85	15

Table S1. Mössbauer parameters used to simulate spectra in Figure S1.

Figure S2. 4.2-K/53-mT Mössbauer spectrum of the Mn/Fe-Ct RNR-R2 used in this study.

The spectrum (black vertical bars), acquired over a wider range of Doppler velocities reveals a minor contribution from the Mn^{III}/Fe^{III} cluster. This S=1/2 cluster exhibits a broad, magnetically split spectrum (see absorption intensities at ~ +4 and -4 mm/s) with the addition of a small externally applied magnetic field. Based on the experimental "reference" spectrum (solid green line) of a sample prepared to contain only the Mn^{III}/Fe^{III} cluster, the contribution of this component to the spectrum is estimated to be 7-10%.

Figure S3. Simulated NRVS spectra for different structures of Mn^{IV}Fe^{III} intermediate. Core structures are shown as an inset for each spectrum.

Frequency / cm⁻¹

Figure S4. MCD spectra on Mn^{IV}Fe^{III} intermediate with different temperatures and fields

Figure S5. Room temperature /Low temperature absorption (upper) and CD (lower) spectra of the $Mn^{IV}Fe^{III}$ intermediate

Figure S6. MCD spectra of $Fe^{III}Fe^{III}$ *Ct* RNR control

Figure S7. (a) crystal and computational structure of $[Mn^{IV}(\mu-O)_2Mn^{III} (OAc)(Tpen)]^{3+}$ model complex (MnTpen) used; (b) ligand to metal CT to Mn^{IV} site comparison between experimental observation and TD DFT calculation; and (c) spectroscopic and experimental d-d transitions for Mn^{III} and Mn^{IV} . (Adapted and modified from reference 53)

Figure S8-1. Structure of (a) bis- μ -oxo Fe^{III}Fe^{III} model complex ([Fe₂(μ -O)₂(6TLA)₂]²⁻); and (b) μ -oxo, μ -hydroxo Fe^{III}Fe^{III} model complex ([Fe₂(μ -O)(μ -OH)(6TLA)₂]²⁻). Adapted from ref 54-56

(a)

(b)

Figure S8-2. (a) experimental Abs data on Fe^{III} - $(\mu$ -O)₂- Fe^{III} & Fe^{III} - $(\mu$ -O, μ -OH)- Fe^{III} model complex (from S8-1); (b) TD DFT of Fe^{III} - $(\mu$ -O)₂- Fe^{III} & Fe^{III} - $(\mu$ -O, μ -OH)- Fe^{III} model complex; (c) comparison between experimental Abs and calculated TD DFT energy. Adapted and modified from reference 56.

Figure S9. Gaussian broadened TD DFT calculation for μ -oxo to Fe^{III} CT transitions (first 40 transitions) of (a) GaFe structure with terminal OH on Ga^{III}, (b) GaFe structure with terminal water on Ga^{III}. Both have μ -oxo, μ -hydroxo bridges.

