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Description of the flower network model
The A,B,C,D, and E gene types are respectively (APETALA1 (AP1), 3 (AP3), PISTILLATA (PI), AGAMOUS (AG),
SHATTERPROOF (SHP), and SEPALLATA (SEP), and they are denoted by x1 − x6. The model in [1] describes
monomer dynamics, dimer dynamics, and a mass balance. The mass balance states that the total measured concentra-
tions xT are the sums of monomer and dimer concentrations.

xT
1 = x1 + 2[x1x1] + [x1x6]

xT
2 = x2 + [x2x3]

xT
3 = x3 + [x2x3]

xT
4 = x4 + [x4x6] + 2[x4x4] (1)

xT
5 = x5 + [x5x6]

xT
6 = x6 + [x4x6] + [x5x6] + 2[x6x6] + [x1x6].

Here xi denotes the concentration of monomer i and by [xixj ] the concentration of the dimer of proteins i and
j. The dynamics of the dimer concentrations consists of the association rate of monomers into dimers, minus the
dissociation rate of dimers into monomers. It is assumed that the dimers have a very small, negligible decay.

d[x4x4]

dt
= Kon,1x4x4 −Koff,1[x4x4]

d[x4x6]

dt
= Kon,2x4x6 −Koff,2[x4x6]

d[x5x6]

dt
= Kon,3x5x6 −Koff,3[x5x6]

d[x1x6]

dt
= Kon,4x1x6 −Koff,4[x1x6] (2)

d[x2x3]

dt
= Kon,5x2x3 −Koff,5[x2x3]

d[x1x1]

dt
= Kon,6x1x1 −Koff,6[x1x1]

d[x6x6]

dt
= Kon,7x6x6 −Koff,7[x6x6].
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Here Kon denotes the association rate, and Koff the dissociation rate. The monomer dynamics are as follows

dx1

dt
=

β1,1[x1x6]

(K1,1 + [x1x6])

Km1,2

(Km1,2 + [x4x4])

−dc1x1 −
d[x1x6]

dt
− 2

d[x1x1]

dt
dx2

dt
=

β2,1[x2x3]

Km2,1 + [x2x3]
+

β2,2[x4x6]

Km2,2 + [x4x6]

+
β2,3[x1x6]

Km2,3 + [x1x6]
− dc2x2 + p2(t, w)−

d[x2x3]

dt

dx3

dt
=

β3,1[x2x3]

Km3,1 + [x2x3]
+

β3,2[x4x6]

Km3,2 + [x4x6]

+
β3,3[x1x6]

Km3,3 + [x1x6]
− dc3x3 −

d[x2x3]

dt

dx4

dt
=

( β4,1[x4x6]

Km4,1 + [x4x6]
+

β4,2[x4x4]

Km4,2 + [x4x4]

)
·

Km4,3

Km4,3 + [x1x1]
− dc4x4 + p4(t, w)−

d[x4x6]

dt
− 2

d[x4x4]

dt
(3)

dx5

dt
=

β5,1[x4x6]

(Km5,1 + [x4x6])

Km5,2

(Km5,2 + [x2x3])
− dc5x5

−d[x5x6]

dt
dx6

dt
=

β6,1[x4x6]

Km6,1 + [x4x6]
+

β6,2[x1x6]

Km6,2 + [x1x6]

+
β6,3[x6x6]

Km6,3 + [x6x6]
− dc6x6 −

d[x4x6]

dt
−

d[x5x6]

dt
− 2

d[x6x6]

dt
− d[x1x6]

dt
p2(t, w) = P2 if w ∈ [2, 3], and t ∈ [1, 2] and elsewhere 0

p4(t, w) = P4 if w ∈ [3, 4], and t ∈ [1, 2] and elsewhere 0.

The first fractions on the right hand sides denote activation or repression by Michaelis-Menten kinetics, followed
by a decay term. The last terms denote the rates of dimerization. By inserting (3) into (1) it can be verified that
the dynamics of the total concentrations only depend on production and decay of the monomers. The p’s denote the
whorl (w)- and time (t)-dependent trigger mechanisms that are responsible for the different concentration dynamics
in each flower whorl. The model consists of 13 state variables (representing proteins and dimers), and 51 parameters
representing all the rates of the biochemical interactions.

Model (1)–(3) can be simplified using physical arguments, via a quasi-steady state assumption of the relatively fast
dimer dynamics. This simplification was also used in [1] for parameter estimation purposes. The dimer equations (2)
then take the form

[x4x4] =γ1x
2
4

[x4x6] =γ2x4x6

[x5x6] =γ3x5x6

[x1x6] =γ4x1x6 (4)
[x2x3] =γ5x2x3

[x1x1] =γ6x
2
1

[x6x6] =γ7x
2
6,
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with γ = Kon

Koff
, and these are inserted into (3), using the chain rule

d[xixj ]

dt
= γ

(dxi

dt
xj + xi

dxj

dt

)
. (5)

This gives an ODE model for the monomer dynamics of the form

dx

dt
= F +B

dx

dt
, (6)

with

F =



β1,1γ4x1x6
(K1,1+γ4x1x6)

Km1,2

(Km1,2+γ1x2
4)

