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SUPPORTING TEXT

General materials and methods for synthetic protocols

All reactions were performed under an atmosphere of nitrogen or argon in oven- or
flame- dried glassware with magnetic stirring. Acetonitrile, ether, tetrahydrofuran,
dichloromethane and toluene were purified by distillation. 'H Nuclear Magnetic
Resonance ('H-NMR) and ""C Nuclear Magnetic Resonance (*C-NMR) spectra were
recorded on Varian INOVA 300, 400, or 600 MHz spectrometer and data are presented as
follows: chemical shift in ppm using solvent as an internal standard (CDCl; at 7.26 ppm
for 'H and 77.0 ppm for proton-decoupled "*C), multiplicity (s = singlet; d = doublet; t =
triplet; q = quartet; m = multiplet, br = broad), coupling constant (J/Hz), integration.
NMR spectra were recorded in deuterated chloroform (CDCl;) at room temperature
unless otherwise stated. Laser Desorption-lonization (LDI) mass spectra were acquired
on a MALDI Micro MX — TOF mass spectrometer (Waters corporation). Samples
dissolved in MeCN were spotted onto the target plate without the use of sample matrix
and allowed to air dry. 50-100 spectra, each containing 10 individual laser shots, were
summed prior to processing and analysis. The instrument was run in positive-ion and
reflectron modes with an acceleration voltage of 20 kV. Mass axis calibration was
performed using PET standards (Fluka). Analytical TLC was performed on EM Reagent
0.25 mm silica gel 60-F plates. Visualization was accomplished with UV light and either
potassium permanganate stain or ceric ammonium nitrate stain followed by heating. Flash
column chromatography was performed on silica gel 60A (230-400 mesh) from Silicycle
Inc. Ozonolysis was performed on Welsbach ozonator according to the manufacturer’s
guidelines. Unless otherwise noted, all other chemical reagents were obtained from
commercial sources and used as received. Double distilled water was from Millipore
water purification system. Compounds 1, 2 and 4 were stored in the dark at —20 °C, as
aliquots in DMSO, and multiple freeze-thaw cycles were avoided. Compound 5 was

stored in —80 °C as one-shot aliquots in DMSO.
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Synthesis protocols

Scheme S1. Synthesis of HaloTag PreHNE (HtPH) (@))
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To a solution of 2-Allyl-1-hydroxyanthracene-9,10-dione 6 (0.2 g, 0.757 mmol)' in
DMF (10 mL) was added benzyl bromide (0.27 mL, 2.27 mmol), K,CO; (0.628 g, 4.54
mmol) and KI (0.038 g, 0.227 mmol). The resulting mixture was stirred at 65 °C for 1 h,
and then cooled to room temperature. Subsequent to dilution with excess water, organic
layer was extracted with EtOAc. The organic extracts were washed with water, brine and

IN HCI, dried and concentrated in vacuo to provide 7 as a yellow solid that was
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homogeneous by 'H-NMR spectroscopy (0.23 g, 86% yield): "H-NMR (300 MHz) & 3.50
(2H, d, J = 6.6 Hz), 5.06-5.15 (4H, m), 5.86-5.99 (1H, m), 7.35-7.47 (3H, m), 7.60-7.66
(3H, m), 7.74-7.83 (2H, m), 8.14 (1H, d, /= 7.8 Hz), 8.26-8.33 (2H, m).

Compound 7 (0.23 g, 0.65 mmol) was dissolved in CH,Cl, (50 mL) and cooled to —78
°C. O; was bubbled through the solution for 15 min, and then Me,S (4.5 mL) was added.
The reaction mixture was allowed to warm up to room temperature naturally and stirred
for another 10 h. After concentration, the residue was diluted with EtOAc and washed
with water. The organic layer was dried and concentrated to afford aldehyde 8 as a
yellow solid that was carried forward to the subsequent step without further purification:
"H-NMR spectroscopy (0.23 g, 100% yield): '"H-NMR (300 MHz) & 3.74 (2H, s), 5.06
(2H, s), 7.38-7.53 (4H, m), 7.61 (1H, d, J = 7.4 Hz), 7.80-7.83 (3H, m), 8.18 (1H, d, J =
7.2 Hz), 8.28-8.35 (2H, m), 9.63 (1H, s).

Aldehyde 8 (0.23 g, 0.645 mmol) and 2-methyl-2-butene (9 mL) was dissolved in
‘BuOH (37.5 mL), cooled to 0 °C. NaH,PO4*H,O (0.633 g, 4.59 mmol) and NaClO,
(0.524 g, 5.79 mmol) was dissolved in water (12 mL) and added to the above solution
dropwise. The resulting mixture was allowed to warm up to room temperature and stirred
overnight. The reaction was quenched with 0.1 N HCI (150 mL) and extracted with
EtOAc. The organic extracts were washed with water and brine, and then dried. After
filtration, the solution was concentrated to give the corresponding acid 9 as a yellow solid
that was carried forward to the following step without further purification: 'H-NMR
spectroscopy (0.24 g, 100%): "H-NMR (300 MHz, CD;SOCDs) § 3.71 (2H, s), 4.97 (2H,
s), 7.38-7.46 (3H, m), 7.59 (2H, d, J= 7.2 Hz), 7.85 (1H, d, J = 7.8 Hz), 7.90-7.93 (2H,
m), 8.04 (1H, d, J= 8.1 Hz), 8.16-8.23 (2H, m).

