Supporting Material

An Integrated Mitochondrial ROS Production and Scavenging Model: Implications for Heart Failure

Laura D. Gauthier[‡], Joseph L. Greenstein[‡],

Brian O'Rourke[†], and Raimond L. Winslow[‡],

⁺Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA and [‡]Institute for Computational Medicine, Baltimore, Maryland, USA

Figure S1 Steady-state mitochondrial H_2O_2 emission during inhibitory titration of GR and TrxR in state 3 and state 4. The model shows higher mitochondrial H_2O_2 emission in state 4 (black) than state 3 (blue) for both GR inhibition (A) and TrxR inhibition (B). As in the experimental data of Aon et al. (1), maximal H_2O_2 emission is greater under TrxR inhibition than under inhibition of GR.

Figure S2 NADH and $\Delta \Psi$ **dynamics for state 0 to state 4 to state 3 transitions. (A)**Kembro et al. model substrate addition (indicated by "Subst") was simulated as an increase in AcCoA and glutamate from 1×10^{-5} to 0.1 and 1×10^{-5} to 30, respectively. ADP addition represents an increase in extra-matrix ADP concentration from 0.01mM to 0.03mM, as in Kembro et al. (2), to simulate the state 4 to state 3 transition. (B)The same protocol for the model presented here. **(C)**Experimental data from Kembro et al. (2) show the results of the addition of 5mM G/M ("Subst") followed by 1mM ADP.

Figure S3 Thioredoxin redox potential under mCU inhibition. Decreases in NADPH also drive the oxidation of mitochondrial Trx(SH)₂ under control conditions (gray) and more extensively in the presence of mCU inhibition (black).

Figure S4 Elevated [Na⁺]_i **depletes thioredoxin pool.** 15mM [Na⁺]_i conditions (black) lead to a larger oxidation of the mitochondrial thioredoxin pool after the onset of pacing compared with control conditions (gray).

Figure S5: Decreased mitochondrial GSH pool size elevates resting $[H_2O_2]_m$. As the mitochondrial GSH pool size is decreased from 3mM to 1mM, resting $[H_2O_2]_m$ increases slightly. For decreases beyond 1mM, resting $[H_2O_2]_m$ is significantly elevated.

Notes on table 1:

Respiratory flux is given as (VNO+VO₂SDH) for Kembro et al. model (in units of mM O/ms) or 2*VO2 (where VO2 is actually in units of mM O₂/ms) for this model, then adjusted to match the experimental data units with a scale factor of 2*60e3 to convert from mM/ms to nmol/min/mg protein.

Mitochondrial ROS Production and Scavenging Model

Table S1 System of differential and algebraic equations used in the ME-R model

$$\frac{d[Cal^{2+}]_m}{dt} = \delta_{Co}(V_{mt} - V_{NnCa})$$
(54)
$$\frac{d[ADP]_m}{dt} = V_{ANT} - V_{ATPaue} - V_{SL}$$
(55)
$$\frac{d\Delta\Psi_m}{dt} = \frac{V_{He} + V_{He}(SDH) - V_{Hu} - V_{ANT} - V_{Hleak} - V_{NaCa} - 2V_{unl} - V_{IMAC}}{C_{mito}}$$
(56)
$$\frac{d[NADH]_m}{dt} = V_{o_2} + V_{IDH} + V_{KGDH} + V_{MDH} - V_{THD}$$
(57)
$$\frac{d[H^+]_m}{dt} = \delta_M \left(-V_{He} - V_{He(SDH)} + V_{Hu} + V_{NaH} + V_{PiC} + V_{Hleak} \right)$$
(58)
$$\frac{d[Pi]_m}{dt} = -V_{ATPaue} + V_{PiC} - V_{SL}$$
(510)
$$\frac{d[ISOC]}{dt} = V_{ACO} - V_{IDH} - V_{IDH,NADP}$$
(511)
$$\frac{d[Gad]}{dt} = V_{IDH} + V_{IDH,NADP} - V_{KGDH} + V_{ATT}$$
(512)
$$\frac{d[Suc]}{dt} = V_{SL} - V_{O_SDH}$$
(513)
$$\frac{d[FUM]}{dt} = V_{SL} - V_{O_SDH} - V_{FH}$$
(514)
$$\frac{d[MAL]}{dt} = V_{FH} - V_{MDH}$$
(515)
$$\frac{d[MADPH]_m}{dt} = V_{IDH,NADP} + V_{THD} - V_{CRM} - V_{TXRm}$$
(517)
$$\frac{d[O2^-]_m}{dt} = shunt(V_{O_2} + V_{O_SDH}) - V_{ROSD} - V_{ROS}^{TT}$$
(518)
$$\frac{d[O2^-]_m}{dt} = \frac{1}{2}V_{MNSOD} - V_{dIFH_2O_2} - V_{GFXm} - V_{TXPXm}$$
(520)

$$\frac{d[H_2O_2]_i}{dt} = \frac{1}{2}V_{CuZnSOD} + \frac{v_m}{v_i}V_{difH_2O_2} - V_{GPXi} - V_{TxPXi} - V_{CAT}$$
(S21)
$$\frac{d[GSH]_m}{dt} = V_{GRm} - V_{GPXm} - V_{GRXm} + V_{GST} - V_{PSSGm}$$
(S23)
$$\frac{d[GSH]_i}{dt} = V_{GRi} - V_{GPXi} - V_{GRXi} + \frac{v_m}{v_i}V_{GST} - V_{PSSGi}$$
(S23)
$$\frac{d[GSSG]_m}{dt} = 0.5(V_{GPXm} - V_{GRm}) + V_{GRXm}$$
(S24)
$$\frac{d[TxR]_m}{dt} = V_{TxRm} - V_{TxPXm}$$
(S25)
$$\frac{d[TxR]_i}{dt} = V_{TxRi} - V_{TxPXi}$$
(S26)
$$\frac{d[PSSG]_m}{dt} = V_{PSSGi} - V_{GRXi}$$
(S27)
$$\frac{d[PSSG]_i}{dt} = V_{PSSGi} - V_{GRXi}$$
(S28)

Note that the differential equations for H2O2 contain corrections with regard to the stoichiometry of superoxide dismutase flux.

Computational modeling of Reactive Oxygen Species scavenging systems

The upgraded two-compartment computational model of mitochondrial energetics-redox (ME-R) includes: (i) a complete array of antioxidant defenses in two compartments: mitochondrial matrix and extra-matrix (e.g. intermembrane space, cytoplasm); and (ii) two of the three main NADPH providers in mitochondria: NADP⁺-dependent isocitrate dehydrogenase (IDH2) in the TCA cycle, and transhydrogenase (THD). In this section we will provide a detailed description of the antioxidant defenses and mitochondrial NADPH handling.

