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Membrane Tethered Delta Activates Notch and Reveals a Role for
Spatio-Mechanical Regulation of the Signaling Pathway
Yoshie Narui and Khalid Salaita*
Department of Chemistry, Emory University, Atlanta, Georgia
ABSTRACT Short-range Notch receptor signaling is necessary for coordinating developmental activities in metazoa. To
investigate this juxtacrine pathway, we mimic receptor-ligand binding within the cell-cell junction by engaging Notch1-eGFP
expressing cells to a supported lipid membrane displaying Delta-like protein 4 (DLL4). DLL4-Notch1 binding, oligomerization,
and transport were observed in real time, and the molecular density and stoichiometry of the complexes were determined using
quantitative fluorescence imaging. A Notch transcriptional reporter readout was used to quantify how ligand lateral mobility,
orientation, and density modulate receptor activation levels. These experiments demonstrate that limiting the lateral mobility
of DLL4 can enhance Notch activation by 2.6-fold, thus supporting the existence of a spatio-mechanical mechanism of signal
regulation.
INTRODUCTION
Cell-cell communication is essential for the development,
proliferation, and survival of multicellular organisms. To
coordinate complex events within multicellular organisms,
certain signals need to be short-ranged and confined to a
cell’s nearest neighbors. One general strategy for short-
range cellular communication employs membrane-anchored
ligands and receptors such that direct physical contact
between adjacent cells is required for pathway activation.
This type of interaction is commonly found in cell-adhesion
junctions, neuronal and immunological synapses, and dur-
ing cellular patterning and development (1). Despite the
importance of these juxtacrine interactions, the role of
receptor oligomerization, spatial organization, membrane
topography, and physical forces in signal modulation
remains poorly understood. The fundamental challenge per-
tains to the lack of methods to characterize ligand-receptor
interactions in the confined and dynamic two-dimensional
environment of the cell-cell junction. Therefore, new exper-
imental strategies are needed to better understand the role of
chemo-mechanical couplings in short-range, juxtacrine
signaling pathways.

One important example of short-range cellular signaling
is the Notch pathway, which is universally conserved and
critical to development and differentiation in metazoa.
The Notch receptors are a family of heterodimeric mem-
brane proteins that bind directly to Delta/Serrate/LAG-2
ligand molecules expressed on the surface of an apposing
cell (2). Ligand-induced activation of Notch receptors is
characterized by a series of regulated intramembrane prote-
olysis events. The key proteolysis step in activation of the
signaling pathway is cleavage of Notch at site 2 (S2) by a
disintegrin and metalloprotease (ADAM) that results in
Submitted June 26, 2013, and accepted for publication November 4, 2013.

*Correspondence: k.salaita@emory.edu

Editor: Paul Wiseman.

� 2013 by the Biophysical Society

0006-3495/13/12/2655/11 $2.00
shedding of the Notch extracellular domain (NECD).
Following S2 cleavage, the Notch intracellular domain
(NICD) is released from the membrane by g-secretase pro-
teolysis at site 3 (S3), which is located within the trans-
membrane domain of Notch. The NICD translocates to the
nucleus where it functions as a transcription factor and
upregulates gene expression of targets in the Hes and Hey
families.

NMR and x-ray crystallography studies have revealed
that a large conformational change is required to expose
S2 for attack by ADAM (3,4). The ligand binding domain
is nearly 1000 amino acid residues away from the cleavage
site, and thus a mechanical force model has been proposed
as a mechanism for this long-range conformational change
(5–8). This mechanotransduction model suggests that the
formation of ligand-receptor complexes is coupled with
endocytosis to generate mechanical tension that opens up
the S2 site and renders it susceptible to proteolysis. This
model is supported by evidence that the receptor cannot
be activated with soluble ligand molecules and that endocy-
tosis is required for activation in both Drosophila and
mammalian cells (6,7,9–12). Interestingly, one recent study
found that Notch activation requires <12 pN or 0 pN of
mechanical tension, but the direct observation of force
exerted by a cell has yet to be observed (13).

In addition to the mechanical forces applied by cells,
altering the physical properties of ligand molecules may
significantly influence signaling. For example, the activity
of chemically identical ligand molecules can be modulated
by adjusting factors such as density, spatial organization,
and lateral mobility within the membrane environ-
ment. This effect has been observed in a wide variety of
signaling pathways involving immunorecognition receptors,
E-cadherins, and receptor tyrosine kinases (14–17).

Current strategies for studying Delta-Notch interactions
have been unable to distinguish a role for ligand density,
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diffusion, and oligomerization in activation of the Notch
receptor, as summarized in Fig. S1 in the Supporting
Material. Herein, we use a supported lipid membrane
functionalized with Delta-like protein 4 (DLL4) to observe
ligand-induced activation of Notch in live cells. The key
advantages of this method include: i), fine control and
quantification of ligand composition and concentration;
ii), ability to adjust the lateral mobility of ligand molecules
and the rate at which Notch and Delta molecules interact
and form clusters; iii), proper orientation of the Delta ligand
on the membrane through site-specific anchoring; iv),
absolute number density determination of ligand and re-
ceptor molecules and clusters, and their stoichiometry
within an intermembrane junction; and v), direct observa-
tion of dynamics of Delta-Notch complex formation and
internalization events in real time. By frustrating the lateral
motions of Notch receptors in the cell membrane, we
increase activation levels by 2.6-fold compared to chemi-
cally identical ligand that is laterally mobile. Finally, we
determine the stoichiometry of ligand:receptor binding to
be 1:1 when approximated to the nearest integer value, in
agreement with accepted structural models (3).
MATERIAL AND METHODS

Preparation of small unilamellar vesicles

Phospholipids (1,2-dioleoyl-sn-glycero-3-phosphocholine, DOPC; 1,2-

dioleoyl-sn-glycero-3-[(N-(5-amino-1-carboxypentyl)iminodiacetic acid)

succinyl], Ni2þ-NTA; 1-oleoyl-2-(6-[(7-nitro-2-1,3-benzoxadiazol-4-yl)

amino]hexanoyl)-sn-glycero-3-phosphocholine, NBD-PC; and 1,2-dio-

leoyl-sn-glycero-3-phosphoethanolamine-N-(cap biotinyl), biotin-DPPE)

were purchased from Avanti Polar Lipids (Alabaster, AL). Fluorescent lipid

(N-(6-tetramethylrhodaminethiocarbamoyl)-1,2-dihexadecanoyl-sn-glycero-

3-phosphoethanolamine), TRITC-DHPEwas from Life Technologies (Grand

Island, NY). To prepare small unilamellar vesicles, lipids were combined in

a round bottom flask at the desired molar ratio in chloroform and dried on a

rotary evaporator to form a lipid film. The film was dried under a stream of

N2 for 15 min and then resuspended with Nanopure water to achieve a lipid

concentration of 2 mg/ml. The lipid solution was frozen in a dry ice-acetone

bath and thawed in a 40�C water bath three times. The vesicles were passed

through a 100 nm polycarbonate filter (Whatman, Florham Park, NJ) 11

times using a high-pressure extruder (Northern Lipids, Burnaby, Canada)

