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1.  Model description and equations 

 

Our model assumes individuals are born (at a rate B) susceptible to clinical typhoid 

infection (S1), which occurs at a rate (λp + λw), where λp and λw are the prevalent-case and 

water-borne forces of infection, respectively. Individuals with “primary infection” (I1) 

contribute to both “short-cycle” (prevalent-case) transmission via contamination of food, 

drinking water, etc in the immediate environment and “long-cycle” (water-borne) 

transmission via contamination of the water supply (W). Infectious individuals are 

assumed to shed bacteria into the water supply at a rate γ, and infectious bacteria lose 

viability (i.e. are removed from the water supply) at a rate ξ. Seasonality in transmission 

was assumed to act upon long-cycle but not short-cycle transmission.  

 

Infectious individuals recover at a rate δ. We assume most recovered individuals are 

temporarily immune to reinfection (R), while a small fraction (θ) goes on to become 

chronic (life-long) asymptomatic carriers of typhoid (C), or experience disease-induced 

mortality (α). We assume individuals lose their immunity at a rate ω and become 

susceptible to future subclinical infection (S2) (i.e. short-term carriage), but are immune 

to clinical reinfection. This immunity to clinical reinfection can wane at a rate ε, and 

individuals can reenter the fully susceptible state (S1). We differentiate between 

susceptibility to clinical and subclinical infection because the age distribution of typhoid 

cases in Vellore is suggestive of fairly strong immunity to clinical infection in this setting 

(Figure S3), but reinfections with typhoid are known to occur and likely contribute to 

transmission [1,2]. Thus, the model allows for boosting of immunity through repeated 

subclinical infections. We assume subclinical infectious individuals (I2) can also go on to 

become chronic carriers. Both short-term and long-term carriers are assumed to 

contribute to transmission at a relative rate r compared to primary infections.  

 

The model equations are as follows: 

 

𝑑𝑆!
𝑑𝑡 = 𝐵 + 𝜀𝑆! − 𝜆! + 𝜆! 𝑆! − 𝜇𝑆! 



  
𝑑𝐼!
𝑑𝑡 = 𝜆! + 𝜆! 𝑆! − 𝛿𝐼! − 𝜇𝐼! 

 
𝑑𝑅
𝑑𝑡 = 𝛿(1− 𝜃 − 𝛼)(𝐼! + 𝐼!)− 𝜔𝑅 − 𝜇𝑅 

 
𝑑𝐶
𝑑𝑡 = 𝛿𝜃(𝐼! + 𝐼!)− 𝜇𝐶 

 
𝑑𝑆!
𝑑𝑡 = 𝜔𝑅 − 𝜀𝑆! − 𝜆! + 𝜆! 𝑆! − 𝜇𝑆! 

 
𝑑𝐼!
𝑑𝑡 = 𝜆! + 𝜆! 𝑆! − 𝛿𝐼! − 𝜇𝐼! 

 
𝑑𝑊
𝑑𝑡 = 𝛾(𝐼!+  𝑟𝐼! + 𝑟𝐶)− 𝜉𝑊 

 

where B are new births, µ is the natural mortality rate, ω is the rate of waning natural 

immunity to infection, ε is the rate of waning clinical immunity (i.e. rate of returning to 

full susceptibility to clinical disease), δ is the rate of recovery from infectiousness, θ is 

the fraction of infectious individuals who go on to become carriers (which varies by age), 

α is the disease-induced mortality rate, γ is the rate of shedding into the water supply, and 

ξ is the rate of decay of infectious particles from the water supply. The short-cycle 

(person-to-person) and long-cycle (water-borne) forces of infection are given by: 

 

𝜆! =
𝛽! 𝐼! + 𝑟𝐼! + 𝑟𝐶

𝑁   , 

 

𝜆! = 𝛽! 1+ 𝑞 cos(2𝜋 𝑡 − 𝜙 ) 𝑊  , 

 



where βp and βw are the short-cycle and long-cycle transmission rates, respectively, r is 

the relative infectiousness of subclinical infections (I2) and chronic carriers (C), N is the 

population size (= S1 + I1 + R + C + S2 + I2), q is the amplitude of seasonal forcing, and φ 

is the seasonal offset parameter. Short-cycle transmission was assumed to be frequency-

dependent, while long-cycle transmission was assumed to be density dependent [3]. 

