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ABSTRACT We analyze a simple, deterministic model
of the dynamics of population changes in a bisexual,
reproductive system based on marriage. Our model is one
of a general class, special cases of which have been pre-
viously discussed within the framework of population
biology by D. G. Kendall, L. A. Goodman, J. H. Pollard,
and others. Here, we extend and complete previous
analyses of systems characterized by first-degree homo-
geneous, unbounded marriage functions, allowing for
arbitrary birth and death rates.
The dynamics of the model is determined by three

coupled first-order, nonlinear differential equations,
similar to those used in the description of chemical re-
actions and of radioactive decay chains. Sqlutions of the
differential equation system are classified according to the
associated patterns of birth and death rates of the two
sexes, and growth and stability properties are discussed.
This preliminary report gives conditions sufficient to

insure the existence of a unique, exponential mode of
population growth or decay, with a finite ratio of the
sexes. We also exhibit other conditions which, in contrast
to the standard, linear demographic analysis of Lotka,
guarantee that the sex ratio asymptotically becomes
infinite.
The model manifests a delicate balance between the

vital parameters that alerts one to the possibility of self-
aggravating distortions of the sex ratio, once a monog-
amous society's fertility falls below the replacement
value.

This is a preliminary report of the results of an investigation
into the stability properties of reproductive systems whose
dynamics are independent of overall scale, and in which age-
specific fertility and mortality rates are (provisionally) as-
sumed to be non-age-specific, and constant through time.
Special cases of this general class have previously been par-
tially analyzed by D. G. Kendall (1), L. A. Goodman (2), J. H.
Pollard (3), and others.

Scale-independent model
Our population model is defined by the following assumptions:
1. There are two sexes with total numbers TI(t) and T2(t).
2. Monogamy prevails, with T3(t) marriages existing at time t.

The number of single individuals of each sex is therefore

NAT(t) = T1(t) - T3(t); N2(t) = T2(t) -T3(t). [1]

S. The population is replenished only through births to mar-
ried couples. The fertility rates, per marriage, for female
and male births are fi and f2 respectively, and are inde-
pendent of parental ages.

4. The (instantaneous) rate at which marriages occur de-
pends nonlinearly on the then-existing stocks of single in-

dividuals N1(t) and N2(t), vanishing when either Nf van-
ishes, and increasing without limit as either Ni increases.
We will write this (nonnegative) rate as MI[Nj(t),N2(t)].

5. The mortality rates (X1,X2) of single individuals are con-
stants, independent of age, as is the mortality rate of
couples, X3, due to death (or divorce, or permanent steriliza-
tion, etc.).

6. The dynamics of the system is independent of its overall
scale, and of the common scale of its components.

Dynamical equations
Given the assumptions above, the behavior of the system is
determined by the following set of differential equations:

dN1/dt = - XN1 + f, T3 -M [N1,N2]

dN2/dt = -X2N2 + f2T3 -M[N,,N2]

dT3/dt = -X3T3 + A[N1,N2].

[2a]

[2b]

[2c]

The interpretation of [2] is straightforward. For example,
in [2a] the rate of change of the number of single women is
negatively proportional to the fraction of single women dying
at time t, - XN(t), and to the marriage rate -A3. The rate of
female births is proportional to the number of existing mar-
riages, and makes a positive contribution of f1T3(t) to dN1 (t)/
dt. Similarly, for the growth conditions on the number of
single men N2(t).
Though we take mortality and fertility rates to be fixed

quantities independent of population growth, a more realistic
model would include, for example, the nonlinearity which
arises from the relations between agricultural production, the
supply of arable land, and population density.

It is often convenient to work with the totals (T,,T2), in
which case the set [21 translates as:

dT1/dt = -X1T1 + (f' - X3 + X)DT3 = -XiT + fOTS [3a]

dT2/dt = -X2T2 + (f2 - X3 + X2)T3 = -X2T2 + 32T3 [3b]

dT3/dt = -X3T3 + M[T, - T3,T2- T3] [3c]

which defines the quantities fli. Note that for population
growth, both the O's must be positive. However, as we shall
see below, positivity of the O's, while necessary, is not suf-
ficient to insure a growing population.