warmed to 45�C.
Assembly of supported lipid membranes

To prepare the glass surface, a 96-well plate with #1.5 glass (Greiner

Bio-One, Monroe, NC) was etched with 1 M NaOH for 1 h and rinsed

with Nanopure water. A 0.5 mg/ml vesicle solution prepared in 10 mM

Tris, 150 mM NaCl, pH 8.0 (for Ni2þ-NTA), or phosphate buffered saline

(PBS) (for biotin-DPPE) and added to the glass for 20 min to form

the bilayer. The surfaces were blocked with 0.1 mg/ml bovine serum albu-

min for 30 min. For surfaces containing biotin-DPPE, the membranes were

incubated with 36 nM streptavidin (Rockland Immunochemicals, Gilberts-

ville, PA) for 45 min. After rinsing unbound streptavidin, the surface was

treated with 40 nM of c[RGDfK(biotin-PEG-PEG)] (Peptides International,

Louisville, KY) or 50 nM of DLL4-mCherry-biotin for 1 h. For attachment

of histidine-tagged proteins, the surface was treated with a 10 mM Tris,

100 mM Ni(II)Cl2, pH 8.0 solution for 5 min and then incubated overnight
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with either 66 nM of DLL4-568/647 or 60 nM DLL4-mCherry. Between

each step of the supported membrane assembly, the wells were rinsed

with 10 ml of 10 mM Tris, 300 mM NaCl, pH 8.0 (Ni2þ-NTA), or PBS
(biotin-DPPE).
Measurement of ligand diffusion coefficient

DLL4 diffusion coefficients were measured on a Nikon Ti Eclipse inverted

microscope (Nikon, Melville, NY) with a 100X N.A. 1.49 CFI Apo total

internal reflection fluorescence microscopy (TIRF) objective lens. A small

spot (d ~20 mm) of the membrane tethered DLL4 surface was photo-

bleached with a 561 nm laser until the fluorescence intensity neared dark

count levels. Fluorescence recovery was captured over 2 min with images

taken in 2 s intervals. A series of 10 prebleach images was also collected

to correct for the nonuniform illumination profile of the Intensilight excita-

tion source. Images were acquired with an EM-CCD camera iXon DU897

(Andor, Belfast, UK) through the use of Nikon’s NIS Elements and

analyzed using ImageJ (NIH, Bethesda, MD). For a detailed description

of the photobleaching analysis method, please see (18).
Live cell imaging

The stably transfected Notch1-eGFP C2C12 mouse (Mus musculus)

myoblast cell line (provided by G. Weinmaster, UCLA) was maintained

in Dulbecco’s modified Eagle medium supplemented with 10% fetal bovine

serum, 5% cosmic calf serum, 100 IU/ml penicillin, 100 mg/ml strepto-

mycin, and 2 mg/ml puromycin (Cellgro, Manassas, VA). Cells were

cultured overnight on a 10 cm dish and used for experiments the following

day. The cells were pipetted off of the surface using PBS and pelleted. The

functionalized lipid membrane surfaces were exchanged into warm cell

imaging media (Hanks’ balanced salts, 10 mM HEPES, pH 7.4). For quan-

titative fluorescence measurements, 25,000 cells were added into each well

and incubated for 30 min at 37�C and 5% CO2. Samples were imaged at

37�C for 30 min using a Nikon Ti Eclipse microscope equipped with an

Evolve EM CCD (Photometrics, Tucson, AZ) and objective warmer

(Warner, Hamden, CT). The excitation sources used included an Intensi-

light epifluorescence source and a TIRF launcher with two laser lines:

488 nm (10 mW) and 638 nm (20 mW). Images were collected using

NIS Elements software and analyzed using ImageJ. To observe live cell

dynamics, ~10,000 cells were added per membrane surface and individual

cells were tracked as they attached to the membrane.
Activation of Notch reporter cell line

Following assembly and imaging of the supported membrane or physi-

sorbed surfaces, Notch1 reporter cells were trypsinized from the cell culture

flask and 10,000 cells were distributed onto each surface. Activation of the

reporter was measured by epifluorescence microscopy 48 h after plating.

Cells were maintained in Alpha MEM Earle’s Salts (Irvine Scientific, Santa

Ana, CA) supplemented with 10% fetal bovine serum, 100 IU/ml of

penicillin, 100 mg/ml streptomycin, 400 mg/ml Zeocin, 10 mg/ml Blas-

ticidin, and 600 mg/ml Geneticin (Life Technologies, Grand Island, NY).
Calibration curves and determination of F factor

To calibrate the fluorescence intensity, TRITC-DHPE surfaces ranging

from 0 to 0.08 mol % and NBD-PC surfaces from 0 to 0.75 mol % were

imaged under the same conditions as the live cell images. The number of

fluorophore molecules per unit area was estimated from the footprint of

DOPC, which was determined to be 0.72 nm2 (19). To use the calibration

curves, the intensity of the ligand molecules was compared with the

lipid-fluorophore standards to obtain the F factor. The F factor is defined

as F ¼ IsolðligandÞ=IsolðlipidÞ, where Isol(ligand) and Isol(lipid) are the intensity
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of the ligand or lipid molecules in solution after being normalized for

concentration. These values were measured on the fluorescence microscope

by moving the focal plane (~100 mm) into the center of the sample. It is

important to note that for DLL4-568 unconjugated dye was thoroughly

removed from the sample by purification with Ni-NTA magnetic agarose

beads before measuring the F factor value.
Data analysis for stoichiometry measurements

To calculate the protein density, the fluorescence images were background

subtracted and then quantified by dividing each image by the F factor and

calibration curve slope. In the ligand channel, the unbound ligand was

subtracted as this represented ligand molecules that were present on the

membrane surface but not bound to receptor molecules. A correction factor

was introduced to account for the 28% of ligand binding to untagged Notch

homologs measured in the parental cell line, vide infra. The ligand image

was then divided by the receptor image to generate the ratio image

(DLL4:Notch1). A threshold was applied to the receptor image to deter-

mine areas where Notch receptors were located, and all other areas were

set to zero. This mask was applied to the ratio image and each nonzero pixel

value was binned into a histogram fit with a single Gaussian. The peak value

for each histogram, representing an individual cell, was determined and

averaged for a population of 40–80 cells.
RESULTS AND DISCUSSION

Delta-Notch binding on fluid membranes

Supported lipid membranes were prepared as illustrated in
Fig. 1 A, and two types of DLL4 ligand (residues Ser27-
Pro524) were tethered to the membrane surfaces, see the
Supporting Material. The first was a DLL4 tagged with
2–3 molecules of an amine-reactive Alexa Fluor 568 or
647 (DLL4-568 or DLL4-647), and the second was a
DLL4-mCherry fusion, where the fluorescent protein was
inserted at the C-terminus. It is important to note that the
polyhistidine tag is the final element of the C-terminus for
both proteins ensuring that the ligand is oriented in the
FIGURE 1 (A) Outline of the procedure used to fabricate supported lipid mem

domain of DLL4 is based upon the crystal structure of a fragment of human Jagg

repeats (PDB ID: 2VJ2). (B and C) Fluorescence recovery after photobleachi

fluorophore-labeled ligand. Scale bar ¼ 10 mm. (D) Line scans over the indica

binding between Notch1-eGFP and membrane tethered (E) DLL4-647 and (F

indicate a high degree of colocalization between Notch1 and DLL4. Scale bar
correct conformation for binding with Notch (2). Fluores-
cence recovery after photobleaching (FRAP) shows that
surface anchored DLL4 is fluid within the membrane
(Fig. 1, B–D). A small area of the bilayer was photobleached
(Fig. 1 B) and after ~5 min nonphotobleached ligand mole-
cules diffused into the area and restored fluorescence
intensity to prebleached levels (Fig. 1 C). A line scan over
the photobleached spot (Fig. 1 D) showed near complete
recovery of the ligand fluorescence and verified the fluid
nature of the supported lipid membrane tethered DLL4.

