

Figure S1. Predictions of tertiary structure of the rice MAGO and Y14 proteins.

(a) and (b) Tertiary structure prediction of OsMAGO1 and OsMAGO2. (c) and (d) Tertiary structure prediction of OsY14a and OsY14b. (e-h) The predicted tertiary structure of the minimal interaction domains (MIDs) of the rice MAGO and Y14 proteins. The MIDs were determined by yeast two-hybrid system (Figure 7). (e) Δ OsMAGO1 (E₁₂ to L₁₄₇) and (f) Δ OsMAGO2 (E₁₆ to L₁₅₁) have a similar structure to these of the native proteins in **a** and **b**. (g) Δ OsY14a (V₃₄ to K₁₁₅) and (h) Δ OsY14b (G₆₆ to K₁₄₅) feature the same structure to OsY14a in **c**. Ct and Nt: C- and N-terminal; α and β : α -helix and β -sheet.

Figure S2. The LFY family did not co-evolve with either MAGO or Y14 family in plants.

(a) Interactions of LFY with either MAGO or Y14 proteins. The AtLFY and OsLFY were included as preys (AD), while the MAGO and Y14 proteins are indicated as baits (BD). The co-transformed yeast cells harboring the BD and AD constructs were selected on the SD/-Leu/-Trp/-His/-Ade plates. No cell growth indicated that AtLEY and OsLFY did not interact with either MAGO or Y14 proteins. (b) Phylogenetic tree of the MAGO family in plants. (c) Phylogenetic tree of the Y14 family in plants. (d) Phylogenetic tree of the LFY family in plants. These ML trees include sequences from dicots (yellow), monocots (cereals in green and others in blue), and gymnosperm and moss (purple). (e-f) Evaluation of tree similarity. Genetic distances (GD) between the MAGO and Y14 with the LFY sequences were corrected by 18s rRNA to avoid a contribution of speciation. (e) Tree similarity of the MAGO and LFY families. (f) Tree similarity of the Y14 and LFY families. No correlation between the LFY and MAGO trees (R = 0.19; P = 0.06) or between the LFY and Y14 trees (R = 0.12; P = 0.11) indicates no co-evolution of the LFY family with either MAGO or Y14 family.

Figure S3. Distribution of the co-evolved residues and groups between the MAGO and Y14 families.

(a) The co-evolved residues in the MAGO family. (b) The co-evolved residues in the Y14 family. In each functional domain (MAGO-core or Y14-RBD), NC represents the sites with non-synonymous changes; SC represents the sites with synonymous changes; the conserved (Con) stands for the sites unchanged. The 'Others' includes the N- and C- terminals of the proteins. The number of the co-mutational residues is given out of the bracket and the percentage on the corresponding total number is given in bracket. (c) The co-mutational groups between the MAGO and Y14 families. The 'Conserved' indicates that the functional domains sites in the groups were not changed in both proteins. The 'Changed' indicates that the functional domains sites in the groups were changed in one of the bracket and the percentage on the total number is given in the bracket. M and Y include the co-changed residues in the functional domains of both MAGO (M) and Y14 (Y) families, while M or Y is groups that the residues from one protein family were changed. The groups in red were formed by the clade-specific residues (Table S5; Figure 6).

Figure S4. Location of the correlated residues on the tertiary structures of the MAGO and Y14 proteins. (a) Distribution of the correlated residues on the rice proteins. OsMAGO2 and OsY14b were set as templates. The co-evolved sites predicted by CAPS or the clade-specific sites were highlighted as amino acid (AA) followed by its position. (b) Location of the correlated residues on the MAGO-Y14 structure. The crystallized structure of human Magoh-Y14 was set as a template [30]. The residues distributed in the interaction interface of the MAGO-Y14 complex are highlighted in meganta. 17 (P_{66} , V_{68} , L_{69} , A_{72} , R_{73} , Q_{77} , E_{78} , V_{120} , D_{121} , Y_{126} , I_{133} , L_{141} , F_{146} , N_{150} , L_{151} and I_{155}) of the 36 co-evolved sites in the MAGO-core corresponding to OsMAGO2, and 7 (P_{66} , R_{70} , A_{72} , I_{116} , D_{121} , I_{133} and N_{150}) of 15 clade-specific sites were in the interacting interface. Corresponding to OsY14b, 4 (L_{69} , E_{101} , Q_{132} and T_{135}) of 12 coevolved sites in Y14-RBD, and 5 (D_{95} , A_{107} , R_{136} , A_{143} and S_{145}) of 12 clade-specific sites were also in the interacting interface. (c) The distribution of the co-evolved residues in the interaction interface and the minimal interaction domains. The interacting interfaces were helixes (in yellow) and random coils (in white) in the MAGO-core (AA₆₆₋₇₈, and AA₁₁₄₋₁₅₈) and sheets (in red) and random coils in the Y14-RBD (AA₅₈₋₇₃, AA₉₅₋₁₁₅ and AA₁₃₂₋₁₄₉), respectively. They largely overlapped with the minimal interaction domains that we determined in yeast. Thus, the co-evolution between the MAGO and Y14 families is required for the maintenance of their obligate heterodimerization mode.