S10. Structure used for Mn^{IV}Fe^{III} TD DFT computation

С	5.31358800	-2.04215900	-2.16784900
Ċ	4 55443500	-2 91404800	-1 15479900
C	2.00024000	2.02004500	1.134/9900
C	3.89034900	-2.03094500	-0.08329900
0	2.89661600	-1.34280500	-0.56438700
0	4.37412300	-1.96664100	1.04699500
С	2.62946400	1.48694900	-4.15691400
С	1.23977500	1.86282800	-3.62323700
C	0 70435700	1 08721300	-2 37208700
0	1 7000100	1.00721300	2.57200700
0	1.70602100	0.75383300	-1.55705500
0	-0.44753200	0.86644200	-2.26018500
С	5.01161400	1.06778900	0.49334800
С	3.89663000	1.49153900	1.39547100
Ν	2.58231300	1.05008300	1.29275400
С	3,98191900	2.33075400	2.47720200
C	1 90612500	1 59252700	2 29086300
NT	2 71206000	2 20146500	2.23000300
IN C	2.71290900	2.30140300	3.03307400
C	-4.4264/400	-3.64908400	-0.23950900
С	-3.25813600	-3.04265900	-1.03142500
С	-3.59261600	-1.67059400	-1.64071500
0	-4.74407200	-1.43616500	-2.00808600
0	-2.59964300	-0.82969900	-1.83065500
C	-2 95650900	-0 30263000	3 94052800
C	-3 20304800	-1 49462700	3 03672300
C	-3.29304000	1 5262700	1 00212200
C	-2.26/38/00	-1.53627000	1.90312200
0	-1.28300200	-2.27758400	2.01007300
0	-2.53021100	-0.70865200	0.94324000
С	-5.05239200	1.41178800	-0.43641500
С	-3.83771400	2.28999600	-0.40341400
Ν	-2.52325900	1.82899300	-0.41185300
С	-3 80926500	3 65955600	-0 31655100
C	-1 73910200	2 88630200	-0 32155800
N	-1.73910200	2.00039200	-0.52155000
IN	-2.4/238100	4.02297600	-0.26346500
Н	4.62582100	-1.33680600	-2.64483600
Н	6.10159300	-1.46383200	-1.66950700
Н	5.78804600	-2.64961900	-2.94982600
Н	5.23803600	-3.60950400	-0.65633800
Н	3.78407500	-3.49427900	-1.67708700
н	2 90009700	2 11315400	-5 01610200
и Ц	3 38597100	1 60940500	-3 37712800
11	0.50557100 0.55557100	1.00040000	1 470(1400
Н	2.65659300	0.43963000	-4.4/861400
Н	1.22645000	2.93020100	-3.35464800
Н	0.46785600	1.72857600	-4.38771400
Н	5.28903800	0.03372900	0.71883700
Н	4.69689700	1.10699900	-0.55437600
Н	5.87901300	1.72262200	0.63203500
н	4 81729100	2 87301800	2 89274100
ц Ц	0 05001000	1 12212000	2 15601500
11 11	0.00000000	1.42243900	2.40091000
н	2.43/9/300	2.00404900	3.00200900
Н	-5.32815900	-3.68032100	-0.85837800
Н	-4.18708600	-4.66437100	0.09985100
Н	-4.65080800	-3.04061400	0.64350500

(a) $Mn^{IV}Ga^{III}$ active site with terminal OH on Mn^{IV} , μ -O, μ -OH bridges

Н	-3.01017700	-3.70024000	-1.87936500
Н	-2.35524100	-2.98079500	-0.41988800
Н	-3.65128500	-0.22504000	4.78727100
Н	-3.00325500	0.63057100	3.36931100
Н	-1.94152600	-0.40460100	4.34190500
Н	-4.30375800	-1.38236700	2.62860200
Н	-3.23722700	-2.43122000	3.60056000
Н	-5.95783200	2.02711500	-0.47731900
Н	-5.03243700	0.72322400	-1.28879600
Н	-5.08971200	0.78502900	0.46185500
Н	-4.60556300	4.38753100	-0.28376000
Н	-0.66254100	2.83150900	-0.26351100
Н	-2.10476900	4.95979700	-0.20521700
0	-0.02534000	0.68859000	0.54057000
0	1.29727800	-1.31761400	1.66834100
Н	0.38103300	-1.68062800	1.73148800
0	0.13442200	-1.45539300	-0.72018800
Н	0.45451900	-1.62822500	-1.61945000
Mn	1.39500600	-0.33395500	0.19987300
Ga	-1.38054800	-0.08476900	-0.55128700

(b) $Ga^{III}Fe^{III}$ active site with terminal OH on Ga^{III} , μ -O, μ -OH bridges