 

We incorporated age structure into the model to compare model output to age-stratified 

incidence data and to incorporate age-specific vaccination strategies. Thus, each 

epidemiological model compartment (with the exception of W) is actually composed of a 

number of age-specific compartments, e.g. S1 = {S1,1, S1,2,…, S1,a}. Transmission-relevant 

mixing was assumed to be homogeneous with respect to age. Natural mortality was 

assumed to occur from all epidemiological states and age groups at a rate µ, leading to a 

pyramidal age structure that is representative of Vellore. 

 

 

2.  Derivation of the basic reproductive number (R0)  

 

The basic reproductive number (R0), defined as the expected number of secondary 

infections produced by an infectious individual in a fully susceptible population, for our 

model is: 

 

𝑅! =
1

𝜇 + 𝛿 𝛽! +
𝛾𝛽!
𝜉 1+

𝛿𝜃𝑟
𝜇   , 

 

which is the product of the duration of infectiousness (1/(δ+µ)) and the rate of short-cycle 

(βp) and long-cycle transmission (γβw/ξ) for both primary infections and the fraction θ 

who become chronic carriers (weighted mean of θa across the age distribution of the 

population), scaled by their relative transmissibility, r, and duration of infectiousness, 

δ/µ. 

 



We used the next generation matrix method of van den Driessche and Watmough [4] to 

derive the expression for the basic reproductive number (R0) as a function of the model 

parameters. We define the rate of change in the infectious compartments at the disease-

free equilibrium to be: 

XS =

I1
I2
C
W
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where X0 ={ I1=0, I2=0, C=0, W=0, S1=N, S2=0, R=0}. The basic reproductive number 

(R0) is equal to the maximum eigenvalue of the next generation matrix, FV-1, where  
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and 

 

V =
∂V i
∂X j
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where 

 



𝑅! =
1

𝜇 + 𝛿 𝛽! +
𝛾𝛽!
𝜉 1+

𝛿𝜃𝑟
𝜇   . 

 

This expression can be broken down to show the independent contributions of short-cycle 

and long-cycle transmission. It is possible to rewrite R0 = R0,p + R0,w, where the basic 

reproductive numbers of short-cycle (R0,p) and long-cycle (R0,w) transmission are given 

by 

 

𝑅!,! =
𝛽!
𝜇 + 𝛿 1+

𝛿𝜃𝑟
𝜇  

and 

𝑅!,! =
𝛾𝛽!

(𝜇 + 𝛿)𝜉 1+
𝛿𝜃𝑟
𝜇   . 

 

The proportion of transmission from carriers versus symptomatic infections (cp) can be 

calculated as  

 

𝑐! =
𝛿𝜃𝑟

𝜇 + 𝛿𝜃𝑟  . 

 

 

 

3.  Model fitting procedure 

 

Observed typhoid hospitalizations in age group a at week w (xa,w) were assumed to 

represent a fraction of the model-predicted number of primary infections at time t = w 

(𝑥!,! = 𝑓𝐼!,!(𝑡 = 𝑤)), where f is the reporting fraction. The reporting fraction f takes 

into account the probability that an individual with clinical typhoid infection in Vellore 

will seek care at (or be referred to) Christian Medical College (CMC) hospital, be 

admitted as an in-patient, and be culture-confirmed; hence, it takes into account many 

factors, including the probability of primary infection leading to clinical typhoid (which 

we assume is roughly 10%) [1], treatment-seeking behavior, and culture sensitivity 



(which is relatively poor). We assumed the observed number of reported typhoid cases in 

age group a was Poisson-distributed with a mean equal to the model-predicted number of 

cases occurring at that time.  

 

The log-likelihood (log(L)) of the model was given by the equation: 

 

log 𝐿 = −𝑥!,! + 𝑥!,! log 𝑥!,! − log 𝑗

!!,!

!!!

!!"#

!!!

!!

!!!!

 

 

We fit the model by minimizing the negative log-likelihood after an initial burn-in period 

of 50 years, which was long enough to reach the epidemiological quasi-steady state (i.e. 

ignoring seasonality). We used the “fminsearch” command in MATLAB v7.14 

(MathWorks, Natick, MA) to minimize the –log(L), which employs a direct simplex 

search method.  

