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Freezing period strongly impacts the emergence of a
global consensus in the voter model
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The presence of optimal freezing period Hopt: A simple proof.
According to the theoretical framework studying the dynamics of naming games [1, 2],
we first analyze the scenario of H = 1. Let us consider a single interface separating two
neighboring opinion clusters: in each one, all voters possess the same opinion (assuming
+1 in the left-hand cluster and −1 in the right-hand cluster). For simplicity, we denote
a voter with the opinion +1 and persistence time τ ≥ H as the individual A, and regard
a voter with the opinion −1 and persistence time τ ≥ H as the individual B. Similarly,
a voter having the opinion +1 and persistence time τ < H is denoted by the individual
C, and a voter holding the opinion −1 and persistence time τ < H is represented by
the individual D. The cluster in which all voters share the same opinion A(B,C,D)
is named A(B,C,D)-type cluster. We tag an interface with CmDn, if it has a C-type
cluster of length m and a D-type cluster of length n (i.e., ...AAAC...CD...DBBB...) in
left- and right-hand sides, respectively. In the same way, an interface separating A- and
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B-type clusters (i.e., ...AAABBB...) is registered as C0D0; an interface separating a C-
type cluster of length m and a B-type cluster (i.e., ...AAAC...CBBB...) is denoted by
CmD0; and an interface separating an A-type cluster and a D-type cluster of length n
(i.e., ...AAAD...DBBB...) is represented by C0Dn. These four cases cover the situations
studied here.
With these definitions, we deduce the stationary probability that two neighboring clusters
are separated by a CmDn interface. In a one-dimensional lattice composed of N sites,
which are initially partitioned into two adjacent clusters of A and B (due to H = 1, we
neglect the fact that at the first time step the opinion of each voter is either C or D),
the probability of selecting the unique C0D0 interface is 1/N . The dynamical rules result
in the fact that a C1D0 or C0D1 interface will be generated with the same probability.
Therefore, in a single time step, a C0D0 interface becomes a C1D0(C0D1) interface with
the probability p00,10 = 1/2N(p00,01 = 1/2N); otherwise, it stays in C0D0. With respect to
C1D0, the interface may evolve into C0D0, C2D0, or C0D1 with the probabilities p10,00 =
(1/2N) + (1 − q)/2N , p10,20 = 1/2N , and p10,01 = q/2N , respectively. Accordingly, the
interface C0D1 may evolve into C0D0, C0D2, or C1D0. Subsequently, the C2D0 interface
may evolve into C0D0, C1D0, or C1D1 with the probabilities p20,00 = (1/2N)+(1−q)/2N ,
p20,10 = 1/N , and p20,11 = q/2N , respectively. Note that we neglect the possible transition
that the C2D0 interface evolves into C3D0, since the precondition H = 1 limits that the
width of interface is small, i.e., m+n ≤ 2. The transition rate of C0D2 or C1D1 interface
is derived in the same way. We acquire the stationary probabilities of the Markovian
chain defined by the transition matrix

U =


1− 1/N 1/2N 1/2N 0 0 0

(2− q)/2N 1− 3/2N q/N 1/2N 0 0
(2− q)/2N q/2N 1− 3/2N 0 1/2N 0
(2− q)/2N 1/N 0 1− 2/N 0 q/2N
(2− q)/2N 0 1/N 0 1− 2/N q/2N

0 (2− q)/2N (2− q)/2N q/2N q/2N 1− 2/N


,

(S.1)
where the basis is {C0D0, C1D0, C0D1, C2D0, C0D2, C1D1}. The stationary probability
vector P̂= P0, P1, P2, ..., P5 is obtained by solving P̂(t + 1)-P̂(t) = 0, i.e., (UT − I)P̂= 0,
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which results in 

P0 =
q3 − 2q2 − 10q + 20

q3 − 4q2 − 9q + 40
,

P1 =
8− q2

q3 − 4q2 − 9q + 40
,

P2 =
8− q2

q3 − 4q2 − 9q + 40
,

P3 =
2

q3 − 4q2 − 9q + 40
,

P4 =
2

q3 − 4q2 − 9q + 40
,

P5 =
q

q3 − 4q2 − 9q + 40
.