С	5.31358400	-2.04215900	-2.16784600
С	4.58079300	-2.94650500	-1.14094900
С	3.97375200	-2.06375100	-0.02838500
0	2.95652500	-1.31646800	-0.48662500
0	4.50590500	-2.01136700	1.12620600
С	2.62946600	1.48694800	-4.15691600
С	1.41952900	2.13252500	-3.43099600
С	0.90882100	1.30599500	-2.22875300
0	1.81768100	0.90873700	-1.37113400
0	-0.37494000	1.08793000	-2.15700500
С	5.01161500	1.06779100	0.49334700
С	3.94823100	1.44013900	1.48675900
Ν	2.61385300	0.97447300	1.44761200
С	4.08621300	2.24332000	2.62274900
С	1.97157800	1.46623700	2.52599600
Ν	2.83353700	2.24391400	3.26862700
С	-4.42647400	-3.64908400	-0.23950900
С	-3.31464200	-3.10758300	-1.17562200
С	-3.64163500	-1.70040500	-1.72827300
0	-4.82997600	-1.40614200	-2.09623500
0	-2.61201300	-0.84097200	-1.83011100
С	-2.95651000	-0.30263200	3.94052400
С	-3.20575700	-1.59255000	3.11784000
С	-2.14361500	-1.62939400	2.00921900
0	-1.04872200	-2.26830600	2.22684300
0	-2.44015500	-0.90972000	0.94067700
С	-5.05239200	1.41178800	-0.43641100
С	-3.86166800	2.31716200	-0.27416300
Ν	-2.51452700	1.87040000	-0.24483900
С	-3.86021400	3.70417300	-0.09039000
С	-1.73492400	2.95086000	-0.04111000
Ν	-2.51155400	4.08980800	0.05539300
Н	4.59955700	-1.32270900	-2.60545800
Н	6.12598600	-1.47291900	-1.67658900

Н	5.76145800	-2.64127300	-2.98543000
Н	5.28056200	-3.66509900	-0.67677100
Н	3.77188200	-3.50557800	-1.64833900
Н	3.00734500	2.14980600	-4.95947700
Н	3.44171800	1.29452400	-3.43470700
Н	2.34301300	0.52050500	-4.61169500
Н	1.71764600	3.12875400	-3.04192800
Н	0.56843300	2.27843600	-4.11929300
Н	5.36394300	0.04259800	0.70688000
Н	4.59907500	1.07615600	-0.53026200
Н	5.86210400	1.77108400	0.55639000
Н	4.95054500	2.77189300	3.01474000
Н	0.92836400	1.26420200	2.74973400
Н	2.60173200	2.71523200	4.14053800
Н	-5.40567100	-3.60417900	-0.74957200
Н	-4.21692800	-4.69480500	0.05868600
Н	-4.48608100	-3.03125800	0.67408400
Н	-3.20612200	-3.78171900	-2.05233800
Н	-2.33974600	-3.07055800	-0.66081300
Н	-3.69465400	-0.19628300	4.76003700
Н	-3.02987700	0.58325000	3.28404600
Н	-1.94462500	-0.32335300	4.38616300
Н	-4.21604000	-1.57031700	2.67089500
Н	-3.10028500	-2.48888800	3.75459200
Н	-5.97996700	2.00563000	-0.52367300
Н	-4.94933100	0.75423800	-1.32094100
Н	-5.14045300	0.73388900	0.43330100
Н	-4.68033200	4.41621400	-0.05272900
Н	-0.65264800	2.90752200	0.05255000
Н	-2.16537400	5.03731200	0.19444600
0	0.00649000	0.65332500	0.65135000
0	1.36458400	-1.40836900	1.70866500
Н	0.41556700	-1.79989900	1.81914600
0	0.20986300	-1.33588200	-0.73450100
Н	0.61916600	-1.81307200	-1.49665600
Ga	1.47854000	-0.31284500	0.30360400
Fe	-1.37175800	-0.00328000	-0.53632500

(c) $Mn^{IV}Ga^{III}$ active site with terminal H₂O on Mn^{IV} , μ -O, μ -OH bridges

C C C C O C C	5.47031400 4.58487300 3.61267100 3.09577000 3.34262200 2.73487200 1.31283900	-2.08425600 -2.90779000 -2.13500600 -1.05460400 -2.60104100 1.16519200 1.59941500	-1.75503600 -0.80969400 0.08676600 -0.41197400 1.21008500 -4.11592900 -3.73850200
C O	0.82251800	1.03187000	-2.41157500 -1.52849100
0	-0.39569000	0.78931100	-2.26363900
C N	3.91289600	1.86726200	1.32542600
С	3.97134800	2.85661300	2.27195400
C N C	1.87039000 2.67387400 -4.25734500	2.21792100 3.06122800 -3.73184000	2.02689800 2.70322600 0.20147600

