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ABSTRACT We have developed further the statistical ap-
proach to chromatography initiated by Giddings and Eyring,
and applied it to affinity chromatography. By means of a
convenient expression of moments the convergence towards
the Laplace-Gauss distribution has been established. The
Gaussian character is not preserved if other causes of disper-
Sion are taken into account, but expressions of moments can
be obtained in a generalized form. A simple procedure is de-
duced for expressing the fundamental constants of the model
in terms of purely experimental quantities. Thus, affinity
chromatography can be used to determine rate constants of
association and dissociation in a range considered as the do-
main of the stopped-flow methods.

In spite of a long history of experimental research and exten-
sive applications, chromatography was not considered as a
random process till 1955, when Giddings and Eyring pub-
lished their remarkable statistical theory (1). It was charac-
terized by realistic basic assumptions and by an elegant de-
velopment leading to an elution profile in the form of a
modified Bessel function. However, the old theory of Martin
and Synge (2) has continued to be used, in part because of
the strength of custom, in part because no direct connection
between the two theories had been established, which would
permit the conversion of the data.

In the present work we have again taken the statistical ap-
proach and studied thoroughly the following topics: (i) The
transformation of the expressions of moments and the con-
vergence of the distribution law towards the Laplace-Gauss
distribution, (ii) A generalization taking into account other
causes of dispersion (diffusion, etc.), which leads to an ex-
pression of the fundamental constants of the theory in terms
of purely experimental quantities.

These interpretations open a new field of applications for
affinity chromatography (3) which makes it possible to ob-
tain rapid kinetic data on noncovalent binding, which are
very difficult to obtain otherwise.

Random walk of a molecule in a chromatographic
support
k dt designates the probability of binding a molecule during
elementary time dt: k'dt is the probability of releasing a
bound molecule during dt. Elution is obtained when the
molecule has spent a definite time to in the free state. The
retention time t is a stochastic variable, the law of which is
determined as follows, according to Giddings and Eyring
(1):
The probability p(n,t)dt of having exactly n stays in the

fixed state and a retention time lying between t and t + dt
is given by the product of three probabilities of independent
events:
n bindings during the time to-it is a Poisson process; the

probability pn is given by:

ekt o(kto)n [1]

n-i releasings during the time t-it is il a Poisson pro-
cess; the probability is given by:

e k't(k't)yf [2]
(n -1)!

One releasing between t and t + dt-the probability is:

k'dt

Hence the probability p(n,t)dt is:

pAn, t)dt = e-kto(kto)nek't(k/tYz-Ik'dt [3]
n'(n - 1)!

The probability pdt of having a retention time between t
and t +-dt for any n is obtained by summation with respect
ton:

pt= e-ktqkto)-e-k t(k't)"'1k'dt[1
n-EI n!(n - 1)!

This density is associated with a Dirac distribution at the ori-
gin, which expresses that non-retention always has a non-
zero probability:

3&-kto [5]

The expression [4] can be written using a modified Bessel
function of II type [see ref. (4)].
By plotting p versus t we obtain the elution profile. Fig. 1

shows some examples which will be discussed further.

General expression for moments
Let us calculate the rth moment of the distribution of t:
With r > 0 the Dirac distribution at the origin does not con-
tribute. Thus:

E(t') = f trpdt = oek to.)k 11n l+re-k dt

After integration:

E(tr) = e (kt0)n(n-1 + r)! [6]
Thinskeriecan 1)!e d r

This series can be expressed otherwise:

E(tr) = ke, (kt0)rr(e-kto)r) [7]
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dimensionless ratio: w = t/E(t).
Its distribution law has for density pw:

kt,
Pn= k1)P

e-k"(ktO)7+"e-kt, ti. Wo )n-'
A,= n!(n -1)!

0 1 2 3 w=t/E(t)

FIG. 1. Elution profiles (full lines) in reduced coordinates
showing the effect of the mean number of exchanges (kto) on the
thickness of the peaks and the tendency towards the Gaussian dis-
tribution (broken lines). The curves were computed by numerical
summation of the series [13]: first, the value of n giving the highest
term was calculated as being the integer the nearest to x/THkio, let
this be no; then the terms were added in the order no, no + 1, no -
1, no + 2, no - 2, etc... until they became negligible.

The (r - 1)th derivative can be written in the form of a fi-
nite sum, then, the exponential factors cancel each other,
yielding:

E(tr r!(r=IT [8]

The only parameter remaining is the mean exchange
number kto. The representation pw is equivalent to taking
the end of the first void volume as origin and the retention
volume as unity. Fig. 1 shows the different plots obtained
for different values of kto. The curves are asymmetric for
low values of kto and become symmetric for high values.
Fig. 1 also shows the tendency towards the Laplace-Gauss
law: for each curve, the Gaussian distribution is shown
which has the same mean and the same standard deviation.
They become very similar as kto increases.