−dc1x1

1+γ4x6+4γ1x1
β2,1γ5x2x3

Km2,1+γ5x2x3
+

β2,2γ2x4x6
Km2,2+γ2x4x6

+
β2,3γ4x1x6

Km2,3+γ4x1x6
−dc2x2+p2(t,w)

1+γ5x3
β3,1γ5x2x3

Km3,1+γ5x2x3
+

β3,2γ2x4x6
Km3,2+γ2x4x6

+
β3,3γ4x1x6

Km3,3+γ4x1x6
−dc3x3

1+γ5x2(
β4,1γ2x4x6

Km4,1+γ2x4x6
+

β4,2γ1x2
4

Km4,2+γ1x2
4

)
· Km4,3

Km4,3+γ6x2
1
−dc4x4+p4(t,w)

1+γ2x6+4γ1x4
β5,1γ2x4x6

(Km5,1+γ2x4x6)

Km5,2
(Km5,2+γ5x2x3)

−dc5x5

1+γ3x6
β6,1γ2x4x6

Km6,1+γ2x4x6
+

β6,2γ4x1x6
Km6,2+γ4x1x6

+
β6,3γ7x2

6

Km6,3+γ7x2
6
−dc6x6

1+γ2x4+4γ7x6+γ4x1+γ3x5


(7)

and

B = −



0 0 0 0 0 γ4x1

1+γ4x6+4γ1x1

0 0 γ5x2

1+γ5x3
0 0 0

0 γ5x3

1+γ5x2
0 0 0 0

0 0 0 0 0 γ2x4

1+γ2x6+4γ1x4

0 0 0 0 0 γ3x5

1+γ3x6
γ4x6

n6
0 0 γ2x6

n6

γ3x6

n6
0


, (8)

with n6 = 1 + γ2x4 + 4γ7x6 + γ4x1 + γ3x5. For numerical simulation, equation (6) can be written in explicit ODE
form as

dx

dt
= (I −B)−1F. (9)

The output consisting of protein concentrations that are part of dimers, xD, can be found in the mass balance by
subtracting the monomer concentrations from the total concentrations, using (4):

xD
1 = 2γ6x

2
1 + γ4x1x6

xD
2 = γ5x2x3

xD
3 = γ5x2x3

xD
4 = γ2x4x6 + 2γ1x

2
4 (10)

xD
5 = γ3x5x6

xD
6 = γ2x4x6 + γ3x5x6 + 2γ7x

2
6 + γ4x1x6.

Model (9) with output (10) now consists of monomers, and is reduced to 6 dynamic equations and 44 parameters.
Based on biological knowledge, see [1], the parameter values for the association and dissociation event, Kon and
Koff , are fixed so that the corresponding γ also becomes fixed, and hence we are left with 37 parameters to be
estimated.
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Supplementary Figures

Figure S1. The dynamics of the proteins in each four organs. Measured dynamics are denoted by ‘*’ whereas the
dynamics from the reduced model with k = k2

r are denoted by the dashed lines. Parameter fitting is applied to dataset
of wildtype (a) and knock-out AG (b). The resulted reduced model have a very good prediction for mutants knock-out
AP3 (c), knock-out PI (d), ectopically expression of AP3 (e), and ectopically expression of AG (f).

Figure S2. The EGFR biochemical network. A solid arrow represents a reaction with two kinetic parameters and a
dashed arrow represents a reaction with one kinetic parameter. (A) The full network from [2], (B) The optimal network
to produce the dynamics of the five target components for any experimental condition e ∈ E in (27), (C) The optimal
network as in (B) but with an additional constraint to maintain the activation pathway to Ras protein.

Figure S3. Model discrimination to distinguish the reduced model with k = k1
r from the full model with k = k1

f .
In this case, e2 = {EGFstimulation = 15.3824 nM, EGFR0 = 141 nM, Shc0 = 0 nM, Grb20 = 340 nM}. The new
dataset obtained from an experiment based on the setting e = e2 is indicated by ‘*’. The dashed curve in the upper
left corner shows that the reduced model cannot fit this dataset.

Figure S4. Result of iterative process to obtain the optimal model for EGFR model. The threshold value of
σ = 25% is indicated by the dashed line. For the first dataset, the reduction procedure can remove 33 out of 50
parameters. However, the distance between the reduced and the full models in the first discrimination is still huge,
namely S(y(t,k1

f , e
2),yr(t,k

1
r, e

2)) ≈ 3.1× 106. When a new experiment based on experimental condition e = e2

is carried out and the obtained dataset is combined with the first dataset, the number of reduced parameter in the
second reduction decreases to 31. Finally, after performing four additional experiments, the distance S < σ2, which
means that there is no experimental condition that can distinguish the reduced model with k = k6

r from the full model
with k = k6

f . At this stage, the reduced model contains 25 parameters. Since the distance is already smaller than the
tolerance, we conclude that the reduced model with k = k6

r is an optimal model.

Figure S5. Result of iterative process to obtain the optimal model for EGFR model with a constraint to maintain the
Ras pathway activation.

Supplementary Tables

Table S1. Parameter values of the full and optimal models in the last iteration. Here the average deviation at each
point between the optimal and the full model is less than 25%. Model 1 refers to EGFR model without constraint to
prevent the pathway to Ras protein whereas Model 2 refers to EGFR model with the constraint.

Table S2. List of experiments to obtain optimal model in Model 1.

Table S3. List of experiments to obtain optimal model in Model 2.
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