Supplemental Data

A. The SSR and STS markers used for map-based cloning of the <i>zebra2</i> locus						
Locus	Clone	Forward primer (5' \rightarrow 3')	Reverse primer(5' \rightarrow 3')			
RM167	AC135794	GATCCAGCGTGAGGAACACGT	AGTCCGACCACAAGGTGCGTTGTC			
RM202	AC138197	CAGATTGGAGATGAAGTCCTCC	CCAGCAAGCATGTCAATGTA			
RM229	AC150702	CACTCACACGAACGACTGAC	CGCAGGTTCTTGTGAAATGT			
RM5349	AC134925	AGGGCATGCTTACATCCAAC	CATTTGCTTCTATGCCCCAG			
RM1341	AC134053	AACCTGGAGGTGCTGGTCTC	TTTCTCCCCCCAACCAC			
STS1	AC134624	ACTCGGAAACCTCAGTGTAAG	GACTTTCGCTTCTCTTCTG			
STS2	AC134624	GGCAACAGTCGTAGAGCTTC	TATGCGTCGCATGCACAG			
STS3	AC136905	GACTTTGACCTAGCTTTCTTG	GTGATTGATTAGCTGCAGTG			
STS4	AC133291	GTCTGCATAAGCTGGAGTAC	GATAGACCAAGGTGCTCAAG			
STS5	AC133291	TTCACAGGGACCACTACG	GGTCGCTCAACGAATCTG			
STS6	AC109644	AGAACCATCAAACCTAGGG	TTCACAGGGACCACTACG			
STS7	AC108871	ATGATGCTGTGTTCCGAG	GGTTCAGGGTAGGCATTAAG			
RM1219	AC108871	GAGGAATGGAGGAGTTTGGG	CCGGCAAGGAAAAGGAAC			
STS8	AC109929	GTGACAGTAGACACTGAAGC	CACAGAAGTGATAATCTCTACC			
STS9	AC109929	GCCATTAAACACTGAACATC	CTTAGCTCGCAGACAACC			
RM206	AC146334	CCCATGCGTTTAACTATTCT	CGTTCCATCGATCCGTATGG			
RM224	AC135190	ATCGATCGATCTTCACGAGG	TGCTATAAAAGGCATTCGGG			
B. Primer sets for quantitative PCR						

Table S1. Primer information used in this study

•	· · · · · · · · · · · · · · · · · · ·	
Gene	Forward primer (5'→3')	Reverse primer(5' \rightarrow 3')
JAmyb	TTCGTTCACGTCGGAGTCACAAGA	AAACTCATGGTCCACCTCCTGCAT
MT2b	CCTGCAACTGAATCTATCGTCGTCGT	AAGCTCTGATCGACAGTAGCAGCA
OsACS6	ACCTGATCGAGGAATGGAGCAAGA	TAAACTGGGCCATCGCCTTTCTGA
OsLhca1	GTCACCATGTCCGCCGAG	GACTCCTTGAACCGCTCGAAG
OsLhcb1	CCATGTTCTCCATGTTCGGCTTCT	TAGGCCCAGGCGTTGTTGTTGA
OsLhcb4	TACCTGCAGTTCGAGCTGGAC	AGGCCGAACACCTCGGTGTA
OsNAC4	CGGAAATAGGAGTGATGGCTAGA	ACCACATTTGCAGAATCATGCT
Os04g32480	CTCGTGGCAATGCAATTGTAGGCA	ACCCAAGCTGGTCAACCTCTCTTT
Os11g13370	AAGCATCAGCAGCAGCAATGTCTC	TGCCAAGAGGATTTGGGAGACGAA

Fig. S1. Map-based cloning of the z2 locus.

(A) Genetic mapping of the *z2* locus. The *z2* locus was initially mapped to a 2.2-Mb region between two SSR markers, RM1341 and RM206, on the long arm of chromosome 11. PCR-based SSR and STS marker primer information is listed in Table S1. (B) Physical mapping of the *z2* locus. The *z2* locus was further delimited to a 236-kb interval between STS6 and STS7. (C) Identification of *Z2* among candidate genes. The genomic structure of *OsCRTISO* encoding carotenoid isomerase (586 amino acids [aa]) is composed of 13 exons (white boxes) and 12 introns (lines). We found 20-bp deletion of exon 1 in *OsCRTSO* allele in *z2* mutant allele, leading to a frameshift mutation and premature translational termination (138 aa) containing another new open reading frame region (664-759bp, 31 aa) after the frameshift mutation. Chai et al. (2011) reported *zebra2-1* (*z2-1*) allele in which the CRTISO transcript is 24-bp shorter than that of the wild type due to an alteration in the splicing site. Thus, the *z2* mutants used in this study is *zebra2-2* (*z2-2*). (D) Genomic PCR analysis of the exon 1 of *Z2* allele in WT and *z2* plants, showing that the *z2* allele has a 20-bp deletion.

Fig. S2. Protein sequence alignments of carotenoid isomerase (CRTISO) in plants.