To demonstrate that the membrane-bound ligand mole-
cules function biologically, stably transfected Notch1-
eGFP C2C12 mouse myoblasts were incubated with the
membrane surfaces for 30 min to bind to DLL4. Live cell
images of single cells showed that both DLL4-647 and
DLL4-mCherry formed ligand-receptor complexes, Fig. 1,
E and F, respectively. These representative images show
near complete colocalization between the DLL4 and Notch1
fluorescence signal as seen in the overlay images, thus sug-
gesting that Notch1 is the primary binding partner for
DLL4. As a control, parental C2C12 cells were incubated
onto DLL4-mCherry functionalized bilayers and showed
low levels of ligand-receptor binding (Fig. S2). Based on
quantitative single cell intensity analysis, the amount of
parental cell binding to DLL4 ligand was calculated to be
28% of Notch1-eGFP binding. It is important to note that
this percentage reflects binding of all types of endogenous
Notch receptors in the parental cell line compared with
Notch1-eGFP and endogenous Notch binding in the trans-
fected cell line. To verify the specificity of the DLL4-
Notch1 interaction, Notch1-eGFP expressing cells were
incubated with soluble DLL4/Fc (185 nM) and then placed
onto the DLL4 membrane. In this case, binding of the
Notch1-eGFP expressing cells to the ligand-presenting
membrane was completely blocked after treatment with
branes containing tethered DLL4 molecules. Rendering of the extracellular

ed1, residues 187–335, which includes the DSL domain and the first 3 EGF

ng of the DLL4-647 bilayer surface verifying the lateral mobility of the

ted areas of images (B) and (C). Representative live cell images showing

) DLL4-mCherry following a 30 min incubation period. Overlay images

¼ 5 mm. To see this figure in color, go online.
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soluble ligand, as seen in Fig. S3. Note that the soluble
DLL4/Fc-treated cells very weakly attached to the mem-
brane; therefore, a small amount (0.1% by molar ratio) of
cyclic Arg-Gly-Asp-d-Phe-Lys (cRGDfK) was incorporated
into the bilayer to anchor cells and facilitate imaging (see
the Supporting Material). We found that cRGDfK-integrin
binding does not upregulate the downstream marker of
Notch activation, Hey1 (also known as Herp2), as deter-
mined by reverse transcription-polymerase chain reaction
(data not shown). Taken together, these data confirm that
Notch1-eGFP specifically binds to membrane bound DLL4.
Formation and dynamics of Delta-Notch clusters

In addition to DLL4-Notch1 binding, we observed the
formation of clusters of ligand-receptor complexes, in
agreement with previous studies (11,20). To determine if
clustering is Notch cell-driven, DLL4 supported lipid mem-
brane surfaces were incubated with recombinant human
Notch1 extracellular domain/Fc labeled with Alexa Fluor
647 (NECD-647), Fig. S4. This NECD construct is
composed of the first 13 EGF repeats of the Notch receptor
including the 11th and 12th repeats that are known to be
necessary and sufficient for ligand binding (21). NECD-
647 binds to both types of DLL4 surfaces; however, the
receptor had an enhanced affinity for DLL4-mCherry
compared to DLL4-568 as evidenced by a higher overall
fluorescence signal in the NECD channel. One potential
reason for reduced ligand potency of DLL4-568 arises as
a result of fluorophore conjugation to lysine residues
(K189, K190) found in the Notch receptor binding site
(3). This highlights an important difference between the
two ligands tested as DLL4-mCherry possesses a single
Biophysical Journal 105(12) 2655–2665
fluorescent protein located at the C-terminus of the ligand,
far from the Notch binding domain. Regardless of ligand
affinity, when receptor ectodomain fragments were exposed
to a DLL4 supported membrane no significant clustering of
the ligand was observed and the membrane remained fluid
as verified by FRAP (Fig. S4). These results illustrate that
the Notch expressing cell is sufficient in driving ligand-
induced receptor clustering.

To gain insight into the formation of ligand-receptor
clusters, the dynamics of individual Notch1-eGFP cells on
a DLL4 supported lipid membrane were observed using
time-lapse microscopy. Interestingly, these movies revealed
the depletion of Notch1-eGFP signal through two distinct
routes. The first type of receptor depletion was gradual
loss in Notch1-eGFP intensity on the timescale of minutes
(Fig. 2, A and B, Movie S1). These clusters consisted of
hundreds of receptor molecules, and the reduction in inten-
sity was distinct from eGFP photobleaching (Fig. S5). In
Fig. 2 A, two clusters labeled 1 and 2 were tracked for a total
of 60 min. The eGFP intensity of cluster 1 steadily
decreased over a 12 min interval, whereas the overall signal
never reached zero. Cluster 2 served as a control and showed
that the depletion of specific clusters was coordinated by
cellular inputs and not due to fluctuations in excitation
intensity or photobleaching. The second depletion behavior
was represented in Fig. 2, C and D, and Movie S2 where a
Notch1-eGFP cluster disappeared abruptly between two
frames (t ~ <1 min). In both types of Notch1-eGFP deple-
tion, loss of the ligand signal was correlated with eGFP loss.

Within each set of time-lapse images, the loss of fluores-
cence intensity in the total internal reflection fluorescence
microscopy (TIRFM) illumination field corresponds to
either cleavage of the NICD from the cell membrane,
FIGURE 2 Dynamics of Notch1-eGFP cluster

depletion. (A) Representative TIRFM image

of Notch1-eGFP taken from a time-lapse series

showing the depletion dynamics from a single

cell. Two clusters are highlighted: position 1 shows

attenuation of eGFP signal, whereas position 2

shows only small fluctuations in signal intensity.

(B) Signal quantification using line scans taken

through both clusters. Dashed line indicates inten-

sity profile at t ¼ 52 min. (C) Representative fluo-

rescence image showing sudden loss of an entire

Notch1-eGFP cluster and (D) line scans taken

through two clusters to highlight this event. Scale

bar ¼ 5 mm. To see this figure in color, go online.