(S.2)

Since the width of interface is small (m + 2n ≤ 2) in this case, we assume that these
interfaces are localized around their central position x. The central position is defined as
x = (xleft + xright)/2, where xleft is the position of the rightmost side of the left-hand
A-type cluster, and xright is the position of the leftmost site of right-hand B-type cluster.
With the transition between interfaces, i.e., CmDn → Cm′Dn′ , the central position x
will have a set of possible movements. If we define W (x → x ± δ) as the transition
probability for an interface centered at x moving to the position x ± δ, the symmetric
items characterizing the movements of interfaces is obtained by enumeration of all possible
cases:

W (x → x+
1

2
) =

1

2N
P1 +

3− q

2N
P2 + 0 ∗ P3 +

1

N
P4 + 0 ∗ P5 +

2− q

2N
P6, (S.3)

W (x → x− 1

2
) =

1

2N
P1 + 0 ∗ P2 +

3− q

2N
P3 + 0 ∗ P4 +

1

N
P5 +

2− q

2N
P6, (S.4)

W (x → x+ 1) =
2− q

2N
P4, (S.5)

W (x → x− 1) =
2− q

2N
P5. (S.6)

With Eq.S.2, we have the specific values of the transition probabilities in the above equa-
tions.
Denote P(x, t) as the probability that the interface is located in the position x at time
t. With q = 0.01, we present the numerical results of the evolution of the position of a
typical interface ...AAABBB... in Figure S1. The probability P(x, t) shows a Gaussian
distribution around the initial position, while the mean-square displacement reached by
the interface at time t accords with a diffusion law < x2 >= 2DH=1

exp t/N with the diffusion
coefficient DH=1

exp ≃ 0.1997.
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In the standard voter model, there exists only one kind of interface (i.e., ...AAABBB...).
Under the above theoretical framework, it is evident that at each time step the central
position x can only move to the position x ± 1

2
, and thus the transition probability only

has one symmetric contribution:

W (x → x± 1

2
) =

1

2N
. (S.7)

The numerical results show that the diffusion coefficient DH=0
exp = 0.125.

The dynamics of the voter model on a one-dimensional lattice can be sketched as follows:
at the initial time steps, local interactions lead to the formation of a great many of small
opinion clusters. As time proceeds, the interfaces begin to diffuse. Once two interfaces
encounter each other, the cluster located between the interfaces annihilates, which means
that these two interfaces will vanish and the adjacent clusters merge together to form a
larger cluster. Since the diffusion coefficient of the scenario H = 1 is larger than that of
the standard voter model (H = 0), the introduction of the freezing period H = 1 reduces
the consensus time Tc.
When H > 1, the theoretical framework is also available in similar analysis. Due to the
fact that the number of possible cluster interfaces becomes very huge (the procedure will
be utmostly complicated), we can not present the details in the present work. But if
H increases to an extremely large value, e.g., H = 4000, it is obvious that the freezing
period itself will sustain the existence of opinion clusters for a long time. Meanwhile, a
long freezing period seriously impairs the effect of biased random walks of the interfaces
(as shown in Figure 3 of the text), which dramatically defers the formation of global
consensus. Since the variance of Tc experiences a valley as the freezing period H increases,
we ensure that an optimal value of H (Hopt) producing the shortest Tc definitely exists.
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Figure S1. Evolution of the position of a given interface ...AAABBB... with
H = 1, q = 0.01. (a) Evolution of the distribution P(x, t). (b) Evolution of the
mean-square displacement, which shows that there presents a diffusion law
< x2 >= 2Dexpt/N with a coefficient DH=1

exp ≃ 0.1997.