Modeling superoxide dismutase

$$V_{MnSOD} = \frac{2 k_{SOD}^{1} k_{SOD}^{5} \left(k_{SOD}^{1} + k_{SOD}^{3} \left(1 + \frac{[H_{2}O_{2}]m}{k_{i}^{H_{2}O_{2}}}\right)\right) E_{MnSOD}^{T} [O_{2}^{-}]_{m}}{k_{SOD}^{5} \left(2 k_{SOD}^{1} + k_{SOD}^{3} \left(1 + \frac{[H_{2}O_{2}]m}{k_{i}^{H_{2}O_{2}}}\right)\right) + [O_{2}^{-}]_{m} k_{SOD}^{1} k_{SOD}^{3} \left(1 + \frac{[H_{2}O_{2}]m}{k_{i}^{H_{2}O_{2}}}\right)}$$

$$V_{CuZnSOD} = \frac{2 k_{SOD}^{1} k_{SOD}^{5} \left(k_{SOD}^{1} + k_{SOD}^{3} \left(1 + \frac{[H_{2}O_{2}]i}{k_{i}^{H_{2}O_{2}}}\right)\right) E_{CuZnSOD}^{T} [O_{2}^{-}]_{i}}{k_{SOD}^{5} \left(2 k_{SOD}^{1} + k_{SOD}^{3} \left(1 + \frac{[H_{2}O_{2}]i}{k_{i}^{H_{2}O_{2}}}\right)\right) + [O_{2}^{-}]_{i} k_{SOD}^{5} k_{SOD}^{3} \left(1 + \frac{[H_{2}O_{2}]i}{k_{i}^{H_{2}O_{2}}}\right)}$$
(S29)
$$(S29)$$

H₂O₂ transport

 H_2O_2 can diffuse freely between the two compartments, following the equation:

$$V_{diff_{H_2O_2}} = c_{diff_{H_2O_2}([H_2O_2]_m - [H_2O_2]_i)}$$
(S31)

Gluthathione and glutaredoxin systems

The gluthathione system was present in both mitochondrial matrix and extra-matrix compartments and expressed as a system of equations comprising glutathione peroxidase (V_{GPx}) and reductase (V_{GR}) activities. The rate expressions for V_{GPx} and V_{GR} used in the model were formulated as described in our mitochondrial model of ROS metabolism (3).

$$V_{GPX_m} = \frac{E_T^{GPXm}[H_2O_2]_m \ [GSH]_m}{\Phi_1[GSH]_m + \Phi_2[H_2O_2]_m}$$
(S32)

$$V_{GPX_i} = \frac{E_T^{GPXi}[H_2O_2]_i [GSH]_i}{\Phi_1[GSH]_i + \Phi_2[H_2O_2]_i}$$
(S33)

$$V_{GR_m} = \frac{k_{GR}^1 E_T^{GRm}}{1 + \frac{k_M^{GSSG}}{[GSSG]} + \frac{k_M^{NADPH}}{[NADPH]_m} + \frac{k_M^{GSSG} k_M^{NADPH}}{[GSSG]_m [NADPH]_m}}$$
(S34)

$$V_{GR_i} = \frac{k_{GR}^{\text{GR}i} E_{\text{T}}^{\text{GR}i}}{1 + \frac{k_{M}^{\text{GSSG}}}{V_{GSS}} + \frac{k_{M}^{\text{NADPH}}}{[\text{NADPH}]_i} + \frac{k_{M}^{\text{GSSG}} k_{M}^{\text{NADPH}}}{[GSSG]_i [\text{NADPH}]_i}}$$
(S35)

The glutaredoxin system can then detoxify the glutathionylated proteins and uses GSH as cofactor (4, 5).

$$V_{GRX_{m}} = \frac{k_{grx_{m}} K_{eq}^{GRX} ([GSH]_{m})^{2} GrxT [PSSG]_{m}}{([GSSG]_{m} + K_{eq}^{GRX} ([GSH]_{m})^{2}) \left(\frac{K_{eq}^{GRX} ([GSH]_{m})^{2} GrxT}{[GSSG]_{m} + K_{eq}^{GRX} ([GSH]_{m})^{2}} + K_{m}^{Grx}\right) ([PSSG]_{m} + K_{m}^{PSSG})}$$
(S36)

$$V_{GRX_{i}} = \frac{\kappa_{grx_{i}} \kappa_{eq}}{\left(V_{GSS} + K_{eq}^{GRX} ([GSH]_{i})^{2}\right) \left(\frac{\kappa_{eq}^{GRX} ([GSH]_{i})^{2} \ GrxT}{\left[GSSG\right]_{i} + \kappa_{eq}^{GRX} ([GSH]_{i})^{2}} + \kappa_{m}^{Grx}\right) ([PSSG]_{i} + \kappa_{m}^{PSSG})}$$
(S37)

$$V_{PSSG_m} = \frac{k_{PSH}^1 E_T^{PSH} (PSSGT - [PSSG]_m)}{\left(1 + \frac{K_M^{GSH}}{[GSH]_m}\right) \left(1 + \frac{[H_2O_2]_m}{K_{act}^{H_2O_2}}\right)}$$
(S38)

$$V_{PSSG_{i}} = \frac{k_{PSH}^{1} E_{T}^{PSH} (PSSGT - [PSSG]_{i})}{\left(1 + \frac{K_{M}^{GSH}}{[GSH]_{i}}\right) \left(1 + \frac{[H_{2}O_{2}]_{i}}{K_{act}^{H_{2}O_{2}}}\right)}$$
(S39)

We have assumed that the total pool of glutathione, G_T , is conserved, as indicated by equation S40, and from there the GSSG concentration in the extra-matrix compartment can be estimated (Eq. S41).

$$G_T = G_T - [GSH]_m - [GSH]_i - 2 [GSSG] - [PSSG]_m - [PSSG]_i - 2 [GSSG]_i$$
(S40)

$$[GSSG]_i = 0.5 (G_T - [GSH]_m - [GSH]_i - 2 [GSSG]_m - [PSSG]_m - [PSSG]_i)$$
(S41)

In addition we have included passive GSH transport (V_{GST}) across the inner mitochondrial membrane.

$$V_{GST} = c_{GST} \frac{([GSH]_i - [GSH]_m)}{[GSH]_i + k_{0.5}^{GST}}$$
(S42)

Thioredoxin system

The Trx system includes peroxiredoxin (V_{Prx3}) and thioredoxin reductase (V_{TrxR}) (6). The rate expression for V_{TPrx3} was derived on the basis of the experimental studies performed by (7), from which we also obtained the rate constants. V_{TrxR} represents a Michaelis-Menten rate expression with two substrates (NADPH and Trx(SS) with kinetic parameters derived from refs. (8) and (9).

$$V_{Prx3_m} = \frac{E_T^{Prx3m}[H_2O_2]_m [TrxSH_2]_m}{\phi_{1Prx}[TrxSH_2]_m + \phi_{2Prx}[H_2O_2]_m}$$
(S43)

$$V_{Prx_i} = \frac{E_T^{Prxi}[H_2O_2]_i [TrxSH_2]_i}{\Phi_{1Prx}[TrxSH_2]_i + \Phi_{2Prx}[H_2O_2]_i}$$
(S44)

(S45)

(S48)

$$V_{TrxR_m} = \frac{k_{TrxR}^{TrxR} E_T^{TxR2m}}{1 + \frac{k_M^{TrxSS}}{[TrxSS]_m} + \frac{k_{Mtrx}^{NADPH}}{[NADPH]_m} + \frac{k_M^{TrxSS}}{[TrxSS]_m [NADPH]_m}}$$

$$V_{TrxR_i} = \frac{k_{TrxR}^1 E_T^{TrxRi}}{1 + \frac{k_{M}^{TrxSS}}{[TrxSS]_i} + \frac{k_{M}^{NADPH}}{[NADPH]_i} + \frac{k_{M}^{TrxSS}}{[TrxSS]_i [NADPH]_i}}$$
(S46)

 $[TrxSS]_{m} = TrxT_{m} - [TrxSH_{2}]_{m}$ (S47)

 $[TrxSS]_i = TrxT_i - [TrxSH_2]_i$

Extra-matrix Catalase

 $V_{CAT} = 2k_{CAT}^{1} E_{CAT}^{T} [\mathrm{H}_{2}\mathrm{O}_{2}]_{\mathrm{i}} e^{-fr[\mathrm{H}_{2}\mathrm{O}_{2}]_{\mathrm{i}}}$

Scavenging parameters are the same as in Kembro et al. with the exception of enzyme concentrations for GR and Trx, which were adjusted to match the proportional control of scavenging demonstrated in Figure 4.2.