ClustalW alignment of homologs of CRTISO (<u>http://ch.embnet.org/software/ClustalW.html</u>) was performed. All protein sequences were obtained using the NCBI-BLASTP program (http://blast.ncbi.nlm.nih.gov/Blast.cgi?PROGRAM=blastp&BLAST_PROGRAMS=blastp&PAG E_TYPE=BlastSearch&SHOW_DEFAULTS=on&LINK_LOC=blasthome). Z.mays_1, Z.mays_2, S.bicolor, P.trichocarpa, A.thaliana, S.lycopersicum, and D. carota have 86, 87, 89, 79, 77, 85, and 81% sequence similarity to OsZ2, respectively. The location of the mutation in the *Arabidopsis* carotenoid isomerase mutant *ccr2-1* is indicated (red arrow head). O.sativa_ZEBRA2 (rice, *Oryza sativa* ZEBRA2, *Os11g36440*); Z.mays_1 (*Zea mays* carotenoid isomerase 1, ACO71189); Z.mays_2 (*Zea mays* carotenoid isomerase 2, NP_001148055); S.bicolor (*Sorghum bicolor*, XP_002449729); P.trichocarpa (*Populus trichocarpa*, XP_002323362); A.thaliana (*Arabidopsis thaliana* carotenoid isomerase, At1g06820); S.lycopersicum (*Solanum lycopersicum* carotenoid isomerase, Q8S4R4); D.carota (*Daucus carota* carotenoid isomerase, Q2VEX9).

Fig. S3. Singlet oxygen $({}^{1}O_{2})$ accumulation in the *Arabidopsis accelerated cell death 1 (acd1)* mutant.

¹O₂ was examined by SOSG fluorescence in the leaves of *acd1* mutants grown under SD, CL, and D→L conditions. D→L: the SD-grown WT (Columbia) and *acd1* plants were incubated in the dark for 4 days and then exposed to light (100 μ mol m⁻² s⁻¹) for 3 hours. Red chlorophyll autofluorescence (left), green SOSG fluorescence (middle), and merged images (right) are shown. SOSG fluorescence was observed at 520 nm and chlorophyll autofluorescence at 680 nm using laser scanning confocal microscopy. Scale bar = 50 μ m.

Plants were grown under SD conditions. They were transferred into darkness at ZT-0, incubated for 3 days, and sampled under darkness. Chlorophyll intermediates, Pchlide *a* and Pheide *a*, were not detected, indicating normal function of chlorophyll catabolism in *z2* mutants. Pchlide *a*, protochlorophyllide *a*; Pheide *a*, pheorphorbide *a*; N, neoxanthin; V, violaxanthin; A, antheraxanthin.

ACS6	1	MVAFATEKKODLNLLSKIASGDGHGENSSYFDGWKAYEENPFHPIDRPDGVIOMGLAENO
OsACS6	1	MAYOGIDLLSTKAAGDDHGENSSYFDGWKAYDTNPFDLRHNRGGVIOMGLAENO
ACS6	61	LCGDLMRKWVLKHPEASICTSEGVNQFSDIAIFQDYHGLPEFRQAVAKFMEKTRNNKVKF
OsACS6	55	LSLDLIEEWSKNHPEASICTPEGVSQFKRIA <mark>NFQDYHGLPEFR</mark> KAMAQFMGQVRGGKATF
ACS6	121	DPDRIVMSGGATGAHETVAFCLANPGDGFLVPTPYYPGFDRDLRWRTGVNLVPVTCHSSN
OsACS6	115	DPDR <mark>V</mark> VMSGGATGA <mark>Q</mark> ETLAFCLANPG <mark>EA</mark> FLVPTPYYPAFDRDCCWR <mark>S</mark> GIKLLPIECHSFN
ACS6	181	GFKITVEALEAAYENARKSNIPVKGLLVTNPSNPLGTTLDRECLKSLVNFTNDKGIHLIA
Osacs6	175	DFRLTKEALVSAYDG <mark>ARROGISVKGILITNPSNPLGT</mark> ITDRDTLAMLATFATEHRVHLVC
ACS6	241	DEIYAATTFGQSEFISVAEVIE-EIEDCNRDLIHIVYSLSKDMGLPGLRVGIVYSYNDRV
OsACS6	235	DEIYA <mark>GSVFATPEYVSIAEVIERDV</mark> PWCNRDLIHVVYSLSKDFGLPGFRVGIIYSYNDAV
ACS6	300	VQIARKMSSFGLVSSQTQHLIAKMLSDEEFVDEFIRESKLRLAARHAEITTGLDGLGIGW
Osacs6	295	VAAARRMSSFGLVSSQTQYFL <mark>AR</mark> MLSDEEFIGRFLQESKCRLVARHERFTSGLREVGIGC
ACS6	360	LKAKAGLFLWMDLRNLLKTATFDSETELWRVIVHQVKLNVSPGGSFHCHEPGWFRVCFAN
Osacs6	355	L <mark>RGN</mark> AGLFSWMDLR <mark>RMLREK</mark> TAEAELELWRVIVHQVKLNVSPG <mark>T</mark> SFHC <mark>R</mark> EPGWFRVCHAN
ACS6	420	MDHKTMETALERIRVETSOLEEETKPMAATTMMAKKKKKCWOSNLRISFSDTRRFDDGFF
Osacs6	415	MDDETMEVALGRIHDFVROHOORRVKAERWAANROLRISIPHHHHLSPAHLSS
ACS6	480	SPHSPVPPSPLVRAQT
OsACS6	468	PLALLSPQSPMVRATS

Fig. S5. Comparison of amino acid sequences of the *Arabidopsis* and rice *ACS6* homologs. Identical amino acids are shaded in black, and the amino acids that have similar characteristics are shaded in gray. The *Arabidopsis ACS6* (At4g11280) and its rice homolog (OsACS6; LOC_Os4g48850) are aligned.