Gene name	Sequences (5'-3')	
OsMAG01	F:ATGGCGACGGTGGCCGGC;	R:TGAAAGGAGCTCAAGATTGA;
OsMAGO2	F:ATGGCGACGGGCGGCGCC;	R:TGAAAGGAGCTCAAGATTGA;
OsMAG01	F:ATCCATGGCGACGGTGGCCGGC;	R: TGGATCCTGAAAGGAGCTCAAGATTGA;
OsMAGO2	F:ATCCATGGCGACGGGCGGCGCC;	R: ATGGATCCTGAAAGGAGCTCAAGATTGA;
OsY14a	F:ATCCATGGCTGCGGTGACCAACGC;	R: ATGGATCCTCAGTATCTTCTCCTCGGTG;
OsY14b	F:AACCATGGCGGCGGCGGCGGAGGACG;	R: ATGGATCCAGTCAACATGTCAAGGCAG;
AtMAGO	F:ATCCATGGCCGCGGAAGAAGCGACG;	R:ATGGATCCTAGATAGGCTTGATTTTGAAG;
AtY14	F:ATCCATGGTCAGTCGGCGAAACGGGAAG;	R:ACGGATCCCAAATCATACAATCAGTAACG;
SIMAGO	F:ATCCATGGACAGAAGAGGGCAAACTATG;	R:AAGGATCCAGCTAACGTTTAACATACGC;
SIY14	F:AACCATGGCGAACCCGGAGGAGGCTG;	R:ATGGATCCTTGCAAATAGGTGTGTGC;
Pp/PfMAGO1	F:GGCCATGGGGGAATTGGAAGAGAATG;	R:ATGGATCCGGGTTTGATCTTGAAATGGAG;
Pp/PfMAGO2	F:GGCCATGGGGGAGATGGCAGAGAAC;	R:ATGGATCCGGGTTTGATCTTGAAATGGAG;
Pp/PfY14	F:ATCCATGGGGAACGGGGAGGAGGCAG;	R:ATGGATCCTTAGTATCTCCTCCTGGGACTTC;
CeMAGO	F:ATCCATGGACATGAGCGGCGAAGAAGAGAAG;	R:ATGGATCCGATTGGCTTGATCTTGAAGTG;
CeY14	F:ATCCATGGACATGAGCGACAACGAAGTAGAG;	R:ATGGATCCTCAGCGCTTTCCAGAAGTCTTC;
DmMAGO	F:ATCCATGGTCATGTCCACGGAGGACTTTTAC;	R:ATGGATCCGGCTACGGCTTATATGGGCTTG;
DmY14	F:ATCCATGGCCGATGTGTTGGACATTG;	R:ATGGATCCTTATCTGCGACGCTTTTCGGAC;
HsMAGO	F:ATCCATGGCTGTGGCTAGCGATTTC;	R:CCGAATTCACAAACAGCCTGAAAACATAC;
HsY14	F:ATGAATTCATGGCGGACGTGCTAGATCTTC;	R:ATGGATCCTCAGCGACGTCTCCGGTCTGG;
MmMAGO	F:ATCCATGGTATAGCGGGCTTTACCGAGG;	R:CCGAATTCAAAACATCCCATTCAAATTGG;
MmY14	F:CCGAATTCAGCGCCGAGAGAAGCAAGATG;	R:ACGGATCCGAGACCACCCAGTCGACAGAG;
OsLFY	F:ATCATATGGATCCCAACGATGCCTTCTCG;	R:ATGAATTCTCCGGCGAGCTTAGAACAAGGG;
AtLFY	F:ATCCATGGATCCTGAAGGTTTCACGAG;	R:ATGAATTCTAGAAACGCAAGTCGTCGCC;
AtMAGOm64	F: CTCAAGGAAGCCAAGCGTATCGTCTCCGAG;	R: CTCGGAGACGATACGCTTGGCTTCCTTGAG;
AtMAGOm142	F:ATCCATGGCCGCGGAAGAAGCGACG;	R: AGGCTTGATTTTGAAGTGCAGATTGATGAG;
AtY14m154	F: AGCGCTATTAAAGCAATGAATGGTGCTGAG;	R: CTCAGCACCATTCATTGCTTTAATAGCGCT;

Table S1. Primer information for protein-protein interactions in yeast two-hybrid assays.