Symbol	Value	Units	Description	Eq	Reference
- 1	3	-1 -1			
k ¹ _{SOD}	1.2×10 [°]	mM [*] ms [*]	Second-order rate constant of SOD	S29,S30	(2)
k_{SOD}^3	24	mM ⁻¹ ms ⁻¹	Second-order rate constant of SOD	S29,S30	(2)
k_{SOD}^5	2.4×10 ⁻⁴	ms ⁻¹	First-order rate constant of SOD	S29,S30	(2)
$K_i^{H_2O_2}$	0.5	mM	Inhibition constant for H_2O_2	S29,S30	(2)
E_{MnSOD}^{T}	3×10 ⁻⁴	mΜ	Mitochondrial matrix concentration of MnSOD	S29	(2)
$\mathbf{E}_{CuZnSOD}^{\mathrm{T}}$	2.4×10 ⁻⁴	mM	Concentration of Cu,ZnSOD	S30	(2)
$C_{diff_{H_2O_2}}$	2×10 ⁻⁴	ms⁻¹	Diffusion constant for H_2O_2	S31	(2)
Φ_1	5.0×10 ⁻³	mM ms	Constant for GPX activity	S32,S33	(2)
Φ_2	0.75	mM ms	Constant for GPX activity	S32,S33	(2)
E_T^{GPXm}	1×10 ⁻⁴	mM	Mitochondrial matrix concentration of GPX	S32	(2)
E_T^{GPXi}	5×10 ⁻⁵	mM	Extra-matrix concentration of GPX	S33	(2)
k_{GR}^1	2.5×10 ⁻³	ms⁻¹	Catalytic constant of GR	S34,S35	(2)
$E_{\rm T}^{\rm GRm}$	2.25×10 ⁻⁴	mM	Mitochondrial matrix concentration of GR	S34	Adjusted
$E_{\rm T}^{\rm GRi}$	2.25×10 ⁻⁴	mM	Extra-matrix concentration of GR	S35	Adjusted
$\mathrm{K}_{\mathrm{M}}^{\mathrm{NADPH}}$	0.015	mM	Michaelis constant for NADPH of GR	S34,S35	(2)
$\mathrm{K}_{\mathrm{M}}^{\mathrm{GSSG}}$	0.06	mM	Michaelis constant for GSSG of GR	S34,S35	(2)
[NADPH] _i	7.5×10 ⁻²	mM	Extra-matrix NADPH concentration	S34,S35	(2)
G_{T}	6	mM	Total pool of glutathione	S40,S41	(2)
k _{grxm}	3.6×10 ⁻⁴	mM s⁻¹	Rate constant of mitochondrial matrix glutaredoxin reaction	S36	(2)
k_{grx_i}	3.6×10 ⁻⁴	mM s ⁻¹	Rate constant of extra-matrix glutaredoxin reaction	S37	(2)

Table S2 Parameter values used in the simulations: ROS production and scavenging – mitochondrial model

K_{eq}^{GRX}	1.37×10 ⁻³	mM⁻¹	Equilibrium constant of glutaredoxin	S36,S37	(2)
K_m^{Grx}	0.01	mM	Michaelis constant for GSH of GRX	\$36,\$37	(2)
K_m^{PSSG}	0.0005	mМ	Michaelis constant for glutathionylated protein of glutaredoxin	S36,S37	(2)
k ¹ _{PSH}	0.64	ms⁻¹	Rate constant of protein glutathionylation	\$38,\$39	(2)
E ^{PSH}	8×10 ⁻⁴	mΜ	Concentration of proteins that can become glutathionylated	\$38,\$39	(2)
K_M^{GSH}	0.75	mM	Michaelis constant of GSH for glutathionylation	S38,S39	(2)
K_{act}^{H202}	1×10 ⁻³	mM	Activation constant of H_2O_2 for protein glutathionylation	S38,S39	(2)
GrxT	0.002	mM	Glutaredoxin concentration	S38,S39	(2)
C _{GST}	1.5×10 ⁻⁸	ms⁻¹	Rate constant of glutathione transporter	S42	(2)
$k_{0.5}^{GST}$	2.6	mM	transport association constant of GSH	S42	(2)
E_T^{Prx3m}	3.0×10 ⁻³	mM	Mitochondrial matrix concentration of Trx peroxidase (Prx)	S43	(2)
E_T^{Prx3i}	0.1	mM	Extra-matrix concentration Prx	S44	(2)
Φ_{1Prx}	3.83	mM ms	Constant for TxPX activity	S43,S44	(2)
Φ_{2Prx}	1.85	mM ms	Constant for TxPX activity	S43,S44	(2)
E_{T}^{TrxR2m}	1.225×10 ⁻⁴	mM	Mitochondrial matrix concentration of TrxR2	S45	Adjusted
E_T^TrxRi	1.225×10 ⁻⁴	mM	Extra-matrix concentration of TrxR	S46	Adjusted
K ^{TrxSS}	0.035	mΜ	Michaelis constant for oxidized Trx [Trx[SS]] of TrxR	S45,S46	(2)
K ^{NADPH} M, Trx	0.012	mM	Michaelis constant for NADPH of TrxR	S45,S46	(2)
k_{TrxR}^1	22.75×10 ⁻³	ms⁻¹	Rate constant of TrxR	S45,S46	(2)
TrxT _m	0.025	mМ	Total pool of mitochondrial matrix thioredoxin	S47	(2)
TrxT _i	0.05	mM	Total pool of extra-matrix thioredoxin	S48	(2)

k_{CAT}^1	17	mM⁻¹ms⁻¹	Rate constant of catalase (CAT)	S49	(2)
E_{CAT}^{T}	1.0×10 ⁻⁶	mM	Extra-matrix concentration of CAT	S49	(2)
fr	5.0×10 ⁻²	mM⁻¹	Hydrogen peroxide inhibition factor of CAT	S49	(2)

Adjustments were made to several of the scavenging parameters for the cellular model to better approximate the experimental results for isolated myocytes undergoing high frequency pacing. Parameters not included in **Table S3** remain the same as those specified in **Table S2**. **Table S3 Parameter values used in the simulations: ROS production and scavenging – cellular model**