FIGURE 3 Observation of DLL4-Notch1 complexes using alternating

epifluorescence-TIRFM. (A) Localization of the Notch1-eGFP at different

time points is monitored with both epifluorescence and TIRFM (green),

whereas DLL4 position is visualized in epifluorescence only (red). The

highlighted cluster remains in the epifluorescence channel, but is dimin-

ished in TIRFM, suggesting translocation away from the membrane. Scale

bar ¼ 10 mm. (B) Waterfall plots indicate the changes in fluorescence

intensity of the ligand-receptor complex (white arrow) as a function of

time for each channel. To see this figure in color, go online.
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activation of the Notch receptor, or internalization of the
receptor. It is important to state that the ligand is rarely
observed inside the cell, which suggests that the intact
ligand-bound receptor complex is not internalized. To see
if this coordinated signal loss is due to a mechanism inde-
pendent of receptor activation, we conducted a set of live
cell experiments with Notch1-eGFP cells that were DAPT
(N-[N-(3,5-difluorophenacetyl-L-alanyl)]-S-phenylglycine
t-butyl ester) treated. In one of these control cells, we
observed simultaneous loss of DLL4 and Notch1 signal,
which must be due to an internalization mechanism and
not cleavage at S3 (Fig. S6). However, it is still possible
that the receptor is internalized before being cleaved
from the membrane and progressing to the nucleus. There-
fore, the coordination between ligand and receptor deple-
tion suggests that we are viewing either S3 cleavage, an
intermediate regulatory step that takes place before S3 pro-
teolysis, or an alternate receptor internalization process.

Given that the NICD is a potent transcription factor that
translocates from the membrane to the nucleus, we
employed an approach developed by Toomre et al. (22) to
localize the z-position of the Notch1-eGFP through tandem
imaging with epifluorescence and TIRFM (23). By switch-
ing between these two excitation configurations, it was
possible to determine the lateral location of the clusters
and their proximity to the cell membrane (24). Live cell
imaging of a Notch1-eGFP expressing cell on a DLL4-
568 surface resulted in the formation of ligand-receptor
clusters as evidenced by colocalization of the ligand and
receptor signals (Fig. 3 A). After binding, one of the formed
clusters (arrowhead, Fig. 3 A) vanished from the TIRF chan-
nel at a rate that was faster than can be expected for photo-
bleaching (Fig. S5). There was also noticeable loss of the
DLL4-568 signal indicating that the unbound ligand mole-
cules diffused away (Fig. 3 B). Strikingly, the epifluores-
cence channel revealed that the receptor cluster remained
near the plasma membrane and had not yet translocated to
the nucleus. Our data suggest that after ligand-induced S2
cleavage occurs at the cell-supported lipid membrane junc-
tion, the NICD cluster moves at least 100 nm away from the
plasma membrane.

To explain this series of events, it is important to empha-
size that the precise cellular location of S3 cleavage is still
unknown. There are studies that show that proteolysis at
the S3 site occurs at the plasma membrane (25,26). In
contrast, Gupta-Rossi et al. (27) show that monoubiquitina-
tion and endocytosis of the Notch receptor are necessary to
trigger S3 cleavage. Alternatively, there is evidence to
support that S3 cleavage may occur at both the plasma mem-
brane and early endosomes but produce different forms of
the NICD as a way to regulate Notch signaling (28).
Currently, our results suggest that the cell has different
ways to process the NICD and supports the hypothesis
that the S3 cleavage event occurs at either the plasma mem-
brane or early endosomes.
Biophysical Journal 105(12) 2655–2665
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Determination of DLL4-Notch1 binding ratio

Given that receptor clustering is thought to play a role in
signal activation (29), we were interested in determining
the absolute molecular density of ligands and receptors
and their stoichiometry within DLL4-Notch1 complexes
of live cells. This is a general question that pertains to all
juxtacrine pathways. Using a method developed by Galush
et al. (30), the fluorescence intensity of the ligand and the
receptor was calibrated using a spectrally similar lipid-fluo-
rophore conjugate as a standard. In the case of the DLL4
ligand molecules, the calibration curve was constructed
with TRITC-DHPE, although for the receptor molecules,
NBD-PC lipid molecules were selected, as seen in Fig. 4,
A–C. The second component of this analysis required that
FIGURE 4 Bilayer calibration curves and calculation of binding ratio. (A) Int

comparing brightness of Notch1-eGFP and NBD-PC. (B) Calibration curve and F

factor relating TRITC-DHPE and DLL4-mCherry. Representative quantitative fl

lipid membrane surfaces with (D) DLL4-mCherry and (E) DLL4-568 ligand. E

Notch1-eGFP and ligand (calibration bar in molecules/mm2), and a masked ratio

DLL4:Notch1 determined from quantitative fluorescence analysis. Each dot indi

average value of all measurements. To see this figure in color, go online.
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the fluorescence intensity of the ligand molecules be

directly compared with the lipid-fluorophore standards.

This comparison produced a unitless scaling factor, F factor,

which is unique to each ligand/lipid pair, and these values

are provided in Fig. 4, A–C. Based on the calibration data,

the average ligand density of DLL4-568 on the membrane

surface was determined to be 3700 5 200 molecules per

mm2, whereas the DLL4-mCherry density was lower at

1400 5 300 molecules per mm2. This variation in surface

packing density may be explained by the differences in pro-

tein dimension and possible interactions between the deca-

histidine tag and ligand C-terminus. To calibrate the Notch1

receptor signal, a surface was prepared with dodecahistidine

eGFP, and its protein density was measured at 4800 5 300
ensity of NBD-PC bilayer at different molecular densities with the F factor

factor relating TRITC-DHPE and DLL4-568. (C) Calibration curve and F

uorescence images of Notch1-eGFP expressing cells engaged to supported

ach series includes images collected in brightfield, surface density maps of

(DLL4:Notch1) heat map. Scale bar ¼ 5 mm. (F) Scatter plot of the ratio of

cates the ratio value from a single cell, and the horizontal line indicates the
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molecules per mm2. All calculated values were consistent
with previously published results for histidine-tagged pro-
teins on membrane surfaces, thus validating the calibration
method for quantifying ligand and receptor molecular
densities (31).

Ligand and receptor densities in live cell experiments
were determined after allowing the Notch1-eGFP cells to
incubate on DLL4 functionalized membranes for 30 min.
Representative brightfield, Notch1-eGFP, and DLL4 images
are shown in Fig. 4, D–E. The fluorescence intensity in each
channel was converted into a surface density map, which
displays the density of ligand and receptor molecules within
individual clusters. A summary of the image analysis proce-
dure is provided in Fig. S7. To determine the binding ratio,
the DLL4 image was divided by the Notch1-eGFP image to
generate a heat map of ratio values (DLL4:Notch1). To
identify individual clusters, a mask was applied to the ratio
image by selecting the regions of the cell expressing
Notch1-eGFP. Analysis of these images showed an observed
ratio value that varied from 0 to 5 under each cell, and the
overall DLL4:Notch1 ratio was generally lower for DLL4-
mCherry than for DLL4-568 ligand.

