mutants display an osmotic avoidance defective (Osm) phenotype that is rescued by introduction of a DYF-18::GFP translational fusion construct. Wild type serves as a positive control, *osm-5* mutants serve as a negative control. (C, D) n denotes the number of animals tested. (*) Student's t-tests were performed for statistical significance (p values are shown). (E, F) Expression pattern and localization of the DYF-18 protein in head and tail neurons, respectively. A DYF-18::GFP translational fusion construct is expressed in amphid, phasmid and labial neurons in wild-type animals. The encoded protein localizes diffusely within the cell bodies, dendrites, and ciliary compartments. Cell bodies, dendrites and ciliary regions are indicated.

Figure 4 – DYF-18 regulates the localization of intraflagellar transport (IFT) machinery components. Both amphid and phasmid cilia are shown. (A, B) Localization of IFT subcomplex B proteins. CHE-2 shows wild-type localization whereas OSM-5 is largely excluded from cilia and accumulates at the base of cilia. (C, D) Localization of IFT motors. KAP-1 shows essentially wild-type localization with occasional accumulations at the tip of the middle segment (marked by *) whereas the OSM-3 motor is largely unable to enter the distal segment and shows large accumulations (marked by *) between the middle and the distal segment. (E) Shows the essentially normal localization of the IFT subcomplex A protein CHE-11 to the middle and distal ciliary segments. In all panels the dotted line divides the middle and the distal segments. BB, degenerate basal bodies; *, marks protein accumulation. Presence or absence of IFT in the mutant has been denoted.

Supplemental Table 1 – List of *C. elegans* strains and transgenes used in this study.

Supplemental Table 2 – List of genes with a 1.5 fold or greater change in expression levels in microarray analyses revealed to be statistically significant using both Class Comparison

and Significance Analysis for Microarrays (SAM) tools. Both tools identified a total of 1013 and 258 probe sets, respectively, given the above-mentioned criteria. These probe sets map to 881 genes in Class Comparison and 236 genes in SAM.

Supplemental Table 3 – Statistics and enrichment data for the gene classes depicted in Supplemental Figure 2 (as compared to the whole *C. elegans* genome).

Supplemental Figure 1 – A representative embryo staging experiment: conditions used for microarray and real-time PCR analyses are shown. Embryos at very early developmental stages obtained by alkaline bleach treatment were incubated in S-basal medium for 8 hours at 20°C. Worms at the L1 larval stage were subsequently removed by a second alkaline bleach treatment.

Supplemental Figure 2 – Distribution and enrichment diagrams for both gene ontology and protein domain representation for all statistically significantly downregulated genes identified using both the Class Comparison and SAM tools. Statistics and enrichment data for the depicted gene classes (as compared to the whole *C. elegans* genome) are shown in Supplemental Table 3.

Supplemental Figure 3 – DYF-17 does not affect the localization of ciliary proteins at the ciliary base and along the ciliary axoneme. The localization of the G protein-coupled receptor SRG-2 is unaffected in ASK cilia (A, D). The localization of the IFT motor OSM-3 is unaffected in amphids (B, E) and phasmids (C, F). Wild-type cilia (A-C) are full-length. As a result of the *dyf-17* mutation cilia are shortened (D-F). A schematic diagram depicting single amphid (head, left) and phasmid (tail, right) CSNs is shown in (G). In panels A-F, the scale bars measure 2 μ m. *, demarcates the ciliary base.

Supplemental Figure 1

Figure Legend (X - axis)

- Gast. Upto gastrulation stage embryos
- 1.5x E Comma and 1.5-fold stage embryos
- 2x E 2-fold stage embryos 3x E 3-fold stage embryos
- L1 larvae L1

Figure S2 (Suppl) Click here to download Figure: 2011.06.18.PP.fig.supp.2.pdf

Supplemental Figure 2

Supplemental Figure 2a: Gene Ontology distribution among the downregulated genes using Class Comparison.

> IPR010796-B9 ■IPR010448:Torsin

IPR012983-PHR

= IPR011992:EF-H and type

= IPR001680:WD40 repeat

Unknown

Protein Domains Distribution

Supplemental Figure 2c: Protein domains distribution among the downregulated genes using Class Comparison.

