Conformational flexibility of the oncogenic protein LMO2 primes the formation of the multi-protein transcription complex

H. Sewell, T. Tanaka, K. El Omari, E.J. Mancini, A. Cruz,

N. Fuentes-Fernandez, J. Chambers, T.H. Rabbitts

Data collection statistics	
Space group	P6
Unit cell Dimensions <i>a</i> , <i>b</i> , <i>c</i> (Å) a, β , γ (°)	a=124.3, b=124.3, c=81.4 and α
	$=90.0^{\circ} \beta = 90.0^{\circ} \gamma = 120.0^{\circ}$
Resolution (Å)	50-(2.95-2.80)
Completeness (%)	99.8 (100)
Redundancy	2.9(3.0)
I/ σ (I)	10.8 (2.3)
Rmerge (%)	10.9 (72.9)
Refinement Statistics	
Resolution	50.00-2.80
Number of reflections	16834
Rwork/Rfree (%)	23.99/25.83
R.m.s.d. bond (Å)	0.005
R.m.s.d. angle (°)	0.904
Mean B-factor ($Å^2$)	75.405
Molecules in the a.u.	2
Ramachandran plot (%)	
Favored/allowed/outliers	93.7/5.56/0.74

Supplementary Table one: Data Collection

Supplementary Table 2: Contacts of Structural Restraint

Antibody region	VH residue	LMO2 residue	Interaction type				
CDR1	His 31	Arg 63	Charged groups				
Framework	Gln 39	Phe 129	Hydrogen bond				
		Cys 130	Charged groups				
Framework	Leu 45	Leu 117	Hydrophobic				
Former VH-VL interface		Phe 120	Hydrophobic				
		Phe 120	Hydrophobic				
		Val 131	Hydrophobic				
Framework	Trp 47	Met 106	Hydrophobic				
Former VH-VL interface		Leu 117	Charged groups				
CDR2	Tyr 50	Cys 60	Hydrogen bond				
		Met 106	Hydrophobic				
CDR2	Tyr 53	Asp 53	Hydrogen bond				
CDR2	Asn 54	Asp 53	Hydrogen bond				
CDR2	Ser 57	Leu 59	Charged groups				
		Cvs 60	Charged groups				
		GIV 61	Hydrophobic				
Framework	Tyr 59	Leu 59	Hydrogen bond				
		Tyr 104	Hydrophobic				
Framework	Tvr 95	Val 131	Hvdrophobic				
CDR3	Leu 100	Arg 109 (also	Hvdrophobic				
		contacts LID)					
CDR3	Thr 101	Glu 66	Charged groups				
CDR3	Glu 102	Cvs 80	Charged groups				
02110		Arg 81	Charged groups				
		Arg 82	Hydrogen bond				
CDR3	Ser 103	Cvs 60	Hydrogen bond				
OD TO		Asp 83	Hydrogen bond				
		Asp 86 (hinge	Charged groups				
		region)	endiged groupe				
CDR3	Leu 104	Leu 59	Hvdrophobic				
		Tvr 104	Hydrophobic				
		Glu 105	Charged groups				
		Met 106	Hydrophobic				
		Thr 107	Hydrogen bond				
CDR3	Glu 105	Arg 82	Hydrophobic				
		Arg 86 (hinge)	Hydrogen bond				
		Thr 107	Charged groups				
		Arg 109	Hydrogen bond				
		Val 114	Charged groups				
CDR3	Leu 106	Met 106	Hydrophobic				
		Thr 107	Charged groups				
		Met 108	Hydrophobic				
			Hydrogen bond				
		Leu 117	Hydrophobic				
CDR3	Thr 107	Arg 109	Hydrogen bond				
CDR3	Ala 108	Val 110	Charged groups				
		Phe 120	Hydrophobic				
		Tyr 135	Hydrophobic				
CDR3	Trp 110	Phe 120	Hydrophobic				
		Cys 130	Hydrophobic				
		Val 131	Hydrophobic				

		Gly 132	Charged groups
		Asp 133	Hydrogen bond
		Tyr 135	Hydrophobic
Framework	Trp 114	Met 108	Hydrophobic
	_	Val 131	Hydrophobic

Hyd	rogen bonds	XML	J	Sal	t bridges	X	ML			No disulfide bonds found No covalent bonds found
##	Structure 1	Dist. [Å]	Structure 2	##	Structure 1		Dist. [Å]	Structure 2	2]
1	C:GLN 39[NE2]	3.35	A:PHE 129[0]	1	C:GLU 105[OE1]	3.81	A:ARG 10	9[NE]]
2	C:TYR 50[OH]	2.66	A:CYS 60[0]	2	C:GLU 105[OE2]	3.13	A:ARG 8	6[NH1]	
3	C:TYR 53[OH]	3.44	A:ASP 53[OD1]							-
4	C:TYR 53[OH]	3.09	A:ASP 53[0]							
5	C:ASN 54[ND2]	3.65	A:ASP 53[0]							
6	C:ASN 54[ND2]	3.86	A:SER 56[OG]							
7	C:TYR 59[OH]	2.61	A:LEU 59[0]							
8	C:SER 103[N]	3.36	A:CYS 60[SG]							
9	C:SER 103[OG]	2.57	A:ASP 83[OD1]							
10	C:LEU 106[N]	2.73	A:THR 107[0]							
11	C:THR 107[OG1]	3.04	A:ARG 109[0]							
12	C:ALA 108[N]	3.43	A:ARG 109[0]							
13	C:ALA 108[N]	3.58	A:MET 108[SD]							
14	C:TRP 110[NE1]	2.97	A:ASP 133[0]							
15	C:GLU 102[OE1]	3.10	A:ARG 82[N]							
16	C:LEU 104[0]	3.53	A:THR 107[N]							
17	C:LEU 104[0]	3.32	A:THR 107[OG1]							
18	C:GLU 105[OE1]	3.81	A:ARG 109[NE]							
19	C:GLU 105[OE2]	3.13	A:ARG 86[NH1]							
20	C:LEU 106[0]	2.75	A:ARG 109[N]							
21	C:ALA 108[0]	3.32	A:TYR 135[OH]							

Supplementary Figure S1.

