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ABSTRACT The sum of all partial quotients in the regu-
lar continued fraction expansions of m/n, for 1 < m < n, is
shown to be 6X-2 n(ln n)2 + 0(n log n(log log n)2). This result
is applied to the analysis of what is perhaps the oldest non-
trivial algorithm for number-theoretic computations.

An ancient Greek method (1) for finding the greatest com-
mon divisor of two positive integers by mutual subtraction
(avravatpeULs) can be described as follows: "Replace the
larger number by the difference of the two numbers until
both are equal; then the answer is this common value." For
example, the computation of gcd(18,42) requires four sub-
traction steps: 118,421 -- 118,241 118,61 -t 112,61 - 16,61;
the answer is 6.

Let S(n) denote the average number of steps to compute
gcd(m,n) by this method, when m is uniformly distributed
in the range 1 . mr n. We shall prove the following result:
THEOREM. S(n) = 67r-2(In n)2 + O(log n(log log n)2).

1. Preliminaries
Let [xI denote the largest integer less than or equal to x,
and let x mod y = x - y[x/yI be the remainder of x after
division by y. We represent the continued fraction 1/(xi +
1/(x2 + -+ 1/x,) ...) by /Xl,X2,...

If 1 <m S n, it is well known that there is a unique se-
quence of positive integers ql.. .,qr such that Mr/n
= .ql,. .qtl/, where r = r(rn) 2 0. The number of sub-
traction steps needed to compute gcd(m,n) is precisely qi +
*-- + qr; for this is evident when m divides n, and otherwise
qj = [n/m] subtraction steps replace 1m,n1 by {m, n mod
ml, where (n mod m)/m = /q2,- . . qm,1/. Therefore S(n)
may be interpreted as one less than the average total sum of
partial quotients in the continued fraction representation of
fractions with denominator n.

Let us say that (xx',y,y') is an H-representation of n if

n= xx' +yy', X>y > 0,
gcd(x,y) = 1 and x' . y' > 0. [1.1]

We begin our analysis with the following sharpened form of
a fundamental observation due to H. A. Heilbronn (2):
LEMMA 1. There is a 1-1 correspondence between H-

representations of n and ordered pairs (m,j) where 0 < m
< 1/2 n and 1 < j < r(m,n). Furthermore if (x,x',y,y') cor-
responds to (m,j), the jth partial quotient qj in the contin-
ued fraction m/n = /qlq2,- .. ,q, 1/ is [x/yj.

Proof: Given 0 < m < 1/2 n, let d = gcd(m,n), r =
r(m,n), and rn/n = /ql,q2,...,q7,1/. Let m'/n
= /l,qr,. q2,ql/; then 1/2 n < m' < n, and the correspon-
dence m m' between (0, 1/2 n) and (1/2 n, n) is 1-1.

Now let (m,r) correspond to the H-representation
(mr'/dd,(n-m')/d,d); and if (m,j) corresponds to
(xj,x'pyjy'j) for some j > 1, let (mj-1) correspond to
(yj,qjx'j + y'j,xj-qjyj,x'j). It follows readily that [xi/yj] = qj
for 1 < j < r 'and that y = 1, since this construction paral-
lels the continued fraction process for m'/n.
To complete the proof, we start with a given H-represen-

tation (x,x',yy') and show that it corresponds to a unique
(mj). This is obvious if x' = y', since the construction clearly
treats every such H-representation exactly once. If x' > y',
let x' = qy' + x" where 0 <x" < y' and q > 1. By induction
on x', the H-representation (y + qx,y',x,x") corresponds
uniquely to some (mj), where j > 1 since x > 1; hence
(x,x',yy') corresponds uniquely to (m,j-1). 0
COROLLARY. nS(n) = 22; [x/yJ + 1 - (n mod 2), where

the sum is over all H-representations of n.
Proof: By the lemma, 2 [x/y] is the total number of

subtractions to compute gcd(m,n) for 1 < m < 1/2 n. It is
also the total for 1/2 n < m < n, since 1m,n1 and In-m,n1
both reduce to fmn-mr after one step. Finally we add the
cases m = n (O steps) and m = 1/2 n (1 step if n is even). 3

2. Reduction of the problem
Let A' [x/yj denote the sum over all H-representations with
x'y < 1/2 n. Note that

x/y < n/x'y = x/y + y/x' < xly + 1, [2.1]

hence the excluded H-representations with x'y 2 1/2 n have
tx/yJ = 1. Since rr(m,n) = O(log n), we have

2;Lx/yJ = ;'Lx/yj + O(n log n). [2.2]

LEMMA 2. Given x',y > 0 and x'y < 1/2 n, there exist
H-representations (xx',yy') of n if and only if

gcd(y,n) = gcd(y,x'). [2.3]
And when [2.3] holds there are exactly gcd(y,n)II(1-p-')
such H-representations, where the product is over all
primes p which divide ged(y,n) but not y/gcd(y,n).

Proof: The necessity of [2.3] is obvious, since ged(x,y) =
1. Let d = gcd(y,n) = ged(y,x') = ax' + by. The set of all so-
lutions (x,y') to n = xx' + yy' is given by ((an + qy)/d, (bn
-qx')/d), for integer q. Exactly d values of q will satisfy 0
< bn -qx' Adx', i.e., y' < *'; and when y' < x' we have x
(n-yy')/x' > n/x' - y > y.