С	-3.07810300	-3.16973700	-0.60748000
С	-3.42043300	-1.87312900	-1.35082700
0	-4.56387300	-1.65854700	-1.72889700
0	-2.40947600	-1.05823000	-1.63998800
С	-2.92717000	0.04465400	4.04869200
C	-3.03481500	-1.27705300	3.27524000
C	-1 98819100	-1 26087800	2 17289800
0	-0 89820900	-1 82568200	2 37112500
0	-2 33523300	-0 58014600	1 13100500
C	-1 99737600	1 26823800	-0 50177600
C	-4.99/3/000	2 10201000	-0.50177000
	-3.62404700	2.19301900	-0.57929000
IN C	-2.40100000	1.00022100	-0.55569500
C	-3.8660/300	3.56097800	-0.6/430400
С	-1./5/4//00	2.91597700	-0.59545600
Ν	-2.55405300	4.00042600	-0.68164900
Н	4.86213700	-1.44728200	-2.40409500
Н	6.15552000	-1.43614200	-1.19638700
Н	6.07453700	-2.74706000	-2.38381800
Н	5.18710300	-3.54152400	-0.15146900
Н	3.96036500	-3.59252800	-1.40253000
Н	3.02015100	1.59902000	-5.08049600
Н	3.45675200	1.48663500	-3.36129900
Н	2.80490600	0.07557300	-4.20165800
Н	1.26467300	2.69507400	-3.65641800
Н	0.58367800	1.31443000	-4.50278400
Н	5.27569300	0.25454300	0.94656400
Н	4.83571700	1.17885100	-0.48519200
н	5 95353300	1 87759400	0 71287400
н	4 80723600	3 41444700	2 66430600
и Ц	0 80169500	2 13353300	2 14451300
и П	2 3731/000	3 71234500	3 11315700
п п	-5 13201000	-3 86159300	_0 44148100
11 11	-3.00744000	-3.00139300	-0.44140100
п	-3.99744000	-4.09/00400	1 00051000
н	-4.53895200	-3.04662800	1.00851600
H	-2.//961200	-3.89584600	-1.3/883100
Н	-2.195/1/00	-3.01985000	0.02039300
H	-3.65354900	0.08404700	4.86858900
Н	-3.11378400	0.89486000	3.38441100
Н	-1.92571200	0.15772700	4.47967600
Н	-4.03459400	-1.37767200	2.84116200
Н	-2.84272300	-2.12680200	3.93604700
Н	-5.92497300	1.84033600	-0.59928200
Н	-4.95967400	0.49593500	-1.27756700
Н	-5.00932600	0.74325100	0.46025100
Н	-4.70196300	4.24036300	-0.73340900
Н	-0.68069500	2.94470600	-0.55808300
Н	-2.24223900	4.95714400	-0.75518500
0	0.04687200	0.87195300	0.52420900
0	1.46964100	-0.95007000	1.85869500
Н	0.53626700	-1.33444500	1.99575500
Н	2.14803900	-1.70449100	1.77023300
0	0.33045500	-1.30428400	-0.54601100
Н	0.60089400	-1.64914700	-1.41224700
Mn	1 49761000	-0 00753000	0 16452100
Ga	-1 36181200	-0 02743800	-0 47108200
Ju	T. 00101200	0.02/10000	0.1/100200

(d) $Ga^{III}Fe^{III}$ active site with terminal H₂O on Ga^{III} , μ -O, μ -OH bridges