To compare ratio values across a statistically meaningful
population of cells, a total of 40 to 85 cells were analyzed
for each type of ligand. A summary of ratio values is pro-
vided in Fig. 4 F and Table S1. These values were obtained
from histograms of ratio distributions fit with a Gaussian
function (Fig. S8). The binding stoichiometry was calcu-
lated to be 1.3 5 0.5 for DLL4-mCherry:Notch1 and
2.4 5 0.8 for DLL4-568:Notch1. To explain the higher
DLL4-568:Notch1 value, we hypothesized that a fraction
of labeled, but unbound ligand was present within ligand-
receptor clusters due to the higher initial density on the
membrane surface. We tested this idea by tuning the ligand
concentration on the membrane by lowering the percentage
of Ni2þ-NTA lipid molecules within the bilayer and
observing the effect on the DLL4:Notch1 ratio, as shown
in Fig. S9. As the density of DLL4-568 was decreased
from 3700 to 300 molecules per mm2, the stoichiometry of
DLL4-568:Notch1 decreased from 2.4 5 0.8 to 1.6 5
0.4, nearing the value obtained with DLL4-mCherry. The
minimum amount of ligand required for cell adhesion was
determined to be near 0.25 mol % or 20 molecules
per mm2 (Fig. S10).

Another possible explanation for the slightly elevated
amount of DLL4 is because the eGFP is fused to the
NICD on the cytoplasmic portion of the receptor. Therefore,
the ratio values reported more accurately relate NICD den-
sity to DLL4, and it is possible that S2 cleaved DLL4-
Notch1 complexes remain trapped within the cell-supported
membrane junction, whereas the S3 cleaved NICD diffuses
away from the plasma membrane. Diffusion of membrane
proteins surrounded by other proteins within the bilayer is
highly hindered and would support this hypothesis (32).
To test this idea, cells were treated with DAPT to prevent
S3 cleavage, and the stoichiometry of DLL4:Notch1 was
determined to be 1.1 5 0.4, Fig. 4 F. The similarity of the
values for DAPT treated and untreated populations suggest
that the presence of the inhibitor does not affect binding
between the ligand and receptor. Although this measure-
ment establishes the ratio of ligand/receptor molecules, it
is not sufficiently sensitive to be used as an assay of Notch
activation by reporting changes in the ratio value.
Biological activity of surface tethered DLL4

To quantify the biological activity of different forms of the
membrane-bound ligand, two independent methods were
used to measure Notch activity levels. The first strategy
employed a reporter cell line engineered by Sprinzak
et al. (33) to monitor Notch1 activation through the expres-
sion of a citrine (YFP) reporter, which was controlled by the
12XCSL promoter. Supported lipid membranes were pre-
pared with histidine-tagged, DLL4, DLL4-mCherry or
DLL4-568, and the fluorescence intensity of the YFP
reporter was measured after 48 h of cell incubation to maxi-
mize reporter expression. Reporter fluorescence was
normalized to cells treated with the g-secretase inhibitor,
DAPT. For Notch reporter cells engaged with the DLL4-
functionalized membrane, the reporter signal intensity
within the nucleus was 2.5 5 0.5 times greater than the
control (Fig. 5 A, DLL4). In addition, DLL4-568 and
DLL4-mCherry membranes showed slightly lower activa-
tion levels when compared to decahistidine DLL4 that
was not fluorescently tagged (Fig. 5 A, DLL4-mC and
DLL4-568). Variation in activation levels for different
ligand types is attributed to fluctuations in the ligand sur-
face density as well as ligand efficacy. The average surface
density was calculated to be ~3700 DLL4-568 per mm2

compared with ~1400 DLL4-mCherry per mm2 (Table
S1). However, as mentioned previously, it is likely that
chemical modification of critical lysine residues in the
receptor-binding domain of the DLL4-568 molecule alters
its binding affinity.

To reaffirm the biological activity of these ligands, we
used a second readout by immunostaining for the NICD
to visualize proteolytically cleaved receptor within the
nucleus. Surfaces were prepared in a similar manner as
described previously and Notch1-eGFP cells were incubated
on the surfaces for 3 h. The cells were fixed, permeabilized,
and treated with a primary antibody specific for cleaved
NICD (Val1744). Representative fluorescence images of
either DAPT-treated or untreated Notch1-eGFP expressing
cells with DAPI stained nuclei and antibody stained NICD
on an unlabeled DLL4 functionalized membrane are shown
in Fig. S11. To quantify activation levels, the nucleus was
identified using the DAPI signal, and the mean NICD inten-
sity was measured within each nucleus (Fig. S11). The
trends in Notch activation levels were consistent with those
observed with the reporter cell line.
Biophysical Journal 105(12) 2655–2665



FIGURE 5 Role of ligand tether and lateral mobility on Notch activation

levels. A reporter cell line engineered by Sprinzak et al. containing full

length Notch1 and a YFP reporter controlled by a synthetic 12XCSL

promoter was used to measure Notch activation levels. (A) Mean fluores-

cence intensity of reporter cells was measured after 48 h for the following

surface types (left to right): supported membrane with histidine-tagged var-

iants of DLL4, supported membrane with laterally mobile DLL4-mCherry-

biotin (fluid), supported membrane with hindered DLL4-mCherry-biotin

(hindered), functionalized glass with nonfluid DLL4-mCherry-biotin

(nonfluid), DLL4-mCherry physisorbed with fibronectin, and DLL4/Fc

physisorbed with fibronectin, *P < 0.001. Error bars represent SE for

experiments performed in triplicate. Orange rectangles represent streptavi-

din and purple circles represent biotin moieties. Abbreviations for

mCherry¼mC; biotin¼ bio. Representative images of Notch reporter cells

on supported membranes with (B) 165 molecules/mm2 of nonfluid DLL4-

mCherry-biotin and (C) 5150 molecules/mm2 of nonfluid DLL4-mCherry-

biotin. Scale bar ¼ 10 mm. (D) Calibration of reporter cell line response

to different surface densities of nonfluid DLL4-mCherry-biotin. The data

were fit to a Hill function, which is indicated by the dashed line. To see

this figure in color, go online.
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Another key factor that may influence activation levels of
the Notch receptor is the stability of the ligand tether to the
supported lipid membrane. For this reason, we designed
a biotin ligase-modified DLL4-mCherry. The biotin-strepta-
vidin association (Kd ~4 � 10�14 M) (34) provides a more
stable anchor to the membrane surface when compared
Biophysical Journal 105(12) 2655–2665
with histidine-NTA binding (Kd ~10 � 10�6 M) (35).
Although the overall DLL4 structure remains unchanged,
use of a biotin tether increased the Notch activation levels
to 3.6 5 0.4-fold over the control (Fig. 5 A, fluid). This
result indicates that if the ligand remains firmly associated
with the membrane surface, then Notch activation levels
increase.