 

The best-fitting parameter vector was found to be very sensitive to the starting conditions 

(i.e. initial parameter “guess”). Therefore, we used Latin Hypercube Sampling (LHS) to 

sample evenly from the range of plausible parameter distributions. We first examined the 

–log(L) over the full range of each parameter (or pair of parameters in the case of R0,p and 

R0,w), using LHS to sample the remaining parameters. This allowed us to further localize 

some of the initial parameter distributions. We then drew 1,000 LHS samples from the 

localized parameter distributions, calculated the –log(L), and ranked the LHS parameter 

samples according to the lowest values. We chose the 10 best parameter vectors, and used 

these to initialize the model-fitting process. We iterated the search process for the 

minimum –log(L) twice, using the output from the first search to initiate the second 

search in order to decrease the probability of obtaining a local (versus global) minimum 

value. The parameter set corresponding to the lowest –log(L) value was then selected as 

the best-fitting model.  

 

The likelihood profile around each of the best-fit parameters was calculated while 

holding the other parameters fixed. We compared the likelihood profile to a chi-square 



distribution with one degree of freedom to construct 95% confidence intervals for each 

parameter. The likelihood profile when varying R0,p and R0,w together (while holding 

qR0,w constant) was also calculated. 

 

We analyzed the sensitivity of the estimated parameters to the fixed parameter 

assumptions by varying the fixed parameters one at a time to a plausible high and low 

value, then refitting the model (Table S1). 

 

Despite the relative simplicity of our model and the limited number of parameters that we 

attempted to estimate, some of the estimated parameters are not well identified (i.e. the 

likelihood profiles are relatively flat) (Figure S4). Epidemiological studies are needed to 

better identify some of the unknown parameters, including the relative infectiousness of 

carriers (r), the contribution of short- and long-cycle transmission (R0,p and R0,w), and 

how such transmission varies seasonally (q and φ). 

 

 

4.  Estimation of demographic parameters for Vellore district  

 

We estimated weekly number of births from July 1971 to February 2012 based on the 

crude birth rate for Tamil Nadu state and the total number of live births and deaths in 

Vellore district for 1997 to 2002 (http://www.indiastat.com). The district population size 

for 1997-2002 was back-calculated from both the birth and death rates and compared to 

the actual district population size from the 2001 census. The district population size for 

the remaining years was calculated by assuming Ny+1 = Ny (1+b-d), where Ny is the 

district population size in year y, b is the crude annual birth rate, and d is the crude annual 

death rate. Finally, the number of weekly births (B) was interpolated assuming the 

number of births on 1 July of each year was equal to the crude birth rate times the 

estimated population size for that year divided by 52.2 weeks.  

 

We compared the simulated population size and age structure to data for Vellore district 

to verify that the model was able to accurately reproduce the population demographics.  



 

Since CMC hospital is a referral facility, a large proportion of patients may be referred 

from other hospitals, possibly in other states.  Such patients are typically not suffering 

from acute illness.  These non-acute referral patients may bias the patterns of the seasonal 

occurrence of incident typhoid infections in Vellore.  However, the length of the time 

series and detailed data available from Vellore is unique and essential to estimating key 

model parameters, and the overall patterns are still likely to be representative of typhoid 

transmission in Vellore and the surrounding regions. 

 

 

5.  Modeling vaccination 

 

To model the expected impact of vaccination using live oral vaccine (Ty21a), we assume 

vaccine-induced immunity mimics natural immunity (Figure S1a). A fraction cav of 

vaccinated susceptible individuals (in S1 or S2) is moved to the immune (R) class, where 

ca is the coverage level for vaccination at age a and v is the vaccine efficacy. Vaccinated 

individuals are assumed to be temporarily protected from typhoid infection, and then lose 

this full immunity at a rate ω; most individuals become susceptible to subclinical 

infection only (S2), but a small fraction (ε) may return to full susceptibility to clinical 

infection (S1). Since the estimate of ε was not significantly different from zero, we fixed ε 

= 0 when analyzing the impact of vaccination to aid in the interpretability of the model 

(i.e. we assumed no waning of clinical immunity) [5]. We assumed the vaccine efficacy 

for Ty21a was 48% in accordance with the cumulative efficacy over 2.5 to 3 years in a 

recent meta-analysis [6] (Table S2).   