Convergence towards Laplace-Gauss distribution

The curves presented in Fig. 1 strongly suggest the conver-

gence of the distribution [4] towards a Laplace-Gauss distri-
bution. We are going to demonstrate this important point:
From the moments E(tr) of the distribution we can write

the series expansion of its characteristic function X (0):

( 0) = 1 + ir rB
I

E( tr)
r=l r

[14]

Replacing the moments by their expression [8], it follows:

E (i0)'(r - 1)! --I (kt-)!r-j
(0) = 1+ k"- II

(r I-j)!(r -1i[ 15]
Now we are going to substitute for t the associated reduced
variable u:

The expression [8] offers a great advantage over those pre-
viously derived (1, 5), having a finite number of terms with-
out an exponential factor. The approximation used by Gid-
dings and Eyring gives the same result as [8] for the first two
moments, a discrepancy appears only with the third one.

Distribution profiles
The first moment, average of the distribution is:

E(t) = kt [9]

It represents, in experimental terms, the position of the peak.
The second moment is:

E(t2) = kto(kto 2)

E~~~t')/ [10]

Hence the variance U2 is

=

2kto
ak/2 [I]

a, the standard deviation, represents the width of the peak.
As expected, E(t) is proportional to to, therefore to the
length of the column, and also to k/k', the equilibrium con-

stant of binding. a varies as the square root of the length of
the column:

All the possible profiles can be represented by a network
of curves depending on one parameter. Let us consider the

t - E(t) k't _ t

II = a = 2 1/ 2
[16]

This transformation being linear the new characteristic
function /u(0) is easily deduced:

f(0) =eV 2F + E I

(r( 11)' - (k )rJ 1)!] [17]

Rearranging the terms and letting s = r -j one can write
ku(0) as:

eV2

O___ to_ (o + D

X 1 + 2j s!(s 1)! | [18]

Theseries with the s index has been already encountered in
Eq. [6]; it can be treated in the same way, except for the j =
0 value for which the corresponding term must be calculat-
ed separately. The exponential factor is thus cancelled:

1)!i-!2h 12

1 l 2' h h!(j - h)(j-1 h)!(kto)h1/2oh
[19]

Pw

[12]

[13]
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for kto - Xo only the terms corresponding to h = 0 do not
vanish, the series [19] tends, term by term, towards a limit
series:

lim X ,(O) E (-1@2' = e-8/2 [20]
kt0-. 2j()

which is the characteristic function of a Laplace-Gauss dis-
tribution. In practice one can consider that for kto values
higher than 100, for instance, the law [4] can be replaced by
the associated Gaussian distribution:

time t, can be determined directly:

t'= to + t [25]

We do not intend to develop a detailed model for the to dis-
tribution, nor even to assign a particular law to it. Let us as-
sume, however, that at least the first two moments exist. Eq.
[4] is here considered as the conditional law of t, to being
fixed. The qth moment of t' is then easily deduced, and ex-
pressed as a function of the different moments of the to law:

k' ('t-kt0)2
2 rkt e 4kt0 [21]

E(t'q) =
q qI(r - 1)' r-I kr 1E(to')EE0+J (q - r)!k r-j!(r - Wr- 1 - j)!

Correspondence with the theory of Martin and Synge
The plate theory of Martin and Synge (2) has widely been
accepted and many results are expressed in terms of "height
of the theoretical plate." We have to orient both theories
with respect to each other and to indicate the way of con-

necting them.
Replacing, in the plate theory, volume by retention time

as a variable, we obtain for the first two moments according
to the plate theory:

mean: E(t) = kto/k', the same result as in the statistical
theory for the standard deviation:

to k(k + k') [22]

where P is the number of plates.
We can define the number of plates P, which results in the
identity of the first two moments in both theories, then:

(k +k')t([
2 [23]2

Hence, for a well-retained substance (k >> k') the number of
plates is approximately equal to kto/2, which corresponds to
half the mean number of exchanges. This can be better un-

derstood when we consider the form of the plate distribution
with high retention:

[24]

From [26] we deduce:

mean = E(t') = E(to)(1 + ki [27]

variance:

a12 =
-

-E(to) + 1 + a 2 [28]

where cro2 is the variance of to.

Experimental determination of k and k'
The above equations open the way to the experimental de-
termination of k and k': A first experiment with the sub-
stance under study gives the experimental values E(t') and
A', deduced from the position and the width of the peak, re-

spectively, or by numerical integration.
A second experiment with another molecule, having simi-

lar hydrodynamic properties, but no affinity for binding
sites, gives E(to) and uo.