In [21 and [3 ], X3 is to be interpreted as a disappearance rate
of marriages, due to the death of either partner, or to divorce.
In this simple treatment, divorce or the death of one marriage
partner can be considered to result in an accretion to the
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stocks of single individuals available for later fecund mar-
riages; such an accretion is tacitly included in our fertility
rates fi.

In the discusssion to follow, we allow the fundamental
parameters (fi,Xj) to range over all positive values, and we
then qualitatively analyze the associated dynamical be-
havior of the system. Our procedure differs from that of pre-
vious writers, who imposed certain further restrictions on the
parameters in order to explicitly take the accretions mentioned
above into account. An example of such additional restrictions
may be found in refs (1) and (3), where it is assumed that
3 = X1 + X2, fl > X2, f2 > Xi, and therefore that the resulting
values of the Eli-i.e., j31 = fi - X2; 32 = f2 - Xi-are positive.
Our analysis is not restricted to these special cases, since in

the age-specific models needed for more realistic description
there will often be a higher average age for married persons,
and for surviving partners of terminating marriages, than for
single persons of the same sex-with implied effects on average
(fj,Xi) parameters not consistent with any such simple re-
strictions. We do, however, note the special implications of
any such postulated restrictions on the parameters.

Restrictions on the marriage function M[N,,N21

To insure scale-independence, we ask that the (positive)
marriage function M be first-degree homogeneous in its argu-
ments, so that

Mf[qNi,qN2] = qM[N,,N2] [41

for all positive q. We do not insist that M[x,y] be a symmetric
function of x and y.
We further suppose that no marriages take place if either

stock of single individuals vanishes, so that for positive Ni

M[ON2] = 0 = M[N,,0]. [5]

Furthermore, we require that the marriage rate increase
when the number of single individuals of either sex rises, so
that

OM[NNN2]/iN1 > 0 [i = 1,2],

We note parenthetically that there exists an alternative
possibility of bounded Mf, with

liniN/N o M[N1,N2]/Nj = Cj < co, (i, j = 1,2, i j)
[8]

in contrast to [7b]. This asymptotic requirement is favored by
many demographers, and is manifested by the harmonic
mean M[x,y] = xy/(x + y), and also by M[x,y] = Min(x,y).
[See e.g., Pollard (3), Chap. 7].

It turns out that the bounded behavior [8] increases the
chances of pathological sex-ratio distortion. In this preliminary
report we therefore concentrate primarily on the a priori more
favorable case [7b], and show that unstable, infinitely un-
balanced, sex-ratios can still occur.

Two-dimensional intensive system

Since our marriage functions are first-order homogeneous, we
can choose to write the system in terms of the ratios

xi = N,/T3, X2 = N2/T3 [9]

of single individuals to married couples. This reduces [21 and
[3] to the two-dimensional system

dxi/dt = (X3 - Xi)Xi + fi
- (1 + xj)M[XI,X2], (i = 1,2). [10]

The question of stability of the sex ratio reduces to a dis-
cussion of the possible existence of stable nodes in the (finite)
positive quadrant of the (x,x2) plane. As we shall see belQw,
the number and distribution of critical points depend on the
detailed behavior of the marriage function, M[N,,N2].
Qualitative dynamics

For any particular marriage function, our system is defined in
a five-dimensional space of positive parameters (XI;X2,X3,fif2).
Our basic question then is: given a particular pattern of rela-
tive sizes of these parameters, is there positive population
growth, immediately or ultimately, and does the sex ratio

R(t) = T2(t)/IT(t)[6]
[11]

again for positive (N1,N2).
The general class of models we consider is characterized by

the set [3]- or [2]- and by Eqs. [4]-[6]. Particular cases
within this class are distinguished by further detailed assump-
tions on the behavior of the function Of. In this preliminary
note, we consider the class of M functions for which

limNi1/NjM[N1,N2]/Ni = 0 (ij = 1,2; i id j) [7a]

and

limN1/Nj,,M[N1,N2]/Nj = (ij = 1,2; i 7 j). [7b]

Equation [7a], which places restrictions on the behavior of
M[1,x]/x and M[x,1]/x for large x, can be interpreted as

expressing the assumption that the more single individuals
there are of one sex alone, the lower is the ultimate marriage
rate, per unit of that sex.
Equation [7b], which translates as unbounded behavior of

M[1,x] and AlM[x,1], can be interpreted as the assumption that
single females can, for a fixed positive supply of single males,
achieve any preset rate of marriages per unit time. (That
does not imply, however, that there are ever more weddings
than bachelors available to be grooms!)

approach a constant, positive, finite value which is stable
under perturbation of the initial conditions?