Symbol	Value	Units	Description	Eq	Reference
Φ ₁	5.0×10 ⁻⁵	mM ms	Constant for GPX activity	\$32,\$33	Adjusted
Φ_2	27	mM ms	Constant for GPX activity	\$32,\$33	Adjusted
E_T^{GPXm}	9.77×10 ⁻⁵	mM	Mitochondrial matrix concentration of GPX	S32	Adjusted
$\mathrm{E}_{\mathrm{T}}^{\mathrm{GRm}}$	2.3×10 ⁻³	mM	Mitochondrial matrix concentration of GR	S34	Adjusted
$\mathrm{K}_{\mathrm{M}}^{\mathrm{NADPH}}$	6.54×10 ⁻²	mM	Michaelis constant for NADPH of mitochondrial GR	S34,S35	Adjusted
K ^{GSSG}	20.6×10 ⁻³	mM	Michaelis constant for GSSG of mitochondrial GR	S34,S35	(10)
G _{T,mito}	1	mM	Total mitochondrial pool of glutathione	S40,S41	Adjusted
G _{T,cyto}	2	mM	Total cytosolic pool of glutathione	S40,S41	(11)
E ^{PSH}	0	mM	Concentration of proteins that can become glutathionylated	S38,S39	
GrxT	0	mM	Glutaredoxin concentration	S38,S39	
C _{GST}	0	ms ⁻¹	Rate constant of glutathione transporter	S42	
E_{T}^{TrxR2m}	3.5×10 ⁻⁴	mM	Mitochondrial matrix concentration of TrxR2	S45	(2)
E_T^{TrxRi}	3.5×10 ⁻⁴	mM	Extra-matrix concentration of TrxR	S46	(2)
K ^{NADPH} M, Trx	0.065	mM	Michaelis constant for NADPH of TrxR	S45,S46	Adjusted

Mitochondrial NADPH handling - mitochondrial model

In this section we will provide a detailed description of the mitochondrial NADPH handling.

$$NADPm = C_{NADPm} - [NADPH]_m$$

(S50)

$$V_{IDP_NADP} = \left(1 + \frac{[H^+]_m}{k_{m_IDP}^{H+}}\right) \left(1 + \frac{[ISOC]}{k_{m_IDP}^{ISOC}} + \frac{NADP_m}{k_{m_IDP}^{NADP}} \left(1 + \frac{k_{i_IDP}^{NADP}}{NADP_m}\right) + \frac{[aKG]}{k_{m_IDP}^{aKG}} + \frac{[NADPH_m]}{k_{m_IDP}^{NADPH}} + \frac{[ISOC]}{k_{m_IDP}^{ISOC}} \frac{NADP_m}{k_{m_IDP}^{NADP}} \left(1 + \frac{k_{i_IDP}^{NADP}}{k_{m_IDP}^{ARG}}\right) + \frac{[aKG]}{k_{i_IDP}^{IROC}} + \frac{[AKDPH_m]}{k_{m_IDP}^{IROC}} + \frac{[AKDPH_m]}{k_{m_IDP}^{IROC}} + \frac{[AKDPH_m]}{k_{m_IDP}^{IROC}} + \frac{[AKDPH_m]}{k_{m_IDP}^{IROC}} + \frac{[AKDPH_m]}{k_{m_IDP}^{IROC}} + \frac{[AKDP}{k_{m_IDP}^{IROC}} \left(1 + \frac{k_{i_IDP}^{IROC}}{k_{m_IDP}^{IROC}}\right)\right)$$

$$(S51)$$

$$V_{IDH_{NADP}} = \frac{V_f^{IDH} \frac{k[ISOC] NADP_m}{k_{m_{-}IDP}^{ISOC} k_{m_{-}IDP}^{NADP}} \left(1 + \frac{k_{i_{-}IDP}^{NADP}}{VNADH_m}\right) - V_b^{IDH} \frac{[aKG] [NADP_m]}{k_{m_{-}IDP}^{aKG} k_{m_{-}IDP}^{NADPH}}}{V_{IDP_{-}NADP}}$$
(S52)

 $V_{THDen} =$

$$1 + \frac{[NADH_m]}{k_{m,THD}^{NADHm}} + \frac{NAD}{k_{m,THD}^{NADP}} + \frac{[NADP_m]}{k_{m,THD}^{NADPH}} + \frac{[NADH_m]}{k_{m,THD}^{NADPH}} \frac{NADP_m}{k_{m,THD}^{NADPm}} e^{(F/10RT).\Delta\mu_H} + \frac{[NADH_m]}{k_{m,THD}^{NADPH}} \frac{[NADH_m]}{k_{m,THD}^{NADPm}} e^{(F/10RT).\Delta\mu_H} + \frac{[NADH_m]}{k_{m,THD}^{NADPH}} e^{(F/10RT).\Delta\mu_H} + \frac{[NADH_m]}{k_{m,THD}^{NADPH}} e^{(S53)}$$

$$V_{THD} = \frac{E_T^{THD} \cdot k_a^{THD} \frac{[NADH]_m NADP_m}{k_{m_THD}^{NADHm} k_{m_THD}^{NADP}} e^{(F/10RT) \cdot \Delta \mu_H} - E_T^{THD} \cdot k_b^{THD} \frac{[NADPH_m]}{k_{m_THD}^{NAD} k_{m_THD}^{NADPH}} e^{(1 - (F/10RT) \cdot \Delta \mu_H)}}{V_{THDen}}$$
(S54)

Table S4 Parameter values used in the simulations: Mitochondrial NADPH handling – mitochondrial modelSymbolValueUnitsDescriptionEq.Reference

•,•		••••••		-4.	
C_{NADPm}	0.1	mM	Sum of NADPH plus NADP $^{+}$	S50	(2)
$k_{m_IDP}^{H+}$	0.5	mM	Dissociation constant for H^+ of IDH2	S51	(2)
$k_{m_IDP}^{ISOC}$	3.9×10 ⁻³	mM	Michaelis constant for ISOC in IDH2	S51,S52	(2)
$k_{m_IDP}^{NADP}$	6.7×10 ⁻³	mM	Michaelis constant for NADP in IDH2	S51,S52	(2)
$k_{i_IDP}^{NADP}$	2×10 ⁻⁶	mM	Inhibition constant for NADP in IDH2	S51,S52	(2)
$k_{m_IDP}^{NADPH}$	1.2×10 ⁻²	mM	Michaelis constant for NADPH in IDH2	S51,S52	(2)
$k_{m_IDP}^{aKG}$	0.51	mM	Michaelis constant for α KG in IDH2	S51,S52	(2)
V_f^{IDH}	8.72×10-5	mM ms⁻¹	Maximal rate of IDH2 in the forward direction	S52	(2)
V_b^{IDH}	5.45×10 ⁻⁶	mM ms⁻¹	Maximal rate of IDH2 in the reverse direction	S52	(2)
$k_{m_THD}^{NADPH}$	0.02	mM	Michaelis constant for NADPH in transhydrogenase (THD)	\$53,\$54	(2)
$k_{m_THD}^{NADHm}$	0.01	mM	Michaelis constantfor NADH in THD	\$53,\$54	(2)
$k_{m_THD}^{NAD}$	0.125	mM	Michaelis constant for NAD in THD	\$53,\$54	(2)
$k_{m_THD}^{NADP}$	0.017	mM	Michaelis constant for NADP in THD	S53,S54	(2)

E_T^{THD}	1.1875×10 ⁻⁵	mM	Concentration of THD enzyme	S54	(2)
k_f^{THD}	1.17474	ms ⁻¹	Forward catalytic constant of THD	S54	(2)
k_b^{THD}	10	ms ⁻¹	Reverse catalytic constant of THD	S54	(2)