Another way, especially suitable for affinity chromatogra-
phy, consists in performing the first chromatography with a

small amount of the labeled molecule, alone, and the second
with the same sample, plus, in the solvent, a large amount of
nonradioactive substance in order to saturate the binding
sites.

Then, the Eqs. [27] and [28] are solved with respect to k
and k':

[24] has the same form as the conditional law p(n,t)/pn
which is obtained in statistical theory by fixing the number
of exchanges equal to P instead of considering it as a ran-

dom variable. (See Eqs. [1] and [3].) P, however, cannot be
equal to the mean actual number of exchanges kto; it must
assume a lower value to obtain a correct variance.
The correspondence between the two theories cannot be

maintained for higher order moments.

Generalization, taking into account other causes of
dispersion
The interpretation of experimental data will require that
other causes of dispersion than the random character of
binding should be taken into account. The main causes are:

diffusion in the free state and heterogeneity of the velocity
of the solvent: zero inside the beads of the chromatographic
support or on their surface, maximum between them. Con-
sequently, it is no longer valid to consider to time as a con-

stant; it is, like t, a random variable. It must be noticed that
t and to are not independent random variables, as supposed
by McQuarrie (5). Only the elution time t', not the retention

2E(to)[E(t') -E(to)]2
- a'2E2(t ) -cr02E2(t')

k'= 2E2( to)[E(t') - E(to)]
'2E2( to ) -a E(t')

[29]

[30]

More general initial conditions
This case can be described by adding to the expression of
elution time t' a random term tj representing the input
time:

t = t + tt, + tl [31]

We only assume that the distribution of the input time t I has
at least two moments. The origin on the time axis can be
chosen in such a way that E(tI) = 0. t1 is independent of t
and to and the generalized expression of -'2, and is nearly
obtained by adding a-,2, the variance of tj, to expression
[28]:

a= 2kE(to) + 1+ + oa-2 [32]

[26]
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U02 itself cannot be determined directly. If the same input
distribution is used the observed variable is t'o = to + tI and
ao2 is calculated from the observed variance o'o2 as:

aO = '2 -al2 [33]

Finally k and k' are determined by replacing a'2 by cr'2 -
ai2 in Eqs. [29] and [30].

Discussion
Affinity chromatography is usually designed for separation
purposes: the affinity between the molecule to be retained
and the ligand covalently attached to the support is high and
elution is obtained by modifying the solvent. Here we deal
with low affinity systems, with the aim of determining not
only affinity but also the rate constants of association and
dissociation from the experimental parameters k and k'. The
first approach consists in keeping k' as the time dissociation
rate constant and obtaining the second order rate constant of
association by dividing k by the estimated concentration of
binding sites. The weakness of this procedure is obvious,
since there is a nonhomogenous distribution of binding sites:
empty spaces of the mobile phase occur together with a

higher density of sites inside the support or on its surface. In
the case of a poorly diffusing molecule with a high associa-
tion rate constant the probability of being trapped is differ-
ent when the molecule has just left a binding site and when
it is present in the middle of the mobile phase. This phe-
nomenon is worsened by the heterogeneity of the flow ve-

locity and only partially balanced by the measurement of
the to distribution. The following consideration gives an

idea, what the conditions are that will make this effect be of
critical importance.

Let us assign a value to the mean binding time 1/k, which
gives to the diffusion distribution of the free molecule a

standard deviation of the same order of magnitude as the
mean thickness of the mobile phase e; that gives:

4D
k =e2

where D is the diffusion coefficient.

As an example, for a small molecule D = l0-5 cm2/sec and
with an e = 10-3 cm, we obtain for the critical value of k, 40
sec1. If the experimental value of k is lower than the esti-
mated critical value the actual rate constants of the reaction
between the partners can be correctly determined. The
question whether rate constants determined with one immo-
bilized partner are identical to those between free partners is
beyond the scope of this paper, but in most cases they will be
very similar.

Curiously, chromatography (a rather slow process) offers
the opportunity to determine rate constants which are in the
range of stopped-flow methods. A similar situation occurs in
experiments of sedimentation velocity of reacting systems,
where the interpretation of sedimentation profiles can lead
to the determination of chemical rate constants (6, 7).

In a more general way, this method can be applied out-
side the field of chromatography: any transport process with
random fixation can be treated in the same way: e.g., the
displacement of a molecule in the blood capillary with inter-
action with some receptor in the wall. A statistical interpre-
tation could provide a better understanding of the propaga-
tion of hormonal and pharmacological effects.

We are greatly indebted to Dr. C. Goridis for his help in writing
the manuscript.
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