It remains to count how many of these d solutions satisfy
gcd(x,y) = 1. If p is a prime divisor of y/d, then p does not
divide an/d, hence p does not divide x. On the other hand,
let pi. . . p,p be the primes that divide d but not y/d; then
pl .. .pr consecutive values of q will make (an + qy)/d run
through a complete residue class modulo Pi.. .Pr, hence
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(pi-l). . (Prl) of these values will be relatively prime to y.

Let P(n) denote wp(n)/n = II(I-p-1), where the product is
over all prime divisors of n, and let P(n\m) denote the simi-
lar product over all primes that divide n but not m. As a re-
sult of [2.1], [2.2], and the lemma, we have

ZLx/yJ = E dP(d\(y/d)) E (4' +0(1))
n gcd(y,n)-d gcd x',yId /

1<_y< n/2 I< x'< n/2y

+ O(n log n).

Replacing n,y,x' respectively by md,jd,kd yields

2;Lx/YJ = E P((n/m)\j) E m
gcd(j,m)-1 gcd(k,j)-1 J

j <m2/2n k <m2/2nj

+ O(n log n log log n), [2.4]

since the excluded terms are O(n log n r-, (n)), where
a I(n) = Td\n l/d = O(log log n). (See ref. 3, §22.9.)

3. Asymptotic formulas
LEMMA.

log p = O(log log n).

P\n P
[3.1]

Proof: Let n be divisible by k primes, and let C1,C2 be
constants such that the jth prime lies between cij log j and
c2j log j. Then

I~l
\I<)0< i (1 j) =0(log k)

c
p\n P 1ijkPi <J< k logj

Consequently

E(d) ln P(n\p) = O(log log n), [3.2]d\nd
and

E d =Eln p(p + p2 + + i)a (- n)
d\n Pj\\n

= O((log log n)2). [3.3]

We shall now evaluate [2.3] step by step, beginning with
the sum on k.
LEMMA.

k= P(]) ln x+ O(log log j).
gcd(k.j)-1

k < x

Proof: The sum is

Epu d) E hIn1ud 0(1)).
d\j kd <x d d\ d ( d

Let gu(n) = (_l)r if n is the product of r 2 0 distinct
primes, none of which divide m, otherwise /i.m(n) = 0.

LEMMA.

P(j\d)= P(m) ln x E d(r)
ged(j.m) 1 J2gd(r~m)-1

j < x r < x

+ O(log log m). [3.5]

Proof: The sum is

1 ,ud(r) _
gcd(j.m)= I \j r

j < x

: ud(r)
gcd(r,m)1 r

1

gcd(jm) - jr
r < x j < x/r

apply [3.4]. 0
LEMMA.

P(\d)ln j = 1 x)2 E ud(r)
gcd j.m)= I iPm)l gcd(r~m)=I

j < x r < x

+ 0(log x log log m).

Proof: As in [3.4], we have

E In k E p(d)E ln kd
gc-d(k.j=I d\J kd<x

k < x
k~~~~~~~x

~

= EPdjd)(2(In d) (ln x)(ln d) +0(ln d))
d\j

d< x

= 1/2 P(j)(ln x)2 + O(log x log log j)

by [3.2], hence the desired sum can be evaluated as in [3.5].

4. Concluding steps
Putting the results of Section 3 into [2.4], letting N stand for
m2/2n, and using the fact that P(a\b)P(b) = P(ab) =

P(b\a)P(a), we have

2Lx/yP=Em E P(n/m)P(j\(n/m)) n (N)
m\n gcd(jm)-J

j< N

+ 0(na1(n) log n log log n)

= EmP(n/m)(1/2 P(m)(ln N)2 2n/m(r)\
m\n gcd(r,m)= 1

r<N

+ O(na-1(n) log n log log n)

=1/2EmP(n/m)P(m)(ln 2 + 2 In E) r)
m+n r<N

+ O(n log n(log log n)2).

Since

[3.4]
E m log m = nE d = O(n(log log n)2)
M\n

m
d\n d

by [3.3], we can simplify this to

1/2 1: mP(n/m)P(m) (In n)1 E (2)
m\n r<N r

+ O(n log n(log log n)2).

We can extend the sum on r to co, since

1
< m 1-+ mO(-2)

m\n r>N m\n r21 m\n m

m<Fn(M)>=0n

(m\n)

[3.6]
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by ref. 3, §18.1. Now

E yn(r) tl 1) 6 I| 1 -1)
r> 1 p2 n Pr n"n

It remains to evaluate E2m\nmP(n/m)P(m), and since this is
a multiplicative function it suffices to do the evaluation
when n = pk; we obtain

E p - )2 + (pO + pk)((1- 1)- - 1)2)

= p1(1-i1)
Putting everything together yields

z2Lx/yJ = -3 n(ln n)2 + O(n log n(log log n)2),
and this proves the theorem in view of the corollary to the
lemma of Section 1.
The theorem shows that the sum of all partial quotients

for m/n is O((log n)2+E) for all but o(n) values of mr < n, as
n o co, and this establishes a conjecture made in ref. 4. The
application in ref. 4 involves the sums of even-numbered
and odd-numbered partial quotients separately. If SO(n) de-
notes the average of qi + q3 + q5 + ... and Se(n) the av-

erage of q2 + q4 + q6 + . . ., it is easy to see from the rela-
tion between m/n and (n-m)/n that n(S0(n) - Se(ln)) =
n-i. Hence SO(n) - Se(n) 3ir-2(ln n)2.

In a sense our theorem is rather surprising, since Khin-
tchine (5) proved that the sum of the first k partial quotients
of a real number x is asymptotically k log2k except for x in a
set of measure zero. Thus we originally expected S(n) to be
of order (log n)(log log n) instead of (log n)2.
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