Mitochondrial NADPH handling – cellular model

In this section we will provide a detailed description of the mitochondrial NADPH handling.

$$V_{THD} = \frac{E_T^{THD}.k_a^{THD}}{\frac{[NADH]}{k_m^{NADPm}} e^{(xdF/RT).\Delta\mu_H} - E_T^{THD}.k_b^{THD}} \frac{NAD}{k_m^{NADPH}} e^{(x(d-1)F/RT).\Delta\mu_H}}{V_{THDen}} e^{(x(d-1)F/RT).\Delta\mu_H}$$
(S54)

Table S5 Parameter values used in the simulations: Mitochondrial NADPH handling – cellular model						
Symbol	Value	Units	Description	Eq.	Reference	
$k_{m_IDP}^{ISOC}$	0.045	mM	Michaelis constant for ISOC in IDH2	S51,S52	(12)	
$k_{m_IDP}^{NADP}$	0.046	mM	Michaelis constant for NADP in IDH2	\$51,\$52	(12)	
$k_{i_IDP}^{NADP}$	2×10 ⁻⁶	mM	Inhibition constant for NADP in IDH2	S51,S52	(2)	
$k_{m_IDP}^{NADPH}$	1.2×10 ⁻²	mM	Michaelis constant for NADPH in IDH2	S51,S52	(2)	
$k_{m_IDP}^{aKG}$	0.080	mM	Michaelis constant for α KG in IDH2	S51,S52	(12)	
V_f^{IDH}	8.72×10 ⁻²	mM ms ⁻¹	Maximal rate of IDH2 in the forward direction	S52	Adjusted	
V_{fb}^{IDH}	5.45×10 ⁻³	mM ms⁻¹	Maximal rate of IDH2 in the reverse direction	S52	Adjusted	
$k_{m_THD}^{NADPH}$	4×10 ⁻³	mM	Michaelis constant for NADPH in transhydrogenase (THD)	\$53,\$54	Adjusted	
$k_{m_THD}^{NADHm}$	0.01	mM	Michaelis constant for NADH in THD	S53,S54	(2)	
$k_{m_THD}^{NAD}$	0.125	mM	Michaelis constant for NAD in THD	\$53,\$54	(2)	
$k_{m_THD}^{NADP}$	0.02	mM	Michaelis constant for NADP in THD	\$53,\$54	Adjusted	
E_T^{THD}	1×10 ⁻³	mM	Concentration of THD enzyme	S54	Adjusted	
k_f^{THD}	1.17474	ms ⁻¹	Forward catalytic constant of THD	S54	(2)	
k_b^{THD}	17.2756	ms ⁻¹	Reverse catalytic constant of THD	S54	Adjusted	

d	0.5	(13)
x	0.1	(13)

Mitochondrial Model of Energy Metabolism and ion dynamics

The detailed explanation of the mathematical expressions and parameters of the model were previously

presented in Wei et al. (2011).

Computational modeling of Na⁺/H⁺ exchanger (NHE) and phosphate carrier (PiC)

$$J_{NHE} = c_{NHE} \frac{\frac{\beta_1^+ \beta_2^+ - \beta_1^- \beta_2^-}{\beta_1^+ + \beta_1^- + \beta_2^+ + \beta_2^-}}{1 + 10^{n_i(pH_i - pK_i)}}$$

where

$$\beta_{1}^{+} = \frac{k_{1}^{+}K_{H_{-}NHE}[Na^{+}]_{m}}{K_{H_{-}NHE}[Na^{+}]_{m} + K_{H_{-}NHE}K_{Na_{-}NHE} + K_{Na_{-}NHE}[H^{+}]_{m}}$$

$$\beta_{2}^{+} = \frac{k_{4}^{+}K_{Na_{-}NHE}[H^{+}]_{i}}{K_{H_{-}NHE}[Na^{+}]_{i} + K_{H_{-}NHE}K_{Na_{-}NHE} + K_{Na_{-}NHE}[H^{+}]_{i}}$$

$$\beta_{1}^{-} = \frac{k_{1}^{-}K_{H_{-}NHE}[Na^{+}]_{i}}{K_{H_{-}NHE}[Na^{+}]_{i} + K_{H_{-}NHE}K_{Na_{-}NHE} + K_{Na_{-}NHE}[H^{+}]_{i}}$$

$$\beta_{2}^{-} = \frac{k_{4}^{-}K_{Na_{-}NHE}[H^{+}]_{m}}{K_{H_{-}NHE}[Na^{+}]_{m} + K_{H_{-}NHE}K_{Na_{-}NHE} + K_{Na_{-}NHE}[H^{+}]_{m}}$$

$$V = \frac{[H_{2}PO_{4}^{2^{-}}]_{i}[OH^{-}]_{m}}{K_{H_{-}NHE}[Na^{+}]_{m}} + K_{H_{-}NHE}K_{Na_{-}NHE} + K_{Na_{-}NHE}[H^{+}]_{m}}$$

$$J_{PIC} = c_{PiC} \frac{V_{PIC,i} \frac{[H_2 PO_4^{-1}]_{II} O II - I_m]_{II}}{K_{Pi,i} K_{OH,m}} - V_{PIC,b} \frac{[H_2 PO_4^{-1}]_{II} O II - I_i]_{II}}{K_{Pi,m} K_{OH,i}}}{\left(1 + \frac{[H_2 PO_4^{2^-}]_{II}}{K_{Pi,i}} + \frac{[OH^-]_{II}}{K_{OH,m}} + \frac{[OH^-]_{II}}{K_{Pi,m}} + \frac{[OH^-]_{II}}{K_{OH,i}} + \frac{[H_2 PO_4^{2^-}]_{II} [OH^-]_{II}}{K_{Pi,m} K_{OH,i}} + \frac{[H_2 PO_4^{2^-}]_{II} [OH^-]_{II}}{K_{Pi,m} K_{OH,i}} + \frac{[H_2 PO_4^{2^-}]_{II} [OH^-]_{II}}{K_{Pi,m} K_{OH,m}}\right)}$$

Symbol	Value	Units	Description	Reference
k_1^+	0.0252	ms ⁻¹	NHE forward rate constant	(2)
k_1^-	0.0429	ms ⁻¹	NHE backward rate constant	(2)
k_4^+	0.16	ms ⁻¹	NHE forward rate constant	(2)
k_4^-	0.0939	ms ⁻¹	NHE backward rate constant	(2)
K _{Na_NHE}	24	mM	Na+Dissociation constant	(2)
K_{H_NHE}	1.585×10 ⁻⁴	mM	H+Dissociation constant	(2)
рК _і	8.52		Proton inhibitory constant	(2)
n _i _NHE	3		Hill coefficient for H+ binding	(2)
C _{NHE}	0.00785 (mitochondria)	mM	NHE concentration	(2)
K _{Pi,i}	11.06	mM	Extra-matrix Pi binding constant	(2)
К _{Рі,т}	11.06	mM	Mitochondrial matrix Pi binding constant	(2)
K _{OH,i}	4.08×10 ⁻⁵	mM	Extra-matrix OH- binding constant	(2)
K _{OH,m}	4.08×10 ⁻⁵	mM	Mitochondrial matrix OH- binding constant	(2)
V _{PIC,f}	90	µmol min ⁻¹ mg protein ⁻¹	Forward V_{max}	(2)
V _{PIC,b}	90	µmol min ⁻¹ mg protein ⁻¹	Backward V_{max}	(2)
C _{PiC}	4.9	mg protein ml ⁻¹	PiC concentration	Adjusted