Table S2. Primer information for determining the minimal interaction domains of the rice	Э
MAGO and Y14.	

<u> </u>	B :	
Usage	Primer name	
		F:ATUCATGGAUGATGGUGGCGGCGGCGGUGGI;
	USMAGU1delF2	F:ATCCATGGAGTTCTACCTGCGGTACTAC;
	USMAG01delF3	F:ATCCATGGTGGGGCACAAGGGGAAGTTC;
	OsMAGO1delF4	F:ATCCATGGGGCACGAGTTCCTGGAGTTC;
	OsMAG01delF5	F:ATCCATGGAGTTCGAGTTCCGGCCCGAC;
	OsMAG01delF6	F:ATCCATGGGGAAGCTCCGGTACGCCAAC;
OcMACO1	OsMAG01delF7	F:ATCCATGGCCAACAACTCCAACTACAAGAAG;
deletion assau	OsMAG01delF8	F:ATCCATGGACACCATGATCCGCAAGGAG;
deletion assay	OsMAG01delF9	F:ATCCATGGTGTTCGTCTCCCCCTCC;
	OsMAGO1delF10	F:ATCCATGGTCCTCCGCGAGGCCACCAGG;
	OsMAG01delR1	F:ATGGATCCTCAAATGGGCTTGATCTTGAAGTG;
	OsMAG01delR2	F:ATGGATCCTCAGAGATTGATGAGTGAAAACAC;
	OsMAGO1delR3	F:ATGGATCCTCAGAAGCACTTAAGATCCTGGAC;
	OsMAG01delR4	F:ATGGATCCTCAGAGGTAGTAGAAGATGCGGAG;
	OsMAG01delR5	F:ATGGATCCTCAGCCCTCGGGGTCCTGGCTGGT;
	OsMAGO1delR6	F:ATGGATCCTCACTGGACGTCGACGAGGGAGCC;
	OsMAG01delR7	F:ATGGATCCTCAGATCTTGGAGGTGGTGAAGGA;
	OsMAG01delR8	F:ATGGATCCTCAGATGTGCTCGTTCCCCATCAC:
	OsMAG01delR9	F:ATGGATCCTCAGATCTCCAGCTCCTGCCTTCC:
	OsMAGO1delR10	F:ATGGATCCTCACACGCGGTCTGGCTCCGGCCA;
OsMAG02	OsMAGO2delF2	F:ATCCATGGAGTTCTACCTGCGGTACTAC;
deletion assay	OsMAGO2delR2	F:ATGGATCCTCAGAGATTGATGAGTGAAAACAC;
	OsY14adelF1	F:ATCCATGGTGCTAGTCACTGGGGTTCAT;
	OsY14adelF2	F:ATCCATGGAAGAAGCTCAGGAAGATG;
	OsY14adelF3	F:ATCCATGGATCTTCACAATATTTTCCGG:
	OsY14adelF4	F:ATCCATGGACTTTGGGCAGGTCAAGAAC:
	OsY14adelF5	F:ATCCATGGATCGCCGAACTGGATTCGTG:
	OsY14adelF6	F:ATCCATGGTGAAGGGATATGCTCTTATTG:
	OsY14adelF7	F'ATCCATGGAGTATGAAACTTTCGAGG'
	OsY14adelF8	F'ATCCATGGCTCAGGCTGCAATAAAAGC
	OsY14adelF9	FATCCATGGCATTGGATGGAACTGAG
OsV14a	OsV1AadelE10	F:ATCCATGGAGCTTCTAACACAAATC:
deletion assav	OsV14adelR1	F'ATGGATCCTCAGGATCTGGAGCGTCTTGGTG'
dolotion abody	OsV112adalR?	FATGGATCCTCATCTCCCGAATATTCCTGCG
	OcV11adalD?	FATGGATCCTCACTTGACAGGGCCCATTACTAAATGC
	Os VIAadalRA	Ε·ΔΤΩΩΔΤΟΟΤΟΛΟΤΙΟΛΟΚΟΘΟΟΟΛΤΙΛΟΙΛΑΛΤΟΟ,
	Os V1/addIR5	F.ATGGATCCTCATGTTAGAACCTCAGTTCCATC
	Os V1/addIR6	F.ATGGATCCTCACAATGCTTTTATTCCACCCTC.
	Ost 14aueiro	FATGGATCCTCAAGCTTCCTCCAAACTTTCATAC
	Ost 14auerr/	EATGGATCCTCACTCAATAACACCATATCCC
	Ost 14aueirco	
	USY14D0eIF1	
	USY14bdelF2	
0.14	Us Y 14bdelF3	F:ATUCATGGGAGTCAAAGAAGACGCGGGAAG;
OsY14b	OsY14bdelF4	F:ATCCATGGAAGATGATCTGTACAACAC;
deletion assay	OsY14bdelR1	F:AIGGATCCTCATAATGGCCTTGTACTGGTGAG;
	OsY14bdelR2	F:ATGGATCCTCAGAGTTTCTGTATAGGACCTCTG;
	OsY14bdelR3	F:ATGGATCCTCAGCTGAATGCCCAGTCAACATAG;
	OsY14bdelR4	F:ATGGATCCTCAGACAGTCCTTGTTAACAGCTG;