In particular, we are interested in determining whether
there exist trajectories Ti(t) which represent "interior rays" of
balanced-growth, exponential chaige, in which

T(t) = k ert [12]
where the constant vector k has components ki > 0, and where
k1/k3 > 1, k2/k3> 1, and r is real. (The exponential rate r is
positive for population growth, negative for decay, and zero

for stationary replacement.) Furthermore, if such an interior
ray (or rays) does exist, we would like to know if it is stable
under small and/or arbitrary perturbations of the initial
conditions, and whether its stability and growth properties
are altered under small changes in the fundamental param-
eters (fi,Xi).
We know that there always do exist two modes of one-sex

exponential decay, which we call "exterior rays." For ex-

ample, if the system begins with females only, they die out at
an exponential rate X,, and the whole system moves along a

trajectory
T(t) = [T,(O),OO]exp(-Xit). [13]
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Likewise there is also a T2 exterior ray [0,T2(0),O ]exp(-X2t).
Note that there is no T3 exterior ray, since any initial stock of
married couples T3(0) immediately produces births at a rate

dNi(0)/dt = fiT3(0), (i = 1,2). [14]

A major part of our problem is to distinguish between situa-
tions in which there exist interior rays that asymptotically
determine the behavior of the system, and those in which
R(t) tends to 0 or c, so that the system eventually reaches an
exterior ray on the T, or T2 axis.
We can easily derive necessary conditions for the existence

of interior rays by substituting [12 ] into [2 1. This leads to the
three conditions

kilk3 = (fs- r - X3)/(r + X) > 0, (i = 1,2) [15a]

r + X3 = M[k1/k3,k2/k3] > 0. [15b]

Any generalized "eigenvalue," or exponential rate r, must
satisfy, along with the associated "eigenvector" k, the basic
nonlinear relations [15 ], in order that there can exist an inter-
nal ray. Equations [15] lead to a rather complicated classifica-
tion of trajectories of [3] with respect to the general topology
of our parameter space, and we therefore first discuss the
simple, symmetric situation in which the birth and death
rates of the two sexes are equal.

Symmetric case
Let us suppose that the birth and death rates of the two sexes
satisfy the symmetry conditions

X1 = X2 = X; fl = f2 =f [16]

Then for symmetric initial values N1(t) = N2(t) = N(t), [1]
reduces to a linear system in [N(t),N3(t)] and [15] to a linear
system in [k,k3]. This case has been previously discussed in
part by other writers, who suggested that it is always asso-
ciated with one interior ray along which there is balanced ex-
ponential change. However, complete analysis reveals that:
(a) for symmetric growth rates r* < -X-a range of values
resulting from negative (3's in [31-such an internal ray need
not be asymptotically reattained if the initial sex ratio R(0)
is perturbed; (b) even the slightest perturbation of XI -2
and/or f' - f2 away from zero can quite possibly lead to the
nonexistence of any interior ray whatsoever; (c) in the particu-
lar symmetric case with f + X = X3, a degeneracy occurs in
which there are an infinity of critical points in the (xl,x2) plane,
and a corresponding infinity of interior rays in [Ti] space.
The degenerate case is a key indicator of the topology of our

parameter space, and we briefly discuss its properties. To
achieve degeneracy, it is necessary to impose, in place of the
symmetry conditions [16], the stronger conditions