Supplemental Figure 2d: Protein domains enrichment among the downregulated genes using Class Comparison.

Supplemental Figure 2e: Gene Ontology distribution among the downregulated genes using SAM.

Supplemental Figure 2f: Gene Ontology enrichment among the downregulated genes using SAM.

Supplemental Figure 2g: Protein domains distribution among the downregulated genes using SAM.

Supplemental Figure 2h: Protein domains enrichment among the downregulated genes using SAM.

Figure S3 (Suppl) Click here to download Figure: 2011.06.18.PP.fig.supp.3.pdf Supplemental Figure 3

Table S1 – *C. elegans* strains and transgenes used in this study.

A. Strains

Otrain	0 erecture e
Strain	Genotype
CB3323	cne-13(e1805) /
CX3344	lin-15(n/65ts) kyls53 X
EG175	dyt-17(ox175) V
ET100	dyf-18(ok200) IV (6x outcrossed)
JT204	daf-12(sa204) X
JT5010	wild type N2 Bristol
JT6924	daf-19(m86) II; daf-12(sa204) X
MT3559	dyf-9(n1513) V
MX60	myEx10
MX254	nxEx [kap-1]
MX255	ejEx1
MX316	nxEx [che-2]
MX467	dyf-18 IV; yhEx2
MX468	dyf-18 IV; nxEx [che-2]
MX469	dyf-18 IV; myEx10
MX471	dyf-18 IV; nxEx [kap-1]
MX497	dyf-18 IV; ejEx1
OE3146	daf-12(sa204) X; ofEx114
OE3661	dyf-17(ox175) V; ofEx461
OE3663	dyf-17(ox175) V (2x outcrossed)
OE4013	dyf-17(ox175) V (4x outcrossed)
OE4101	dyf-17(ox175) V; ofEx742
OE4105	dyf-17(ox175) V; ofEx746
OE4106	dyf-17(ox175) V; kyls141
OE4107	dyf-17(ox175) V;
OE4108	dyf-17(ox175) V; kyls53
OE4116	ncl-1(e1865)
OE4118	dyf-17(ox175) V; kyEx123
OE4119	dyf-17(ox175) V; kyEx162
PR813	osm-5(p813) V
SP2101	ncl-1(e1865) unc-36(e251) III; osm-6(p811) V; mnls17
YH2	yhEx2

B. Transgenes (extrachromosomal arrays and integrated transgenes)

Transgene	Genotype
ejEx1	osm-3p::osm-3::gfp; rol-6(su1006)
kyEx123	tax-2p::tax-2::gfp; lin-15(+)
kyEx162	srg-2p::srg-2::gfp; lin-15(+)
kyls53	odr-10p::odr-10::gfp;
kyls141	osm-9p::osm-9::gfp;
mnls17	osm-6p::osm-6::gfp; unc-36(+)
myEx10	che-11p::che-11::gfp;
myls1	pkd-2p::pkd-2::gfp; cc::GFP
nxEx	che-2p::che-2::gfp; rol-6(su1006)
nxEx	kap-1p::kap-1::gfp; rol-6(su1006)
ofEx114	bbs-7p::gfp; rol-6(su1006)
ofEx461	bbs-7p::gfp; elt-2p::mCherry
ofEx742	dyf-17p::dyf-17::gfp; che-13p::mCherry; elt-2p::mCherry
ofEx746	dyf-17p::dyf-17::gfp; elt-2p::mCherry
ofEx779	dyf-17p::dyf-17::mCherry; elt-2p::mCherry
yhEx2	osm-5p::osm-5::gfp; rol-6(su1006)