	MAGO		Gene structure		V14		Gene structure			I EV
Species	Gene name	Accession	Exon number	Intron number	Gene name	Accession	Exon number	Intron number	Gene	Accession number
Arabidonsis thaliana	Δth	KE051000	3	2	Δth	KE051012	3	2	name Δth	KE051022
	-		3	2	Ptr-a	XM 002299753	4	3	-	
Populus trichocarpa	Ptr	EF144848	3	2	Ptr-b	XM_002314049	4	3	Ptr	XM_002322271
Physalis floridana	PfI-1	KF051010	3	2	Dfl	KE051015	nd	nd	Dfl	Unicono97491D106
Filysalis Ilonuaria	Pfl-2	KF051007	3	2	FII	KI 031013	nu	nu	FII	Unigeneo/401F100
P philadelphica	Pph-1	KF051009	nd	nd	Pnh	KF051014	nd	nd	Pph	nd
	Pph-2	KF051006	nd	nd					. p	
Solanum lycopersicum	Sly -1	KF051001	3	2	Sly	KF051013	4	3	Sly	Solyc03g118160
	Sly-2	Gorai.007G085400	3	2	Gra-a1	Gorai.013G253000	4	3		
Gossypium raimondii	Gra	Gorai.004G069800	3	2	Gra-a2	Gorai.006G125200	4	3	Gra	Gorai.001G053900
					Gra-b	Gorai.009G077300	4	3		
	Mtr-1	Medtr3g163680	3	2	1.4		4	3		VM 00000007
Medicago truncatula	Mtr-2	Medtr3g132960	3	2	IVIT	Medtr5g008930	4	3	IVItr	XIVI_003602697
Cucumis sativus	Csa	Cucsa.259980	3	2	Csa	Cucsa.055310	4	3	Csa	XM_004137968
Prunus persica	Ppe	ppa012866m	3	2	Ppe	ppa007553m	4	3	Ppe	EF175869
Mimulus auttatus	Mau	mgv1a015616m	3	2	Mgu-a	mgv1a014186m	4	3	Mau	AY524036
			3	2	Mgu-b	mgv1a01307m	4	3		
Vitis vinitera		XM_002281258	3	2	Vvi	XM_002281192	4	3		XM_002284628
_	Zma-1	NM_001152441	3	2	Zma-a1	NM_001157087	4	3	Zma-1	DQ343237
Zea mays	Zma-2	NM_001153494	3	2	Zma-a2	NM_001156826	4	3	7ma-2	AY789045
					Zma-b	NM_001156791	4	3	Zma z	
	Sbi-1	XM_002443679	3	2	Sbi-a1	XM_002439204	4	3		
Sorghum bicolor	Sbi-2	XM_002462494	3	2	Sbi-a2	XM_002466188	4	3	Sbi	XM_002446991
		010///500			Sbi-b	XM_002457800	4	3		
Setaria italica	Sit-1	Si014566m	3	2	Sit-a	Si023278m	4	3	Sit	Si011756m
	Sit-2	SIU32825m	2	1	Sit-D	SIU37569M	4	3		