Table S6 Parameter values for the mitochondrial Na+/H+ proton exchanger and phosphate carrier – mitochondrial and cellular models

TCA cycle rate equations

$$V_{CS} = \frac{k_{cat}^{CS} E_{T}^{CS}}{\left(1 + \frac{K_{M}^{AcCoA}}{[AcCoA]}\right) \left(1 + \frac{K_{M}^{OAA}}{[OAA]}\right)}$$

$$\begin{split} \mathbf{V}_{ACO} &= \mathbf{k}_{f}^{ACO} \left([\text{CIT}] - \frac{[\text{ISOC}]}{\mathbf{K}_{E}^{ACO}} \right) \\ \mathbf{V}_{IDH} &= k_{cat}^{IDH} E_{T}^{IDH} \left[\left(1 + \frac{[H^{+}]_{m}}{k_{h,1}} + \frac{k_{h,2}}{[H^{+}]_{m}} \right) + f_{i}^{IDH} \left(\frac{K_{Mah}^{NAD}}{[NAD]} \right) + \dots \\ & f_{a}^{IDH} \left(\frac{K_{M}^{ISOC}}{[ISOC]} \right)^{n} + f_{a}^{IDH} f_{i}^{IDH} \left(\frac{K_{M}^{ISOC}}{[ISOC]} \right)^{n} \left(\frac{K_{Mah}^{NAD}}{[NAD]} \right) \right] \\ f_{a}^{IDH} &= \left[\left(1 + \frac{[ADP^{3-}]_{m}}{K_{ADP}^{a}} \right) \left(1 + \frac{[Ca^{2+}]_{m}}{K_{ca}^{a}} \right) \right]^{-1} \\ f_{i}^{IDH} &= \left(1 + \frac{[NADH]}{K_{i,NADH}} \right) \\ \hline \mathbf{V}_{KGDH} &= \frac{k_{cat}^{KGDH} E_{T}^{KGDH}}{1 + \frac{[H^{+}]_{m}}{k_{h,1a}} + \frac{k_{h,2a}}{[H^{+}]_{m}} + f_{a}^{KGDH} \left(\frac{k_{M}^{KGD}}{[aKG]} \right)^{n_{aKG}} + f_{a}^{KGDH} \frac{k_{M}^{KAD}}{[NAD]} \\ f_{a}^{KGDH} &= \left[\left(1 + \frac{[Mg^{2+}]}{K_{D}^{M2^{2}}} \right) \left(1 + \frac{[Ca^{2+}]_{m}}{K_{D}^{C2^{2+}}} \right) \right]^{-1} \\ \hline \mathbf{V}_{SL} &= k_{f}^{SL} \left[[SCoA] [ADP]_{m} [Pi]_{m} - \frac{[Suc] [ATP]_{m} [CoA]}{K_{E,app}^{SL}} \right] \end{split}$$

$$K_{E,app}^{SL} = K_{Eq}^{SL} \frac{P_{SUC} P_{ATP}}{P_{Pi} P_{ADP}}$$

_

Succinate dehydrogenase is included in the Table comprising the respiratory complexes

$$V_{FH} = k_f^{FH} \left([FUM] - \frac{[MAL]}{K_E^{FH}} \right)$$

$$V_{MDH} = \frac{k_{cat}^{MDH} E_T^{MDH} f_{h,a} f_{h,i}}{1 + \frac{K_M^{MAL}}{[MAL]} \left(1 + \frac{[OAA]}{K_i^{OAA}}\right) + \frac{K_M^{NAD}}{[NAD]} + \frac{K_M^{MAL}}{[MAL]} \left(1 + \frac{[OAA]}{K_i^{OAA}}\right) \frac{K_M^{NAD}}{[NAD]}}$$

$$f_{h,a} = \left(1 + \frac{[H^+]}{k_{h1}} + \frac{[H^+]^2}{k_{h1}k_{h2}}\right)^{-1} + k_{offset}$$

$$f_{h,i} = \left(1 + \frac{k_{h3}}{[H^+]} + \frac{k_{h3}k_{h4}}{[H^+]^2}\right)$$

$$V_{AAT} = k_f^{AAT} [OAA] [GLU] \frac{k_{ASP} K_E^{ATT}}{\left(k_{ASP} K_E^{AAT} + [\alpha KG] k_f^{AAT}\right)}$$

Table 7 Parameter values used in the simulations: Tricarboxylic acid cycle mitochondrial model						
Symbol	Value	Units	Description	Reference		
[AcCoA]	1×10 ⁻⁵ -1	mM	Acetyl CoA concentration	(2)		
k_{cat}^{CS}	2.3523×10 ⁻⁴	ms⁻¹	Catalytic constant of CS	(2)*		
E_T^{CS}	0.4	mM	Concentration of CS	(2)		
$K_{\scriptscriptstyle M}^{\scriptscriptstyle AcCoA}$	0.0126	mM	Michaelis constant for AcCoA	(2)		
K_{M}^{OAA}	6.4×10 ⁻⁴	mM	Michaelis constant for OAA	(2)		
$C_{k\mathrm{int}}$	1.3	mM	Sum of TCA cycle intermediates	(2)		
k_f^{ACO}	1.1688×10 ⁻⁴	ms⁻¹	Forward rate constant of ACO	(2)*		
K_{E}^{ACO}	2.22		Equilibrium constant of ACO	(2)		
$K_{i,NADH}$	0.19	mM	Inhibition constant by NADH	(2)		
k_{cat}^{IDH}	11.88	ms⁻¹	Rate constant of IDH	(2)*		
E_T^{IDH}	0.109	mM	Concentration of IDH	(2)		
$k_{h,1}$	1×10 ⁻⁵	mM	Inoization constant of IDH	(2)		
<i>k</i> _{<i>h</i>,2}	9×10 ⁻⁴	mM	Inoization constant of IDH	(2)		
K_{M}^{ISOC}	1.52	mM	Michaelis constant for isocitrate	(2)		
n _i	2.0		Cooperativity for isocitrate	(2)		

$K_{\scriptscriptstyle Midh}^{\scriptscriptstyle NAD}$	0.923	mM	Michaelis constant for NAD^+	(2)
K^{a}_{ADP}	0.62	mM	Activation constant by ADP	(2)
K^a_{Ca}	5×10 ⁻⁴	mM	IDH activation constant for Ca ²⁺	(2)
E_T^{KGDH}	0.5	mM	Concentration of KGDH	(2)
k_{cat}^{KDGH}	0.0132	ms⁻¹	Rate constant of KGDH	(2)*
$k_M^{lpha KG}$	30	mM	Michaelis constant for α KG	(2)
$K_{M_kgdh}^{NAD}$	38.7	mМ	Michaelis constant for NAD ⁺ of KGDH	(2)
$k_{h,1a}$	4×10 ⁻⁵	mM	Ionization constant of KGDH	(2)
$k_{h,2a}$	7×10 ⁻⁵	mM	Ionization constant of KGDH	(2)
$K_D^{Mg^{2+}}$	0.0308	mM	Activation constant for Mg ²⁺	(2)
$K_D^{Ca^{2+}}$	1.5×10 ⁻⁴	mM	Activation constant for Ca ²⁺	(2)
$n_{\alpha KG}$	1.2		Hill coefficient of KGDH for $lpha$ KG	(2)
$[Mg^{2+}]_m$	0.4	mΜ	Mg ²⁺ concentration in mitochondria	(2)
$[Mg^{2+}]_i$	1.0	mΜ	Mg ²⁺ concentration in cytosol/buffer	(2)
k_f^{SL}	0.028	mM [⁻] ¹ms ^{⁻1}	Forward rate constant of SL	(2)*
K_E^{SL}	3.115		Equilibrium constant of the SL reaction	(2)
[CoA]	0.02	mM	Coenzyme A concentrations.	(2)
k_f^{FH}	8.3×10 ⁻³	ms ⁻¹	Forward rate constant for FH.	(2)*
K_E^{FH}	1.0		Equilibrium constant of FH	(2)
k_{h1}	1.131×10 ⁻⁵	mM	Ionization constant of MDH	(2)