X3-X = X3-Xi = f1= f; Pi = ° [171
The relations [17] eliminate the T3 terms from [3a] and [3b],
so that the male and female populations decay at the com-
mon exponential rate X, and the sex ratio R = T2(0)/T,(0) is
permanently fixed.
Equation [17] implies there are an infinity of critical points

of [10] in the finite (x,,x2) plane, and an associated infinity of
interior rays in the [Ti] space. To derive that result, sub-
stitute [17] in [10], and note that dxl/dt and dx2/dt then
vanish simultaneously everywhere on the curve

f = M[xl,x2]. [18]

Clearly, if we break the degeneracy [17], even by an in-
finitesmal amount, the curves dxi/dt = 0 will no longer be
coincident, and, generally, there will be, at most, only a finite
number of critical points in the (xl,x2) plane.
For illustrative purposes, let us examine a particular simple

perturbation from degeneracy. We will still treat both sexes
symmetrically, choosing

f - X3 + X = f- X3 + Xi = (, [191
but keeping fi = f2 and Xi = X2.

It is easily verified that negative (3 in [19] corresponds to a
declining population, while positive (3 may be associated with
either growth or decline. Explicitly, from the now-linear case
of [15], the general symmetric growth rate is found to be

± 2,M+ + o\(f M)2 + 4fM [20]

where r* ><-X depending on whether 3 >< 0, and where in
= M[1,1]. The replacement criterion for the watershed be-
tween growth and decay is r* > 0 depending on whether mf >a
X3(X + m). For (3 < 0, the symmetric critical point is a saddle;
for # > 0 it is a stable node.
We will see in the following section that the incompatibility

of unbalanced sex-ratio pathology with population increase,
found in this special symmetric case, carries over to more
general considerations in which there is an arbitrary pattern of
birth and death rates (Xi,fi).
Our summary of the general case will further show that in-

finitesmal variations of (Xj,fj) around the degeneracy point
[17] or around the symmetry axes of [16] can cause the sys-
tem to lose all its finite critical points, so that its asymptotic
behavior in the extensive space [Ti] takes it to an exterior ray
with a sex ratio of zero or infinity.
Summary of results

To display our general results, it is helpful to subdivide the
parameter space (Xi,fi) into regions defined by certain in-
equality relations. For that purpose, we introduce the quanti-
ties

Ai = X3-Xi. (i = 1,2) [21]

which incapsulate the relevant roles of the X's in [10]. Each
distinct sector of parameter space will then be categorized, for
example as

Al < fl < f2 < A2, [22]

there being essentially 4! such distinct cases to analyze. The
detailed behavior of trajectories T(t) associated with each such
sector is summarized in Table 1, where we have avoided re-
dundancy by listing only the 4!/2 sectors with f2 > fl.
As shown in table 1, there turn out to be five topologically

distinct possibilities:
(A) One stable critical point in the finite (XlX2) plane. This

occurs for sectors 1 and 2 in Table 1. Here, as in Lotka's linear
analysis, all trajectories asymptotically result in a balanced
sex ratio; overall, the population may grow or shrink. Case (A)
is the only one which can be compatible with the growth of all
components.

(A') K+1 stable nodes, K saddle points in the finite xi plane.
This applies to sector 3 in Table 1. In this case, and also for

(B) and (C) below, it can be shown that in general a chain of
critical points exists, with saddle points and stable nodes
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TABLE 1. Dynamics of scale- and age-independent reproductive systems, with unbounded, homogeneous marriage functions of order one

Behavior in (x,,x2) plane Behavior in [Ti] space

Critical points& Range of growth rates r, Population
Sector Condition Stable Saddle Cased for interior rayse growth or decay

1 A2 < A1 < fl <f2 1 0 Af [-XI,,f - X3J Either
2 A1 < A2 <fl <f2 1 0 Af [-X2,fl- X3] Either
3 A2 <f<Al < f2 1 + K K A' [fl-a3,-X] Decay
4 ft <f2 <A2 < Al K 1 + K B [f2-X3,-X21 Decay
5 fl <f2 < Al <A2 K 1 + K B [f2-X3, -xi] Decay
6 fl < A2 <A2< Al K 1 + K B [-X2,f2-X] Decay