Brachypodium	Bui-1 Rdi 2	XIVI_003573221	3	2	Bui-a i Bdi oʻ2	XM_003550323	4	3	Pdi	VM 002590297
distachyon	Dui-2	XIVI_003373221	3	2	Bdi-b	Bradi2a133m	4	3	Dui	XIVI_003360367
	Osa-1	KE051011	3	2	Osa-a	KE051016	4	3		
Oryza_sativa	Osa-2	KF051008	3	2	Osa-b	KE051017	4	3	Osa	KF051023
				-	Hvu-a	AK250786	nd	nd		
Hordeum vulgare	Hvu	AK252690	nd	nd	Hvu-b	MLOC 64220	nd	nd	Hvu	MLOC_14305
Dhaanin daat difana	D-/-	00-4400054-005	0	0	Pda-a	30S975321g003	4	3	Pda-1	30s795141g001
Phoenix dactylifera	Poa	30511363519005	3	2	Pda-b	30s701331g002	4	3	Pda-2	30s854671g005
Musa acuminata	Mac	Achr11T21790	3	2	Mac	Achr6G08340	5	4	Mac	Achr6T16390
Picea sitchensis	Psi	EF082784	nd	nd	Psi	EF086042	nd	nd	Psi	EF087799
Marsilea vestita	Mve	AF329672	nd	nd	Mve	EU009956	nd	nd	nd	nd
Physcomitrella patens	Ppa-1	XM_001770356	3	2	Ppa-a	XM_001758204	3	2	Ppa-1	XM_001762002
	Ppa-2	XM_001763749	3	2	Ppa-b	XM_001771246	3	2	Ppa-2	XM_001765249
Chlamydomonas reinhardtii	Cre	XM_001694693	4	3	Cre	XM_001696940	2	1	nd	nd
Volvox carteri	Vca	Vocar20010354m	4	3	Vca	XM_002953371	2	1	nd	nd
Caenorhabditis elegans	Cel	KF051002	2	1	Cel	KF051018	3	2	nd	nd
Drosophila melanogaster	Dme	KF051003	2	1	Dme	KF051019	2	1	nd	nd
Danio rerio	Dre	NM_001017700	5	4	Dre	NM_001013345	6	5	nd	nd
Xenopus tropicalis	Xtr	XM_002931425	5	4	Xtr	NM_001045682	4	3	nd	nd
Taeniopygia guttata	Tgu	NM_001245420	5	4	Tgu	NM_001245281	5	4	nd	nd
Mus musculus	Mmu	KF051005	5	4	Mmu	KF051021	6	5	nd	nd
Homo sapiens	Hsa	KF051004	5	4	Hsa	KF051020	6	5	nd	nd
Pan troglodytes *	Pt	XM_520743	5	4	Pt	XM_003806189	6	5	nd	nd
Aedes aegypti*	Aae	XM_001660782	2	1	Aae	XM_001652117	1	0	nd	nd
Apis mellifera*	Ame	XM_001120074	1	0	Ame	XM_395245	4	3	nd	nd
Wuchereria bancrofti*	Wba	ADBV01001636.1	3	2	Wba	ADBV01000095.1	2	1	nd	nd
Loa loa*	Llo	XP_003144197	3	2	Llo	EJD75995	nd	nd	nd	nd