C.

Purification and crystallisation of anti-LMO2 VH576 and LMO2

(A) LMO2 and VH#576 were co-purified using Nickel agarose chromatography. The protein purity was analysed by 15% SDS-PAGE, stained with Coomassie Brilliant Blue, pre and post digestion with his-tagged Tobacco Etch virus protease.

(B) The protein purity was again assessed after gel filtration chromatography with a Hi-Load Superdex 75 column.

(C) The microscope image shows a crystal grown by sitting drop vapour diffusion, Greiner 96 well plate and reagent 100mM MES monohydrate pH 6.0, 0.8 M ammonium sulphate with additive: 1,3 Butanediol. The drop consisted of 200nl VH576/LMO2 at 8mg/ml, 100nl reagent and 100nl additive. The reservoir (100µl) reagent was at a dilution of 90%. The hexagonal, plate shaped crystal, measured 100µm by 40μ m

Supplementary Figure 2

A. Amino Acid sequence of anti-LMO2 VH protein

30 CDR1 GGSMAEVQLLESGGGLVQPGGSLRLSCAASGFSFS<mark>HSPMN</mark>WVRQAPGKG CDR2 LEWVS<mark>YISYNSSSIYYADSVKGR</mark>FTISRDNSKNTLYLQMNSLRAEDTAV **CDR3** 110 YYCAR<mark>GLTESLELTADWFDY</mark>WGQGTLVTVSS

Footnote: The CDR residues are highlighted in yellow and the key CDR amino acids determined by mutagenesis (see main text figure 2) are shown in red.

B. Amino Acid sequence of LMO2ΔN8 protein

SLDPSEEPVDEVLQIPPSLLT<mark>C</mark>GG<mark>C</mark>QQNIGDRYFLKAIDQYW<mark>H</mark>ED<mark>C</mark>LS<mark>C</mark> DLCGCRLGEVGRRLYYKLGRKLCRRDYLRLFGQDGLCASCDKRIRAYEM TMRVKDKVYHLECFKCAACQKHFCVGDRYLLINSDIVCEQDIYEWTKIN GMI

Footnote: The LMO2 Δ N8 lacks the first eight amino acids of the mature protein (MSSAIERK).

The zinc binding residues are highlighted in yellow (LIM1 domain) or grey (LIM2 domain).

The anti-parallel beta sheets of LMO2 (when in complex with LDB1-LID) are highlighted in green.

Western blot analysis of mutated versions of VH#576

Anti-VP16 Western blot analysis was employed to analyse the prey (VH#576-VP16) expression levels. All mutated versions of VH#576 were expressed, except for the L104G, E105A, Y113G mutated forms. All blots, except the final panel, show a positive control of the original VH#576 and/or VHY#6.

Supplementary Figure 4

An anomalous difference map positioning zinc atoms in the LMO2-VH complex

An anomalous difference Fourier map contoured at 4.0σ (orange mesh) is shown to highlight the positions of the zinc ions (green spheres). The map was calculated using the peak wavelength anomalous differences and phases after refinement with all zinc ions omitted. LMO2 and VH#576 are coloured in blue and cyan respectively.

Anti-Flag beads

Lane key:

175 <u>–</u> 80 –

Transfection	1	2	3	4	5	6	7	8
pGL3-ElbLUC-(Ebox-GATA) ₂	+	+	+	+	+	+	+	+
Ldb1/Lmo2	+	+	+	+	+	+	Ŧ	+
GATA-1	-	+	-	+	-	+	-	+
TAL1/E2A	-	-	+	Ŧ	-	-	+	+
3XFlag-VH576-NLS	+	+	+	+	-	-	-	-
3XFlag-VHY6-NLS	-	-	-	-	+	+	+	+

Figure 5: Expanded data for figure 4C, Western blotting of pull-down proteins.

COS-7 cells were co-transfected various combinations of plasmids coding for LMO2, LDB1, TAL1, E47 and GATA-1 and either Flag-tagged VH#576 or Flag-tagged VH#6 (a non-relevant VH) as shown in the inset table. Protein complexes were isolated with anti-Flag antibody beads and purified proteins separated by SDS-PAGE. The presence of LMO2 (A), LDB1 (B), GATA-1 (C), TAL1 (D) Flag tagged VH (E) was detected in both the lysate and pull down material by Western blotting. Bands from lanes 4 and 8 are shown in figure 4C.

Figure 6: Expanded data for figure 4D, the effect on protein stability of binding VH#576 to LMO2.

Extracts from MEL585 cells expressing VH#576 (anti-LMO2) or VH#6 (anti-RAS) or untransfected were separated by SDS-PAGE and transferred to membrane for Western analysis with anti-flag mouse monoclonal antibody (A) and anti-tubulin (as a protein loading control) (B); or anti-LMO2 monoclonal antibody (AbD Serotec) (C) and anti-tubulin (D).