7 A2 < fl < f2 < A1 Kb Kb C [f -3, f2- X3] Decay
8 fi < A2 < A1 <f2 Ke Ke C [-X2, -X] Decay

9 Al < fl < A2 < f2 No critical points Df Decaying exterior ray
10 Al < ft < f2 < A2 No critical points D Decaying exterior ray
11 fl < A1 < f2 < A2 No critical points D Decaying exterior ray
12 fl < Al < A2 < f2 No critical points D Decaying exterior ray

f = A = A f2=A2 00 Degenerated -X Decay
- A1 = A2 <K! = f2 1 0 Symmetried [-Xf - X3] Either

fl =f2 <A = A2 K 1 + K Symmetried [f- X3, -X] Decay

Shown here is the qualitative behavior of trajectories of the differential equation system [3], and of the associated two-dimensional
system [10].
The parameter space (Al = 3- X; A2 =X3 - X2;fi;f2) has been divided into four sectors defined by the inequality relations listed in

column two. Behavior in the twelve regions with f2> f, is shown; behavior in the remaining twelve regions is easily abstracted from the
table by consistently interchanging subscripts 1 and 2. Also shown is trajectory behavior for two symmetric cases discussed in the text.

a Our listing of critical points assumes, as is almost always the case, no points of tangency between the curves dxi/dt = 0 of equation
[10]. Note also that by suitably choosing the marriage rate scale M[1,1], the integer K characterizing the number of critical points in
sectors 3 through 8 can be made to vanish.

b These critical points exist only for sufficiently large M [1,1].
e These critical points exist only for sufficiently small M[1,1].
d See discussion in text.
e Range of possible exponential rates r, in parameter space, for interior ray solutions of the form kerl, with least values listed first.

As the marriage rate scale M[I1,] runs from 0 to co, r takes all values in the given range. Note that the range of r in each case corre-
sponds to the central interval in column two. When there are multiple possible r's, as in sectors 3-8, all fall in the specified range.

f Sectors 1, 2, and 9 have two positive O's, as required by the Kendall-Pollard reasoning discussed in the text.

distributed roughly along a hyperbolic curve whose asymp-

totes lie along the axes xi = 0 and x2 = 0. Saddle points and
stable nodes alternate along this hyperbola. For case (A'), the
two nodes at the ends of the chain are stable; all trajectories
therefore result in balanced sex ratios, just as in case (A). For
case (A'), the population shrinks.

Remark: In cases (A'), (B) and (C) certain singular values of
the parameters result in points of tangency between the two
curves dxi/dt = 0 of [10], and there can even be an uncount-
able infinity of points in common. Furthermore, it can be
shown that for particularly simple choices of 31 [x,,x2], e.g.
M = XlaX2l -a, 0 < a < 1, there is at most a pair of critical
points in the finite plane. We note also that all our critical
points are associated with real exponents. There are no

complex foci, and there is no limit cycle behavior in the xi

plane.
(B) K+1 saddle points, K stable nodes in the finite xi plane.
This occurs for sectors 4-6 in Table 1, in which at least one

of the Pi is negative. In general, we again have a chain of

critical points, but here, unlike (A'), the two ends of the chain
are saddle points. Therefore, trajectories lying beyond the two

separatrices dividing the saddle points at the ends of the chain

from their stable-node neighbors will always result in unbal-

anced sex ratios. In case (B) the population shrinks.

Cases (A) and (B) occur when

U = (fl - A2)(f2 - Al) = (f, - 3 + X,)(f2 - X3 + XI) > 0

[23]
It can be shown from [10] that the relation [23] insures that

the curves dxl/dt = 0 and dx2/dt = 0 cross at least once in the
positive quadrant of the (xx2) plane. Cases (C) and (D), to be
discussed below, are associated with negative U.

(C) K stable nodes, K saddle points in xi plane.
This occurs for sectors 7 and 8 in Table 1. The chain of

critical points now has a saddle point on one end, and a stable
node on the other. There is now a watershed defined by the
separatrix dividing the last saddle point from its neighboring
stable node. Trajectories on the saddle point side of this
separatrix always result in unbalanced sex ratios.