			Geometric	Geometric									
		Fold Change	mean of daf-	mean of daf-	Parametric		-	~		_	~	_	~
Probe set	Gene ID	(DOWN)	19(-) signal	19(+) signal	p-value	1	2	3	4	5	6	/	8
			intensities	intensities									
	Y41E3.5	11.6	32.2	373.4	< 1e-07			х				х	
181637_at	ZK418.3	11.5	24.9	284.8	0.000003					х		х	
177365_at	R102.2	9.4	53.9	508.9	0.0000001			х				х	
182156_at	F55A4.3	7.4	34	252.4	0.0000666							х	
181224_at	D1009.5	7.0	30.5	212.9	0.0000015		х		х	х		х	
186967_s_at	K07C11.10	6.0	45.8	275.2	0.000418			х				х	
184057_at	F35C5.11	5.9	11.3	66.9	0.0010167								
172352_at	C33A12.4	5.7	400.6	2308.5	0.0000414							х	
183753_at	T26A8.2	5.6	56.2	316	0.0013345			х		х		х	
178256_at	T28F3.6	5.6	25.5	143.6	0.00914		х	х	х	х		х	
176017_at	F10E9.1	5.6	29.5	164.8	0.0000244								
186583_at	F43C11.11	5.6	55.5	310.7	0.0058422								
184078_at	C42C1.7	5.2	36.7	190.9	0.0000013							х	
181207_at	E04A4.6	5.2	51.6	268.2	0.0000166			х				х	
175444_at	C42C1.7	5.2	31.5	164.4	0.0000177							х	
175993_at	C29E4.7	5.1	95.1	485.6	0.0002018								
186492_s_at	F15E11.1	4.9	104.5	513.5	0.0015497								
188434_at	K07G5.3	4.8	30.7	148.6	0.0000341	х	х	х		х		х	
177165_at	Y38F2AL.2	4.5	28.9	131.1	0.0000135			х		х		х	
180699_at		4.4	47.5	207.8	0.0002414								
184933_at	Y116A8A.8	4.3	19.9	85.7	0.0049698								
188817_at	T12B3.1	4.3	20.9	89.2	0.0000363		х	х		х			
178630_at	F59C6.7	4.2	22.6	94.2	0.007634	х	Х	х	х	х		Х	Х
185798_at	F28A12.3	4.1	29.1	119.7	0.0020528							х	
190929_at	F37B1.3	4.0	19.5	78.8	0.0000164								
192443_at	K08F4.6	3.9	43.5	170.8	0.0018963								
177131_s_at	Y19D10B.7	3.8	60.7	229.7	0.0007984								
185275_at	K01D12.14	3.8	55.3	208.8	0.0021306								
188366_s_at	F54D1.3	3.7	568.6	2103.4	0.0004984								
188198_s_at	Y41G9A.1	3.7	35.8	130.9	0.000067	х	х	х	х	х		Х	
190486_s_at	F33H1.1	3.5	138.4	489.7	0.0000002			Х		Х		Х	
180592_s_at	F56A4.2	3.5	111.5	389.2	0.0015006								
183445_at	C40D2.3	3.5	76.8	266.7	0.0043433								
178171_at	M04D8.6	3.5	37.3	129.2	0.0000602			х	х				
177544_at	F58E6.7	3.4	93.1	321	0.0003825								

Supplemental Table 3: Enrichment data for Supplemental Figure 2 (S2A+B)

Term	Count	P Value	Fold Enrichment
GO:0042384~cilium biogenesis	3	0.001689181	41.51
GO:0006458~'de novo' protein folding	2	0.070220875	27.68
GO:0030031~cell projection biogenesis	3	0.0054542	24.91
GO:0006825~copper ion transport	3	0.02728659	11.32
GO:0007635~chemosensory behavior	3	0.055063169	7.78
GO:0000041~transition metal ion transport	3	0.061444018	7.33
GO:0030259~lipid glycosylation	4	0.018972939	6.92
GO:0009069~serine family amino acid metabolic process	3	0.074903264	6.55
GO:0019290~siderophore biosynthetic process	3	0.081952367	6.23
GO:0030258~lipid modification	4	0.037308935	5.36
GO:0009628~response to abiotic stimulus	5	0.061006684	3.35
GO:0043413~biopolymer glycosylation	5	0.067016539	3.24
GO:0006725~aromatic compound metabolic process	6	0.038933819	3.19
GO:0042221~response to chemical stimulus	10	0.007699593	2.88
GO:0006817~phosphate transport	9	0.047515959	2.24
GO:0005975~carbohydrate metabolic process	13	0.017054217	2.16
GO:0015698~inorganic anion transport	9	0.086326258	1.97
GO:0006508~proteolysis	19	0.017776188	1.80
Unknown	413		