С	5.47031200	-2.08425600	-1.75503400
С	4.76764300	-2.95120200	-0.68610800
С	3.74820700	-2.21300200	0.18882700
0	3 15672900	-1 14142300	-0 33519000
0	3 47597500	-2 67303500	1 36896800
C	2 72497400	1 16510100	_1 11502000
C	2.73407400	1.16519100	-4.11595000
C	1.50307000	1.893/9/00	-3.511/1300
С	0.9615/600	1.21511800	-2.24/0/200
0	1.87614100	0.94204400	-1.32283700
0	-0.30157400	0.95879400	-2.14737500
С	5.05711700	1.26408700	0.58223400
С	3.96481800	1.72394100	1.49996600
Ν	2.62153800	1.28745100	1.42498800
С	4.06554700	2.61078100	2.57401000
С	1 93747700	1 88347600	2 42830300
N	2 78393700	2 69413700	3 14600700
C	-4 25734600	-2 72104100	0 20147600
C	2 14952600	-3.73104100	0.2014/000
C	-3.14853600	-3.2/356/00	-0.78401000
С	-3.48630/00	-1.93414/00	-1.46300100
0	-4.64983300	-1.66723600	-1.88699000
0	-2.45390900	-1.05418700	-1.61312400
С	-2.92717000	0.04465200	4.04868900
С	-3.00497500	-1.33861700	3.35027900
С	-1.89873300	-1.36976100	2.29922700
0	-0.73632400	-1.80310600	2.65305200
0	-2.21559000	-0.86777900	1.12150400
С	-4 99737300	1 26823900	-0 50177300
C	-3 83161500	2 21228900	-0.40063800
NT	2 46600500	1 02100200	0.20015000
IN C	-2.46600300	1.02109200	-0.32213300
C	-3.8/95/200	3.60720200	-0.33460900
C	-1.72979100	2.94941200	-0.20518500
Ν	-2.55119800	4.05469800	-0.21218000
Η	4.72601000	-1.57179700	-2.38766800
Η	6.10439400	-1.30943100	-1.28628600
Н	6.11485500	-2.71182400	-2.39790100
Н	5.49216300	-3.43480200	-0.00623800
Н	4.21060600	-3.77567600	-1.17892600
Н	3,12296200	1.72864000	-4.98408100
н	3 53480400	1 07159600	-3 36237600
н	2 46312800	0 15046300	-4 45944700
и Ц	1 79129100	2 92838200	-3 23/78300
11	1.79129100	1 0550200	-3.23470300
п	0.07420200	1.95595700	-4.23740400
H	5.42143700	0.2619/000	0.8/342/00
Н	4.68622600	1.18534800	-0.45309900
Η	5.90907800	1.96507900	0.61478800
Η	4.91988100	3.15880000	2.96018400
Η	0.88140700	1.72490300	2.62265900
Н	2.52192700	3.24793100	3.96026400
Н	-5.23591400	-3.75689500	-0.30878300
Н	-4.03223600	-4.74021200	0.59559900
H	-4.33098200	-3.03287500	1.05328100
н	-3 04023700	-4 02506900	-1 59382300
ц	-2 17150000	-3 18505500	
11	2.1/1JUJUU	0 12051500	1 02000300
н	-3./1310900	0.13031300	4.02090300
H	-3.06488/00	0.85/93900	3.31349300
H	-1.94566300	0.1/424500	4.54018400
Η	-3.98810800	-1.46833800	2.86649800

Н	-2.83891500	-2.15070900	4.07845100
Н	-5.93669700	1.83469800	-0.62222800
Н	-4.88827200	0.56588300	-1.34859400
Н	-5.07681100	0.64548200	0.40888100
Н	-4.72651800	4.28658200	-0.36541800
Н	-0.64863900	2.97126500	-0.10662700
Н	-2.24616700	5.02511500	-0.15274900
0	0.08779800	0.75605900	0.69243700
0	1.52690800	-1.16108400	1.89427400
Н	0.54363900	-1.48224500	2.16373800
Н	2.29449800	-1.88150900	1.86124100
0	0.37811600	-1.28081900	-0.58459400
Н	0.73668000	-1.76840900	-1.36703300
Ga	1.57405900	-0.08389600	0.31419700
Fe	-1.33267866	-0.02029254	-0.46333934

Full reference on Gaussian 09 Software package

Gaussian 09, Revision D.01, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, Jr., J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian, Inc., Wallingford CT, 2009.