It is unlikely that the observed increase in activation is
due to formation of ligand dimers on tetrameric streptavidin.
First, streptavidin is attached to the membrane surface
through head-modified biotin lipid molecules; therefore,
two of the binding sites are unavailable to the ligand
(Fig. 5 A, fluid) (36). In addition, the density of fluoro-
phore-labeled streptavidin on a fluid biotin-DPPE surface
was measured to be ~730 molecules per mm2. The density
of DLL4-mCherry-biotin was calculated to be ~770 mole-
cules per mm2 suggesting that there is close to one ligand
molecule per streptavidin. In addition, it is sterically unfa-
vorable for two ligand molecules to be bound to the same
streptavidin molecule. The two binding sites of streptavidin
(on the same face) are separated by ~2.0 nm (37,38), and the
diameter of the mCherry beta-barrel is ~3.0 nm (39) leaving
little room for both ligand molecules to bind to the same side
of the streptavidin.
Role of lateral ligand mobility on Notch activation

An important advantage of the supported membrane plat-
form is that lateral mobility of the DLL4 ligand is dictated
by the fluidity of the supported lipid membrane. Therefore,
synthetic membrane surfaces can be tuned to present chem-
ically identical DLL4 ligands that differ only by their lateral
diffusion coefficient (D). To alter the lateral mobility of
ligand molecules, the percentage of biotin-DPPE lipids
doped into DOPC vesicles was varied from 0.1 to 4 mol
%. At 0.1 mol % biotin-DPPE, membrane-tethered ligand
molecules remain fluid, but at 4 mol % biotin-DPPE the
ligand displays hindered long-range diffusion (Fig. S12)
as the surface nears the packing density limit of streptavidin
(40,41). Line scans over the photobleached areas
qualitatively indicate the difference in lateral mobility of
DLL4-mCherry-biotin (Fig. S12). The ligand density of
the 4 mol % biotin-DPPE membrane was reduced to match
the ligand density of the 0.1 mol % biotin-DPPE surface by
titration with free D-biotin (Fig. S13). When Notch reporter
cells were cultured on these surfaces and the activation
levels quantified, the hindered DLL4-mCherry-biotin ligand
displayed significant enhancement in activation (2.6-fold)
over the fully fluid ligands (P < 0.001), Fig. 5 A (compare
fluid to hindered).

Given that the 4 mol % biotin-DPPE membrane presented
a small fraction of lipid molecules that remained mobile
and some lipid dissociation from the membrane occurs
over the 48 h incubation time, we next sought to test the
activity of covalently immobilized ligand. Accordingly,



FIGURE 6 The effect of DLL4 lateral mobility, as characterized by

diffusion coefficient (D), and density on Notch activation levels. (A) For

membrane surfaces with <1500 DLL4-mCherry-biotin molecules per

mm2,Dwas varied from ~0 to 0.6 mm2/s. Notch activation sharply increased

as D approached 0. Error bars indicate the standard deviation in reporter

intensity as measured from 1000 cells (or more) 48 h after plating. The

average D for each surface was determined using a previously published

FRAP assay (18). (B) When the D and density were both varied, high levels

of Notch activation (normalized reporter intensities >5, red marker) were

observed when D neared 0 and when ligand density was increased. To

see this figure in color, go online.
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DLL4-mCherry was fully immobilized using two different
strategies (see the Supporting Material). First, a mixture of
fibronectin and DLL4-mCherry or DLL4/Fc was adsorbed
onto a glass substrate. This resulted in a normalized reporter
response of 5.0 5 0.6 and 12.1 5 0.5 (Fig. 5 A, DLL4-mC
and DLL4/Fc Fibronectin), respectively. This approach has
been reported in the literature and results in randomly ori-
ented ligand molecules within a thin film of fibronectin. In
the second strategy, the DLL4-mCherry-biotin ligand was
directly anchored to the glass slide through biotin groups
that were covalently attached to the glass slide. Following
incubation with the reporter cells, Notch activation levels
were 12.6 5 0.6 times greater than the DAPT control,
which was the highest level measured on any type of surface
tested (Fig. 5 A, nonfluid). This result confirms that proper
ligand orientation coupled with nonlabile surface immobili-
zation lead to the most potent ligand activity. Taken
together, these data show that limiting lateral membrane
fluidity can enhance receptor activation and lends support
to the proposed mechanotransduction model of Notch
receptor activation (10). Moreover, the difference in activa-
tion between fluid and nonfluid ligand also indicates that
there is a lateral component to Notch tension-driven activa-
tion, which may provide an additional level of spatio-
mechanical regulation of receptor activation.

Given that the Notch transcriptional reporter generates a
nonlinear response to ligand density, we next aimed to
develop a quantitative calibration relating the absolute
molecular ligand density (input) with reporter YFP inten-
sity (output). We quantified ligand densities using the fluo-
rescence-based lipid membrane calibration and recorded
the corresponding reporter response using a series of
nonfluid DLL4-mCherry-biotin functionalized surfaces,
Fig. 5, B–D. We found that the response of the reporter
cell line to immobilized ligand molecules was steeply
graded (Fig. 5 D) as captured in the representative images
shown in Fig. 5, B–C. The shape of this plot is in agreement
with prior literature precedent (33), and indicates that the
reporter response rapidly saturates when cells engage
surfaces presenting densities >~2000 DLL4-mCherry-
biotin molecules per mm2.

To better understand the interplay between DLL4 ligand
density andD, and their role in modulating Notch activation,
we performed a more detailed analysis using a set of mem-
brane surfaces withD ranging from ~0 to 0.6 mm2/s and den-
sities ranging from 120 to 26,000 molecules/mm2. Although
such parameters may exceed the range of physiological
values, the absolute lateral mobility and surface density of
ligands and receptors within living systems is not known.
We quantified D of membrane tethered DLL4-mCherry-
biotin by employing an established FRAP-based analysis
method (18). Interestingly, for surfaces with ligand densities
of 1500 molecules per mm2 or lower, activation of the Notch
reporter showed a nonlinear and sharp increase as D
approached 0 (Fig. 6 A). Although ligand density and D
are not completely independent parameters, especially in
densely packed membranes, high levels of reporter activa-
tion (>fivefold over DAPT control) were observed as D
approached 0 over a wide range of ligand densities (Fig. 6
B). Both plots indicate that restricting the lateral mobility
of DLL4 drastically increases Notch activation, whereas
ligand density appears to be a less sensitive parameter for
tuning activation. These results confirm that the mechanical
properties of the ligand (lateral mobility) alter its biochem-
ical activity in a highly nonlinear fashion, which is sugges-
tive of the mechanoregulatory model of Notch activation.
Biophysical Journal 105(12) 2655–2665
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CONCLUSIONS