k _{h2}	26.7	mM	Ionization constant of MDH	(2)
k_{h3}	6.68×10 ⁻⁹	mM	Ionization constant of MDH	(2)
k_{h4}	5.62×10 ⁻⁶	mM	Ionization constant of MDH	(2)
k_{offset}	3.99×10 ⁻²		Offset of MDH pH activation factor	(2)
k_{cat}^{MDH}	0.1242	ms⁻¹	Rate constant of MDH	(2)*
E_T^{MDH}	0.154	mM	Total MDH enzyme concentration	(2)
$K_{_M}^{_{MAL}}$	1.493	mM	Michaelis constant for malate	(2)
K_i^{OAA}	0.031	mM	Inhibition constant for oxaloacetate	(2)
K_M^{NAD}	0.2244	mM	Michaelis constant for NAD^+	(2)
[GLU]	1×10 ⁻⁵ - 30	mM	Glutamate concentration.	(2)
k_f^{AAT}	0.0214	ms ⁻¹	Forward rate constant of AAT	(2)*
K_{E}^{AAT}	6.6		Equilibrium constant of AAT	(2)
k _{ASP}	1.5×10 ⁻⁶	ms⁻¹	Rate constant of aspartate consumption	(2)

*While these parameters may differ from the supplement of Kembro et al., they were taken from code provided by those authors that successfully reproduces the figures from the paper.

Table 8 Para	meter values used	in the simula	ations: Tricarboxylic acid cycle mitochondr	ial model
Symbol	Value	Units	Description	Reference
[AcCoA]	1	mM	Acetyl CoA concentration	(2)
k_{cat}^{CS}	1.5891×10 ⁻⁴	ms⁻¹	Catalytic constant of CS	(2)*
$k_{\scriptscriptstyle f}^{\scriptscriptstyle ACO}$	7.8959×10 ⁻⁵	ms⁻¹	Forward rate constant of ACO	(2)*
k_{cat}^{IDH}	0.5350	ms ⁻¹	Rate constant of IDH	(2)*

k_{cat}^{KDGH}	0.0179	ms ⁻¹	Rate constant of KGDH	(2)*
k_f^{SL}	0.0284	mM⁻ ¹ms⁻¹	Forward rate constant of SL	(2)*
k_f^{FH}	8.4×10 ⁻³	ms⁻¹	Forward rate constant for FH.	(2)*
k_{cat}^{MDH}	0.1259	ms⁻¹	Rate constant of MDH	(2)*
[GLU]	30	mM	Glutamate concentration.	(2)
$k_{f}^{\scriptscriptstyle AAT}$	0.0217	ms⁻¹	Forward rate constant of AAT	(2)*

Oxidative phosphorylation equations for the mitochondrial model are the same as for Gauthier et al. (14) with the exception of k_{010} , which was increased from 50 to 600 to match experimental data from Aon et al. 2012 (1) on ROS production from isolated mitochondria. Rate constants were scaled to yield fluxes in /ms units. Parameter changes for the cellular model are noted below.

Symbol	Value	Units	Description	Reference
ρ _{c1}	24.9302	mM	Complex I concentration	Adjusted
a ₆₁ *	3.3290×10 ⁷	mM/s		Adjusted
a ₁₆ *	432.7642	mM/s		Adjusted
k ₀₁₀	1700	mM/min	Reverse reaction constant for reduction of oxygen by SQ _p	Adjusted

Table 9 Parameter values used in the simulations: electron transport chain -- cellular model

Symbol	Value	Units	Description	Reference
p_1	1.346×10 ⁻⁴		Sum of products of rate constants	
<i>P</i> ₂	7.739×10 ⁻⁷		Sum of products of rate constants	
<i>P</i> ₃	6.65×10 ⁻¹⁵		Sum of products of rate constants	
$ ho^{{\scriptscriptstyle F}{\scriptscriptstyle 1}}$	5	mM	Concentration of F_1F_0 -ATPase	(2)

$K_{\scriptscriptstyle eq}^{\scriptscriptstyle ATPase}$	1.71×10 ⁶		Equilibrium constant of ATP synthesis	
[Pi] _i	3	mΜ	Inorganic phosphate concentration	
C _A	1.01	mM	Total sum of adenine nucleotides	(2)*
V_{maxANT}	3.15	mM ms ⁻¹	Maximal rate of the ANT	(2)
h ^{ant}	0.5		Fraction of $_{\Delta \Psi_{B}}$	
gн	2×10 ⁻⁶	mM ms⁻¹ mV⁻¹	lonic conductance of the inner membrane	(2)
C_{PN}	1.0	mM	Total sum of pyridine nucleotides	
C _{mito}	1.812×10 ⁻³	mM mV⁻¹	Inner membrane capacitance	

Table 11 Parameter values used in the simulations: oxidative phosphorylation -- cellular model

Symbol	Value	Units	Description	Reference	
$ ho^{_{F1}}$	5	mM	Concentration of F_1F_0 -ATPase	Adjusted	

Table 12 Parameter values used in the simulations: Mitochondrial Ca ²⁺ handling – mitochondrial model				
Symbol	Value	Units	Description	

_

oynibol	Value	enits	Beschption
$V_{ m max}^{uni}$	4.46×10 ⁻³	mM ms ⁻¹	V _{max} uniporter Ca ²⁺ transport
$\Delta \Psi^\circ$	91	mV	Offset membrane potential
K _{act}	3.8×10 ⁻⁴	mM	Activation constant
K _{trans}	0.019	mM	K _d for translocated Ca ²⁺
L	110.0		$K_{\rm eq}$ for conformational transitions in uniporter
n _a	2.8		Uniporter activation cooperativity
$V_{ m max}^{\it NaCa}$	1.83×10 ⁻⁴	mM ms⁻¹	V_{max} of Na ⁺ /Ca ²⁺ exchanger
b	0.5		${}_{\Delta \Psi_m}$ dependence on Na ⁺ /Ca ²⁺ exchanger

K _{Na}	9.4	mM	Exchanger Na ²⁺ constant
K_{Ca}	3.75×10 ⁻⁴	mM	Exchanger Ca ²⁺ constant
n	3.0		Na ⁺ /Ca ²⁺ exchanger cooperativity
$\delta_{\scriptscriptstyle Ca}$	3 ×10 ⁻⁴		Fraction of free $[Ca^{2+}]_m$

Table 13 Parameter values used in the simulations: Mitochondrial Ca²⁺ handling – cellular modelSymbolValueUnitsDescriptionReference

$V_{ m max}^{uni}$	1.2295×10 ⁻⁴	mM ms ⁻¹	V _{max} uniporter Ca ²⁺ transport	Adjusted
$V_{ m max}^{\it NaCa}$	4.6650×10 ⁻⁵	mM ms⁻¹	V_{max} of Na ⁺ /Ca ²⁺ exchanger	Adjusted

For Ru360 protocols, Vuni was 99% blocked. For CGP protocols, VNaCa was 85% blocked.