Table S3. Information on sequences used in the present work.

nd: no data * indicate the sequences in the species were not used to construct the tree

	OsMAGO1	OsMAGO2	OsY14a	OsY14b
Modeled residue range	14-156	16-158	23-113	12-146
Based on template (Parent PDB)	ed on template 1000 Chain A larent PDB) X-Ray, 1.85 Å		p27 Chain: B X-Ray, 2.00Å	1hl6 Chain: A X-Ray, 2.50Å
Sequence identity (%)	83.92	84.62	63.74	35.56
<i>E</i> -value	2.60e-65	1.83e-66	2.39e-33	6.30e-24
QMEANscore4 (0-1)	0.738	0.772	0.863	0.657
Quality information (QMEAN Z-Score)	-0.64	-0.26	0.35	-1.51
Template	Drosophila MAGO NASHI protein [15]	Drosophila MAGO NASHI protein [15]	Human Y14 protein [30]	Drosophila Y14 Protein [32]

Table S4. Quality factors of different protein modeling.

		MGAO		Y14			
Group	Nt	MAGO-Core (16-158)	Nt	Y14-RBD (69-139)	Ct	Mean Dc ±SE	EMean ρ±SE
G1	A6		V8		P166	4.39 ± 1.55	0.40 ± 0.03
G2	G13		V8, D27, R44, H 58	K126	P166	$5.37\!\pm\!0.92$	$0.36 {\pm} 0.01$
G3		S114	D27			5.46 ± 2.45	0.39 ± 0.00
G4 G5		P66 N150		N85 K 126	A143	6.19±2.70 3.41±0.78	0.40±0.05 0.44±0.00
G6		K83		l 125		5.02 ± 2.42	0.54 ± 0.00
G7	A2	5.6.4	E17, D 27	L83		5.01±1.48	0.44 ± 0.02
G8		R94	L33	L83	L152	6.11 ± 2.51	0.51 ± 0.11
G9 G10		B39	A2 D27	0132		3.72 ± 1.62 4.87 ± 0.77	0.44 ± 0.05 0.43 ± 0.04
G11		K43	D27, S49	M128, G130		6.12 ± 2.36	0.40 ± 0.04 0.41 ± 0.04
G12		M82	E9, D27, G57	L69, E79, N85, F118, T135	A143, S145, T153, S162, L169	7.91±0.85	0.53±0.04
G13	A7		V8, D27			2.17 ± 0.59	0.35 ± 0.02
G14		R97	E17, D22, S49	E101		5.07 ± 1.09	0.66 ± 0.07
G15		L151	D27, L33		T155	5.99 ± 2.72	0.51 ± 0.09
G16		R73	D16, D27, D28, R31			4.77±1.04	0.38±0.03
G17		I133 , E16, T112	A2	Q132		5.11±0.93	0.46 ± 0.03
G18		E91	E9, A23, D27, G57, G59	E79 , N85 , I125, T135	S145, T153, S162, R163, R167, R168, 169L, A170	7.26±0.57	0.46±0.02
G19		F146	A2			4.26±0.73	0.57 ± 0.00
G20		V103	S49	G130		4.15±0.86	0.47 ± 0.09
G21	C15	E78	D15	L83		5.21 ± 3.54	0.53 ± 0.00
G22	915	V120 Y126	K15	0132		5.47 ± 3.55 5.69 ± 2.87	0.41 ± 0.00
G24		S65	A3, A5, E6, G57	T135	A143, G147, K151	3.16±1.09	0.52 ± 0.04
G25		L141	R35		,	4.60±0.75	0.42±0.00
G26		P40	D27		P157	8.49 ± 1.92	0.45 ± 0.09
G27		T56	A23, D27, G57, G59	E79, N85	S153, T155, P157, S162, R163, R167, L169, A170	7.61±0.66	0.42±0.02
G28		V68	E17	L83, E101, F118		5.14 ± 2.32	0.38 ± 0.01
G29		1155	L33			7.38±4.77	0.34 ± 0.00
G30		M104	R62	E70 M129		6.21 ± 0.78	0.39 ± 0.00
G31	E 44	F63	D28, S49	G130	A143	5.28±0.87	0.40±0.04
G32	F11		D27, R44		S145 T153	4.94±1.11	0.43 ± 0.07
G33		N106	D27	E79, N85	T155, P157, S162, L169	7.84±0.66	0.44 ± 0.03
G34	Т3		D27		L169	4.79±1.38	0.36 ± 0.00
G35		N88	E9, A23, D27, N55	L69, E79, N85, F118, T125, T135	A143, S145T153, S162, R163, L169, A170	7.65±0.79	0.51±0.03
G36	D10		D27			2.11 ± 0.90	0.37 ± 0.00
G37		Q77	V8, D27, R44, H58	K126		5.62±1.64	0.38±0.02
G38 G39	G4,P12	D121	D27, R40 D27, R62	HOP	T155	3.89±0.97 8.42±1.81	0.41 ± 0.04 0.49 ± 0.08
G40 G41		A72	R15, D27, N55	1125	1155	11.69 ± 3.43 11.45 ± 1.88	0.68 ± 0.26 0.53 ± 0.13

Table S5. The correlated mutation residues between the MAGO and Y14 families.

Nt: N-terminal; Ct: C-terminal; p: Pearson correlation coefficient; Dc: amino acid site variance; SE: standard error; RBD: RNA binding domain; The amino acids and positions were defined with OsY14b and OsMAGO2 as references, respectively. The group marked in green indicate the group that their residues were co-altered in both functional domains of Y14 and MAGO. The sites marked in red mean they were strictly clade-specific, the blue mean the amino acids changed but were not clade specific.