To study the molecular mechanisms of the Notch receptor
pathway, where chemo-mechanical coupling within cellular
junctions is increasingly appreciated, it is clear that new
experimental strategies must be developed. The use of sup-
ported proteolipid membranes overcomes some of the limi-
tations of other conventional methods for studying the
Notch signaling pathway. We have shown that DLL4-
Notch1 binding can be recaptured at the interface between
a cell membrane and supported lipid membrane surface.
Using quantitative fluorescence microscopy, it was observed
that ligand and receptors actively formed clusters on fluid
membranes containing, on average, hundreds of molecules
per mm2. The stoichiometry of DLL4 to Notch1 within these
clusters was ~1.3 5 0.5, near the expected 1:1 value.
Through live cell imaging, the dynamic nature of ligand-
receptor binding and clustering was captured including
observation of coordinated loss of ligand and receptor mol-
ecules at the intermembrane junction. Using epi-TIRFM,
the NICD was observed to leave the cell-supported mem-
brane interface but remain near the plasma membrane.
Finally, the mechanical properties and lateral mobility of
the ligand molecules play a significant role in modulating
activation of the Notch receptor. More specifically, ligand
activity increased drastically as it became hindered or
nonmobile. Despite the limited evidence showing that cells
modulate the lateral mobility of Notch ligands or receptors
within the plasma membrane, this work points toward an
unprecedented mechanism of physical regulation of Notch
receptor activation by simply modulating lateral mobility.
This work opens the door to investigating Notch mechano-
transduction mechanisms (42,43), and for screening of
targets that may alter Notch ligand-receptor mobility and
internalization dynamics.
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Supporting Methods 
 
DLL4 ligand labeling with Alexa Fluor dye 
Deca-histidine tagged recombinant human DLL4 (R&D Systems, Minneapolis, MN) was 
reconstituted in PBS, pH 7.4 to 0.8 µg/ml. A sodium bicarbonate solution was added to the 
protein solution at a final concentration of 0.1 M. Twenty fold molar excess of Alexa Fluor 568 
or 647 NHS ester (Life Technologies) was resuspended in DMSO and added dropwise to the pH 
adjusted protein solution. The reaction proceeded for a total of 1 h and was quenched with the 
addition of 1 M Tris buffer (final concentration, 10 mM). 
 
Design and expression of DLL4-mCherry 
The cDNA sequence of the human DLL4 ECD (corresponding to residues Ser27-Pro524) was 
cloned into the pcDNA3 mammalian expression vector (Life Technologies). The fluorescent 
protein mCherry, biotin acceptor peptide (GLNDIFEAQKIEWHE) and deca-histidine tag were 
fused in frame to the C-terminus of DLL4 ECD. The final construct, pcDNA3-DLL4-mCherry, 
was sequence verified. HEK 293T cells were cultured to 70% confluency (following ATCC 
conditions) in 10 cm dishes and transfected with 10 µg of pcDNA3-DLL4-mCherry using 
CaPO4. After 16 h, the media was removed and indicator- and serum-free Eagle’s minimum 
essential medium (EMEM) was added, and the cells were cultured for an additional 5 days. The 
conditioned media containing secreted DLL4-mCherry protein was collected and concentrated. 
The ligand was purified using Ni-NTA magnetic agarose beads (Qiagen, Valencia, CA), buffer 
exchanged into 10 mM Tris, 300 mM NaCl, pH 8.0 and stored at 4°C. 
 
Biotin ligase modification of DLL4-mCherry 
Purified DLL4-mCherry was concentrated and buffer exchanged into 10 mM Tris, 100 mM 
NaCl, pH 8.0. The substrate solution was combined with 10 mM ATP, 10 mM MgOAc, 50 µM 
D-biotin and 1.2 µg of biotin ligase in 50 mM bicine buffer, pH 8.3 (Genecopoeia, Rockville, 
MD). The reaction was incubated at 30° C for 5 h and purified by removing excess biotin using 
an Amicon Ultra 10k filter (Millipore, Billerica, MA) to yield DLL4-mCherry-biotin. The biotin 
ligase (BirA) site-specifically incorporates the biotin moiety at the lysine residue located in the 
biotin acceptor peptide sequence (1, 2).  
 
Binding specificity of DLL4 functionalized membranes 
A portion of the human Notch1 receptor, including residues Ala19-Gln526 of the extracellular 
domain, was fused to human IgG1 (Pro100-Lys330) through a 6 amino acid linker (R&D 
Systems, Minneapolis, MN). This chimera is present in its soluble form as a disulfide-linked 
homodimer. The protein was labeled with Alexa 647 NHS ester as described above and purified 
using Bio-Rad P-4 gel (Bio-Rad, Hercules, CA) to yield NECD-647. DLL4 functionalized 
membranes were incubated with 33 nM of NECD-647 for 45 min, rinsed and imaged.  
 
Immunostaining and analysis of NICD localization 
Membrane surfaces with histidine-tagged DLL4 were prepared as described and 30,000 cells, 
which were either treated with 25 µM DAPT (Calbiochem, Billerica, MA) (negative control) or 
DMSO for 16 h, were added into each well.  After 3 h with continued drug or vehicle treatment, 
the cells were rinsed with cold PBS, fixed with 4% paraformaldehyde for 12 min and 
permeabilized with 0.1% (v/v) Triton X-100 for 5 min. The samples were blocked with a 1% 
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(w/v) BSA in PBS solution overnight. The primary antibody for cleaved NICD (Cell Signaling 
Technology, Danvers, MA) was diluted 1:200 in 1% BSA and incubated for 1 h. After rinsing, 
the secondary antibody labeled with Alexa Fluor 647 (Life Technologies) was diluted 1:1000 
and incubated for 30 min. Lastly, DAPI (Life Technologies) was added at a concentration of 300 
nM for 5 min. To determine the intensity of the NICD within the nuclei, the DAPI signal was 
used to locate the nucleus and then the signal intensity from the secondary antibody within these 
areas was measured. 
 
Biotin-functionalized glass for non-fluid DLL4 surfaces 
All glass substrates (25 mm diameter, #2 coverslips, VWR, Radnor, PA) were sonicated in 
Nanopure water and piranha etched (H2O2:H2SO4; 1:3; v:v) for 15 min. (Caution: piranha 
solution is an extremely strong oxidant and can become explosive if mixed with organics). After 
rinsing with copious amounts of water, the glass substrates were dried under nitrogen and 
immersed in toluene. The substrates were incubated for 1 h at room temperature in a 0.4% (v/v) 
solution of 3-aminopropyltriethoxysilane (Gelest, Morrisville, PA) in toluene. The substrates 
were rinsed with ethanol and dried under nitrogen. The amine-functionalized slides were reacted 
with 500 ml per slide of 0.05% (w/v) sulfo-NHS-LC-biotin (Pierce, Rockford, IL) and 5% (w/v) 
mPEG-NHS, MW 2000 (Nanocs, Boston, MA) in 0.1 M sodium bicarbonate overnight. The 
slides were rinsed with water, dried and placed into an Attofluor chamber (Life Technologies) 
for further functionalization (beginning with BSA blocking), see assembly of supported lipid 
membrane section for details.   
 