Cases (A'), (B), and (C) have the property that K can be
reduced to zero, independently of the shape of M [x,,x2], by
changing the relative scale of the marriage function. In par-
ticular, if we write .Ml[N,,N2] = A141,1] .1[N,,N2]/M1[1,1]J}
and permanently fix the expression in curly brackets, then
ll [1,1] becomes a parameter characterizing the "strength"
or scale-of the marriage function, and this strength plays a

role in determining K in sectors 3 through 8.
In case (C)-as in Cases (A') and (B)-the population

shrinks.
(D) No critical points in the finite (X1,X2) plane. In these
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cases, sectors 9-12 in Table 1, one sex has both a higher
birth rate and a lower death rate than the other, with the re-
sult that the sex ratio asymptotically approaches 0 or a.
Specifically, a sufficient condition for the nonexistence of a
balanced-growth path is

(A1 - A2) (fl - f2) (fi - A1) (fl - A2) < 0- [24]
The Kendall-Pollard restriction to positive fl's rules out the

saddles of sections 4-6, and also the exterior ray sectors 10-12,
while permitting sector 9. Sector 9's disastrous blowup of the
sex ratio may seem intuitively obvious from the fact that one
of the sexes there has a higher birth rate and a lower death
rate than the other. But such intuitive explanations are dan-
gerous for at least two reasons: (1) XA > X2 and fi < f2 causes no
infinite distortion of the asymptotic sex ratio in sector 2. In
sector 2 birth rates will be sufficiently high, and the sex ratio
N2/N1 asymptotically approaches a positive limit, greater
than unity but finite. (2) The following brief discussion of a
non-marriage, bisexual deterministic model shows one can
always avoid infinite sex ratios, even with XI >> X2 and fi << f2,
if monogamy does not prevail.

A bisexual, non-marriage model

Consider, along with the earlier cited writers, a system with no
marriage institution, and write, instead of [2 ] and [3]:

dNl(t)/dt = -X1NI(t) + f1H [N1(t),N2(t) ] [25a]

dN2(t)/dt = -X2N2(t) + f2H [N1(t),N2(t) ] [25b]

where H(x,y) is again an unbounded, positive function, homo-
geneous of order 1, vanishing on the boundaries of the positive
quadrant, and possessing a positive gradient, just as did M.
The system [25] always moves asymptotically to a finite

sex-ratio, as one easily sees by transforming to a one-dimen-
sional system in Z = N21NI,

dZ/dt = (XI - X2)Z + H(1,Z)(f2- fZ) [26]

and using the properties of H to show that dZ/dt changes sign
from positive to negative once along the positive Z axis, inde-
pendent of the signs or magnitudes of X2 - XI, f2 and f'.

Population decline and sex-ratio pathology

Finally, we note that a striking feature of the results of Table 1
is the absence of pathological behavior of the sex ratio in the
presence of overall population growth. Growth is always as-
sociated with a unique, stable interior ray. There is a simple

geometric explanation of why this is so. Visualize [Ti] space,
with a vertical T3 axis. Then note, from [3], that above
(below) their respective planes

-X1Ti + (Xi + fi - 3) T3 = 0 (i = 1,2), [27]

dT1/dt and dT2/dt are positive (negative). Similarly, below
(above) the hyperbolic surface

-X3T3 + M[T1,T2] = 0, [28]

dT3/dt is positive (negative). For sufficiently large fi and f2,
the planes [27] intersect the surface [28] in such a way as to
create an irregularly shaped cone, with its apex at T1 = 0,
within which all three dTi/dt are positive. With the exception
of the apex, the surface of this cone lies completely within the
positive octant, and all trajectories entering it can never
escape, but instead go off to infinity. Again, the cone is
bounded above by the surface [28], and below by the planes
[27].
This trapping phenomenon for growing population is a

feature of systems with marriage functions even more general
than those we consider here. The essential properties of M
which insure trapping are that it vanish for vanishing stocks of
single individuals, and that it grow at least linearly as its
arguments increase together.

Conclusion
In conclusion, it is important to emphasize that models such
as ours lack two features which play crucial roles in the popu-
lation dynamics of real societies: (1) the effects of biomedical
and cultural change on mortality and fertility; (2) the feed-
back caused by resource limitations on output. Such effects
might be admitted by allowing our fundamental parameters to
be explicit functions of time, and of population density itself.
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