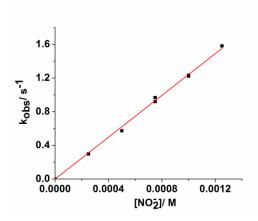
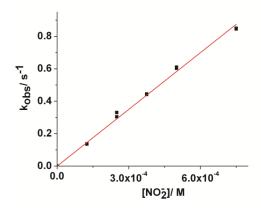
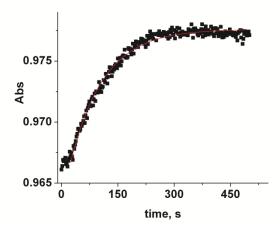

Supporting Information

Mechanistic Studies on the Reaction of Nitrocobalamin with Glutathione: Kinetic evidence for formation of an aquacobalamin intermediate.


David T. Walker, Rohan S. Dassanayake, Kamille A. Garcia, Riya Mukherjee and Nicola E. Brasch


Figure S1. Plot of absorbance versus time for the decomposition of GSCbl (4.0 x 10^{-5} M) at pH 4.00. Data has been fitted to a first-order rate equation, giving $k_{.2} = (7.4 \pm 0.5)$ x 10^{-4} s⁻¹.


Figure S2. (a) Plot of observed rate constant, k_{obs} , versus GSH concentration for the reaction between H_2OCbl^+ (5.0 x 10^{-5} M) and varying concentrations of GSH at pH 4.00 (25.0 °C, 0.020 M NaOAc, I = 1.0 M, NaCF₃SO₃). Data have been fitted to a line passing through 7.4 x 10^{-4} s⁻¹ (see Figure S1), giving $k_2 = 12.00 \pm 0.25$ M⁻¹ s⁻¹. (b) Typical plot of absorbance at 354 nm versus time for the reaction of H_2OCbl^+ with GSH (5.00 x 10^{-2} M) at pH 4.00. Data were fitted to a first-order rate equation, giving $k_{obs} = 0.574 \pm 0.001$ s⁻¹.

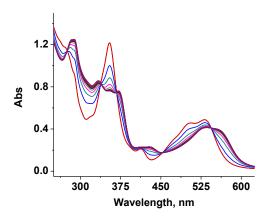

Figure S3. Plot of k_{obs} versus nitrite concentration for the reaction between H_2OCbl^+ (5.0 x 10^{-5} M) with varying concentrations of nitrite at pH 4.00 (25.0 °C, 0.020M NaOAc, I = 1.0 M, NaCF₃SO₃). Data have been fitted to a line passing through the origin, giving $k_{-1} = (1.25 \pm 0.02) \times 10^3 \, \text{M}^{-1} \, \text{s}^{-1}$.

Figure S4. Plot of k_{obs} versus nitrite concentration for the reaction between H_2OCbl^+ (5.0 x 10^{-5} M) with varying concentrations of nitrite at pH 7.00 (25.0 °C, 0.020 M KH₂PO₄, I = 1.0 M, NaCF₃SO₃). Data have been fitted to a line passing through the origin, giving $k_{-1} = (1.20 \pm 0.02) \times 10^3 M^{-1} s^{-1}$.

Figure S5. Plot of absorbance at 350 nm versus time for the partial decomposition of NO₂Cbl (5.0 x 10^{-5} M) to H₂OCbl⁺ at pH 4.00 (25.0 °C, 0.020 M NaOAc, I = 1.0 M, NaCF₃SO₃). Data has been fitted to a first-order rate equation, giving $k_{obs} = (1.58 \pm 0.01)$ x 10^{-2} s⁻¹. The overall absorbance change is 0.013.

Figure S6. UV-vis spectra for the reaction of GSH (5.00 x 10^{-2} M) with NO₂Cbl (6.0 x 10^{-5} M) at pH 7.00 (25.0 °C, 0.020 M KH₂PO₄, I = 1.0 M, NaCF₃SO₃). Selected spectra for the reaction are shown every 1.00 min. Clean isobestic points are observed.

Table 1. Observed rate constants for the partial decomposition of NO₂Cbl to H₂OCbl⁺ (25 °C, 0.20 M buffer, I = 1.0 M (NaCF₃SO₃)). The mean value is (1.48 ± 0.22) x 10^{-2} s⁻¹.

pН	$10^2 k_{obs}(s^{-1})$		
3.50	1.69	1.88	1.40
4.00	1.55	1.58	1.61
4.50	1.35	1.45	1.68
6.00	1.20	1.15	1.23