Physisorbed DLL4 on glass 
A solution of 12.5 µg/ml DLL4/Fc (Sino Biological, China) or DLL4-mCherry and 5 µg/ml 
fibronectin in PBS was incubated on a glass bottom 96 well plate for 1 h while shaking at 250 
rpm. Excess fibronectin and ligand were rinsed away with 5 ml of PBS. The DLL4/Fc protein is 
composed of the extracellular domain of DLL4 (Ser27-Pro524) fused to the Fc region of human 
IgG1 at the C-terminus. This recombinant human protein is present as a disulfide-linked 
homodimer. 
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Figure S1. Summary of current methods to study Notch activation. This scheme illustrates the 
most commonly used strategies to activate Notch, which include: (A) cellular co-culture, (B) 
physisorbed ligand, (C) metal depletion, and (D) supported membrane tethered ligand. The 
yellow regions highlighted in the top diagrams are depicted in molecular detail below.
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Figure S2. DLL4 binding of Notch receptors on parental C2C12 cells compared with Notch1-
eGFP expressing cells. (A, Top panel) Representative images of Notch1-eGFP receptor binding 
to DLL4-mCherry on a supported membrane after 30 min reveal the formation of ligand-receptor 
clusters. (A, Bottom panel) Representative images of endogenous Notch receptors in parental 
C2C12 cells show binding to the DLL4-mCherry surfaces and formation of clusters that are 
smaller and less dense. Scale bar = 5 µm. (B) Quantitative comparison of the amount of ligand-
receptor binding for Notch1-eGFP and C2C12 cells, error bars represent SEM for n = 60 C2C12 
cells and n = 35 Notch1-eGFP cells. 
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Figure S3. Specificity of DLL4 binding to Notch1.  Notch1-eGFP cells were treated with soluble 
DLL4/Fc (185 nM) for 20 min before incubating on a DLL4-568 membrane surface.  In order to 
facilitate imaging of cells, cRGD was added to the supported lipid membrane (top) to promote 
cell adhesion.  Without cRGD-integrin binding, the Notch1-eGFP expressing cells very weakly 
associated with the supported lipid membrane (bottom). 
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Figure S4. Clustering of DLL4 is Notch-cell driven. Binding of NECD-647 to DLL4 supported 
lipid membrane surface alone does not result in observable clustering. Note that the NECD-647 
displays different affinity for the two types of ligand tested as indicated by the differences in 
intensity (calibration bars). FRAP assay shows that the NECD-647 is still laterally mobile when 
bound to DLL4. 
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Figure S5. Photobleaching profile of eGFP physisorbed onto a glass surface. The experimentally 
measured values were fit to an exponential decay (solid line), and the half-life was calculated to 
be 2.3 sec or 23 frames taken at 100 msec exposure time (dashed line). 
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Figure S6. Time-lapse analysis of an individual DAPT treated cell. Arrow highlights an area 
where concerted loss of Notch1-eGFP and DLL4-mCherry was observed. Scale bar = 5 µm. 
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Figure S7. Summary of image analysis to determine the binding ratio between DLL4 and 
Notch1. 
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Figure S8. Representative histograms of ratio values fit with a Gaussian for binding of (A) 
DLL4-mCherry to Notch1-eGFP or (B) DLL4-568 to Notch1-eGFP. 



 12 

 
 
Figure S9. Determining the stoichiometry of DLL4 to Notch1 binding at live cell-supported lipid 
membrane junctions. The stoichiometry of binding was plotted as a function of ligand density. In 
these experiments, mole percent of Ni2+-NTA lipid was reduced from 2% to 0.5% and resulted in 
a lower binding ratio between DLL4-568 and Notch1. Each circle represents binding between a 
single cell and the membrane containing tethered ligand, and the mean ratio is indicated with a 
horizontal line. 
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Figure S10. Effect of DLL4-568 density on Notch1 binding. Surfaces with varying densities of 
DLL4-568 were produced (left panel) and Notch1-eGFP expressing cells were incubated for 30 
min prior to imaging. The strength of cell contact is seen in RICM and diminishes as the amount 
of available surface ligand is reduced. Ni2+-NTA lipid concentrations below 0.5 mol% resulted in 
no cell attachment (data not shown). Scale bar = 5 µm. 
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Figure S11. Activation of the Notch signaling pathway using the supported membrane platform. 
(A) DAPT treated or (B) untreated Notch1-eGFP cells were engaged to DLL4-functionalized 
membranes for 3 h and fixed and stained prior to imaging. Fluorescence images of Notch1-eGFP 
(green) overlayed with the brightfield view, nuclear stain with DAPI (blue), cleaved NICD 
(Val1744) (red), and an overlay of the DAPI and NICD channels showing translocation of the 
NICD into the nucleus. Scale bar = 50 µm. (C) Quantitative analysis of average nuclear 
localization of the NICD as visualized through antibody staining, which is a measure of Notch 
activation. As a negative control, cells were treated with 25 µM DAPT during the course of the 
experiment (shaded bar). Error bars represent the standard error of the mean (SEM) for 
experiments performed in triplicate. 
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Figure S12. Lateral mobility of supported membranes with tethered DLL4 ligand. FRAP assay 
of (A) fluid and (B) hindered DLL4-mCherry-biotin functionalized lipid membranes that were 
photobleached and allowed to recover for 5 min. Scale bar = 10 µm. (C) Lines scans of 
fluorescence intensity over the indicated areas of images (A) and (B). 
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Figure S13. Competitive binding experiment between GFP-biotin and D-biotin on a lipid 
membrane. In this experiment, GFP-biotin was selected as a model ligand in place of DLL4-
mCherry-biotin. The goal was to titrate different molar ratios of biotinylated (fluorescent) ligand 
to D-biotin on a membrane surface and to observe the effect on fluorescence intensity. First, 
eGFP α-thioester (expressed and purified using the IMPACT kit from New England Biolabs, 
Ipswich, MA) was site specifically modified with cysteine-biotin (Carbosynth, San Diego, CA) 
using expressed protein ligation (3). The resulting GFP-biotin was incubated on a streptavidin 
functionalized 0.1 mol% biotin-DPPE membrane at a series of molar ratios of GFP-biotin to D-
biotin. The total biotin concentration was maintained at 250 nM. (A) Representative 
epifluorescence images of biotin-DPPE membranes incubated with different molar ratios of 
GFP-biotin to D-biotin. (B) Plot illustrating the fluorescence intensity as a function of the molar 
ratio of GFP-biotin to D-biotin. This plot was used to make an initial estimate for the amount of 
free D-biotin needed to produce a 4 mol% biotin-DPPE bilayer with the same ligand density 
(fluorescence intensity) as a 0.1 mol% biotin-DPPE surface.  
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Ligand 

 
Ratio 

DLL4:Notch1 

Average 
receptor-

bound 
DLL4 density 

Average 
Notch1 
density 

 
N 

 
mol% Ni2+-
DOGS-NTA 

Initial 
surface 
density 

(ligand/µm2) 

DLL4-
mCherry 

 
1.3 ± 0.5 

 
490 

 
420 

 
85 

 
2 

 
1400 

DLL4-
mCherry + 

DAPT 

 
1.1 ± 0.4 

 
520 

 
500 

 
41 

 
2 

 
1100 

DLL4-568 2.4 ± 0.8 820 390 24 2 3700 

DLL4-568 2.2 ± 0.5 970 480 11 1 1500 

DLL4-568 2.0 ± 0.5 1000 560 14 0.75 1000 

DLL4-568 1.6 ± 0.4 700 510 11 0.5 300 

 
Table S1. DLL4-Notch1 ratio determined from quantitative fluorescence analysis. Average 
density values for DLL4 and Notch1 refers to the average pixel value for all clusters of a single 
cell. See Methods for details on data analysis. 
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