 

For the Vi-based vaccines, we model vaccine-induced immunity as distinct from natural 

immunity (Figure S1b). In this case, we assume a fraction cav of susceptible and 

recovered individuals (in S1, S2, or R) is moved to a corresponding vaccinated class (V1 or 

V2). We assume vaccine protection is “all-or-nothing”; results assuming “leaky” 

protection were similar [7]. Vaccinated individuals lose their immunity and wane back to 

the corresponding susceptible state at a rate ωv. For ViPS, we assumed an initial vaccine 



efficacy of 80% and a mean duration of protection of 3 years, while for ViCV, we 

assumed an initial efficacy of 95.6% and a duration of 19.2 years, based on a comparison 

between the predicted direct effect and the waning of vaccine efficacy observed during 

trials [6,8,9] (Figure S2, Table S2). 

 

We implemented the vaccination campaigns over a period of four weeks by assuming 

that a fraction 1-(1-ca)1/4 of susceptible individuals were effectively immunized each 

week. Routine vaccination was implemented as part of the aging process, e.g. was 

assumed to occur upon movement into the 6-year age group. 

 

 

6.  Calculation of direct, indirect, and total effects 

 

To model the Vi-based vaccines, separate SV and IV compartments were enumerated to 

keep track of vaccinated individuals who were previously susceptible to clinical infection 

in order to calculate the direct, indirect, and total effects of vaccination [10], but these 

compartments are equivalent to the S1 and I1 compartments in terms of the dynamics. The 

direct (DEy), indirect (IEy), and total effect (TEy) of vaccination in year y of follow-up 

were calculated as follows: 

 

𝐷𝐸! = 1−   

𝑧!,!
𝑉!,!!

!!!!"!
!!!!!!"(!!!)

𝑢!,!
𝑁!,! − 𝑉!,!!

!!!!"!
!!!!!!"(!!!)

  , 

 

𝐼𝐸! = 1−   

𝑢!,!
𝑁!,! − 𝑉!,!!

!!!!"!
!!!!!!"(!!!)

𝑥!,!
𝑁!,!!

!!!!"!
!!!!!!"(!!!)

  , 

 

𝑇𝐸! = 1−   

𝑧!,!
𝑉!,!!

!!!!
!!!!!!!!

𝑥!,!
𝑁!,!!

!!!!"!
!!!!!!"(!!!)

  , 

 



where za,t and ua,t are the number of typhoid cases of age a at time t among vaccinated 

versus unvaccinated individuals, respectively, xa,t is the model-predicted incidence in the 

absence of vaccination, 𝑉!,! is the number of individuals of age a at time t who have ever 

been vaccinated, Na,t is the total number of individuals of age a in the population at time 

t, and tv is the time of vaccine introduction (in weeks). 

 

 

Population direct effect of vaccination 

 

We define the population direct effect of vaccination as the expected reduction in typhoid 

incidence in the population if vaccination provides only direct protection for vaccinated 

individuals. The population direct effect t weeks after vaccine introduction (PopDEt) is 

calculated using the equation: 

 

𝑃𝑜𝑝𝐷𝐸! =   
𝑉!,!𝑥!,! ∗ 𝑣!

𝑥!,!!
 

 

where Va,t (=V1+V2) is the expected number of individuals of age a with vaccine-derived 

immunity at time t (which takes into account current and past vaccination coverage and 

waning of vaccine-induced immunity), xa,t is the expected typhoid incidence in age group 

a at week t in the absence of vaccination (=f I1,a,t), and v is the vaccine efficacy. 

 

 

7.  Impact of vaccination in other settings 

 

The expected impact of the various vaccination strategies we examined will likely depend 

upon the underlying age-incidence pattern of clinical typhoid cases. For instance, the age 

distribution of clinical typhoid cases was found to be considerably younger in Dhaka, 

Bangladesh compared to Vellore [11]. This is likely reflective of a higher typhoid 

transmission rate. It is possible to reproduce the age distribution of typhoid cases in 

Dhaka by increasing the R0 in our model to ~7 (Figure S8).  



 

As a result of the higher transmission rate, the overall effectiveness of typhoid 

vaccination predicted by our model is lower in Dhaka compared to Vellore, particularly 

for vaccine strategies targeting school-aged children. Furthermore, the benefit of a ViCV 

vaccine capable of providing protection for infants is greater in Dhaka (Figure S8). These 

are some of the factors that need to be considered when determining the best vaccination 

strategy for a given location. 
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