Symbol	Value	Units	Description	Reference
$\delta_{\scriptscriptstyle H}$	1×10 ⁻⁵	dimensionless	mitochondria H⁺ buffering capacity	(2)
K _{a,ADP}	4.17×10 ⁻⁷		ADP dissociation constant	(2)
K _{a,ATP}	3.31×10 ⁻⁷		ATP dissociation constant	(2)
K _{a,Pi}	1.78×10 ⁻⁷		Pi dissociation constant	(2)
K _{Mg,ATP}	6.46×10 ⁻⁵		Mg ²⁺ ATP dissociation constant	(2)
K _{Mg,ADP}	5.62×10 ⁻⁴		Mg ²⁺ ADP dissociation constant	(2)
K _{a,SUC}	6.3×10 ⁻⁶		Ka of succinate dissociation constant	(2)
K_{a,H_2O}	1×10 ⁻¹⁴	Μ	dissociation constant for water	(2)
$\left[H^{+} ight]_{i}$	1×10 ⁻⁴	mM	cytosolic H^+ concentration	(2)
$[Na^+]_i$	10	mM	cytosolic Na $^{+}$ concentration	(2)*
$[Ca^{2+}]_i$	1×10 ⁻⁴	mM	cytosolic Ca ²⁺ concentration	(2)
[ADP] _i	0.01~1.0	mM	cytosolic ADP concentration	(2)

 Table 14 Parameter values used in the simulations: Mitochondrial H⁺ and Na⁺ handling – mitochondrial model

 Symple 1
 Value

 Description
 Description

Symbol	Value	Units	Description	Reference
$[Na^+]_i$	5-15	mM	cytosolic Na $^{+}$ concentration	(15)
$[Ca^{2+}]_i$	1×10 ⁻⁴	mM	diastolic cytosolic Ca ²⁺ concentration	(2)

Table 15 Parameter values used in the simulations: Mitochondrial H^+ and Na^+ handling – cellular model

Control Nai is 5mM, heart failure simulations used 15mM.

Table 16 Parameter values used in the simulations: ROS transport – mitochondrial and cellular models

Symbol	Value	Units	Description	Reference
а	1×10 ⁻³	dimensionless	Basal IMAC conductance	(2)
b	1×10 ⁴	dimensionless	Activation factor by cytoplasmic O_2^{-1}	(2)
K _{cc}	1×10 ⁻²	mM	Activation constant by cytoplasmic O_2^{-}	(2)
GL	3.5×10 ⁻⁸		Integral conductance for IMAC	(2)
G _{max}	3.9085×10 ⁻⁶		Leak conductance of IMAC at saturation	(2)
К	7.0×10 ⁻²	mV ⁻¹	Steepness factor	(2)
$\Delta \Psi^b_m$	4	mV	Potential at half saturation	(2)
j	0.1	dimensionless	Fraction of IMAC conductance	(2)
$\frac{RT}{F}$	26.730818			(2)

 Aon, M. A., B. A. Stanley, V. Sivakumaran, J. M. Kembro, B. O'Rourke, N. Paolocci, and S. Cortassa. 2012. Glutathione/thioredoxin systems modulate mitochondrial H2O2 emission: An experimental-computational study. The Journal of general physiology 139:479-491.

^{2.} Kembro, J. M., M. A. Aon, R. L. Winslow, B. O'Rourke, and S. Cortassa. 2013. Integrating Mitochondrial Energetics, Redox and ROS Metabolic Networks: A Two-Compartment Model. Biophysical journal 104:332-343.

- 3. Cortassa, S., M. A. Aon, R. L. Winslow, and B. O'Rourke. 2004. A mitochondrial oscillator dependent on reactive oxygen species. Biophysical journal 87:2060-2073.
- 4. Fernandes, A. P., and A. Holmgren. 2004. Glutaredoxins: glutathione-dependent redox enzymes with functions far beyond a simple thioredoxin backup system. Antioxidants & redox signaling 6:63-74.
- 5. Holmgren, A. 1989. Thioredoxin and glutaredoxin systems. J Biol Chem 264:13963-13966.
- 6. Cox, A. G., C. C. Winterbourn, and M. B. Hampton. 2010. Mitochondrial peroxiredoxin involvement in antioxidant defence and redox signalling. Biochem J 425:313-325.
- Sztajer, H., B. Gamain, K. D. Aumann, C. Slomianny, K. Becker, R. Brigelius-Flohe, and L. Flohe.
 2001. The putative glutathione peroxidase gene of Plasmodium falciparum codes for a thioredoxin peroxidase. J Biol Chem 276:7397-7403.
- 8. Pillay, C. S., J. H. Hofmeyr, B. G. Olivier, J. L. Snoep, and J. M. Rohwer. 2009. Enzymes or redox couples? The kinetics of thioredoxin and glutaredoxin reactions in a systems biology context. Biochem J 417:269-275.
- 9. Eckenroth, B., K. Harris, A. A. Turanov, V. N. Gladyshev, R. T. Raines, and R. J. Hondal. 2006. Semisynthesis and characterization of mammalian thioredoxin reductase. Biochemistry 45:5158-5170.
- 10. Carlberg, I., and B. Mannervik. 1984. Glutathione reductase. Methods in enzymology 113:484-490.
- 11. Zhou, L., S. Cortassa, A.-C. Wei, M. A. Aon, R. L. Winslow, and B. O'Rourke. 2009. Modeling Cardiac Action Potential Shortening Driven by Oxidative Stress-Induced Mitochondrial Oscillations in Guinea Pig Cardiomyocytes. Biophysical journal 97:1843-1852.
- 12. Popova, T., M. A. Carvalho, L. Matasova, and L. Medvedeva. 2007. Regulation of mitochondrial NADP-isocitrate dehydrogenase in rat heart during ischemia. Molecular and Cellular Biochemistry 294:97-105.
- 13. Sazanov, L. A., and J. B. Jackson. 1994. Proton-translocating transhydrogenase and NAD- and NADP-linked isocitrate dehydrogenases operate in a substrate cycle which contributes to fine regulation of the tricarboxylic acid cycle activity in mitochondria. FEBS Letters 344:109-116.
- Gauthier, L. D., J. L. Greenstein, S. Cortassa, B. O'Rourke, and R. L. Winslow. 2013. A Computational Model of Reactive Oxygen Species and Redox Balance in Cardiac Mitochondria. Biophysical Journal 105:1045-1056.
- 15. Kohlhaas, M., T. Liu, A. Knopp, T. Zeller, M. F. Ong, M. Böhm, B. O'Rourke, and C. Maack. 2010. Elevated cytosolic Na+ increases mitochondrial formation of reactive oxygen species in failing cardiac myocytes. Circulation 121:1606-1613.