Acid 9 (0.24 g, 0.65 mmol) and 2-(2-(6-chlorohexyloxy)ethoxy)ethanamine (0.144 g,
0.65 mmol) (3) (i.e., linker alone) were dissolved in CH,Cl, (15 mL), cooled to 0 °C.
HOBt (0.131g, 0.78 mmol), DIEA (0.22 mL, 1.95 mmol) and EDCI (0.14 g, 0.91 mmol)
were sequentially added. The reaction was warmed to room temperature naturally and
stirred overnight. Water was added and then CH,Cl, was added. The organic layers were
combined and dried. After concentration, the residue was purified via flash
chromatography using Hexanes:EtOAc (1:2 v/v) as eluent to yield amide 10 as a yellow
oil that was homogeneous by 'H-NMR spectroscopy (0.16g, 40% yield) over the three
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steps (i.e., based on 7): 'H-NMR (300 MHz) & 1.23-1.43 (4H, m), 1.46-1.56 (2H, m),
1.65-1.75 (2H, m), 3.33-3.49 (12H, m), 3.55 (2H, s), 5.04 (2H, s), 6.25 (1H, br), 7.34-
7.57 (3H, m), 7.56 (2H, d, J= 7.2 Hz), 7.69-7.77 (3H, m), 8.07 (1H, d, J= 8.1 Hz), 8.17-
8.25 (2H, m).

Amide 10 (0.16g, 0.277 mmol) was dissolved in EtOAc (21 mL) in a round-bottom-
flask and 10% Pd/C (27.6 mg, 0.0277 mmol) was added. The solution was degassed and
refilled with hydrogen gas (1 atm) at room temperature. The resulting mixture was stirred
for 1h. After filtration through Celite, the reaction mixture was concentrated to give
phenol 11 as a yellow oil that was homogeneous by 'H-NMR spectroscopy (0.1 g, 72%
yield): 'TH-NMR (300 MHz) & 1.30-1.49 (4H, m), 1.54-1.63 (2H, m), 1.71-1.78 (2H, m),
3.35-3.59 (12H, m), 3.69 (2H, s), 6.49 (1H, br), 7.72 (1H, d, J = 8.1 Hz), 7.81-7.84 (3H,
m), 8.29-8.34 (2H, m), 13.5 (1H, s). "C-NMR (75 MHz) 25.3, 26.6, 29.4, 32.5, 38.3,
29.4, 45.0, 69.5, 69.9, 70.2, 71.2, 76.5, 123.8, 125.9, 126.7, 127.3, 128.4, 128.5, 128.6,
132.5,33.6, 134.2, 134.6, 134.8, 136.7, 136.9, 138.1, 157.3, 169.6, 182.3, 182.7.

Phenol 11 (0.1 g, 0.2 mmol) and TBAF (0.112 g, 0.4 mmol) were dissolved in THF (2
mL) and DMF (2 mL). Bromide 12 (0.177 g, 0.8 mmol) was added and the resulting
mixture was stirred at room temperature for 7.5 h. The reaction was quenched with water
and extracted with EtOAc. The organic layer was dried and concentrated under vacuo.
The residue was purified via flash chromatography using Hexanes:EtOAc (1:3 v/v) as
eluent to afford product HaloTag PreHNE (HtPH) (1) as an orange oil that was
homogeneous by 'H-NMR spectroscopy (0.069 g, 55% yield): "H-NMR (400 MHz) &
0.87 3H, t, J= 6.8 Hz), 1.27-1.58 (14H, m), 1.70-1.77 (2H, m), 2.26 (1H, br), 3.40-3.70
(12H, m), 3.69 (2H, d, J = 3.2 Hz), 4.10-4.14 (1H, m), 4.55 (1H, dd, J= 6.8, 11.2 Hz),
4.63 (1H, dd, J = 6.0, 11.2 Hz), 5.83 (1H, dd, J = 6.0, 14.8 Hz), 5.99-6.05 (1H, m), 6.47
(1H, br), 7.74-7.81 (3H, m), 8.12 (1H, d, J= 7.2 Hz), 8.24-8.27 (2H, m). "C-NMR (75
MHz) & 14.0, 22.6, 25.1, 25.3, 25.6, 29.3, 31.8, 32.5, 36.9, 38.5, 39.4, 45.0, 69.7, 69.9,
70.1, 71.2, 71.7, 74.9, 123.7, 125.4, 125.8, 126.7, 127.2, 132.5, 133.7, 134.2, 134.6,
134.8, 136.6, 138.0, 138.7, 157.3, 169.8, 182.4, 182.8. LRMS (LDI) calc’d for
C3sH46CINO; 627.3 (M), found 627.3.
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Scheme S2. Synthesis of HaloTag PreHNE-alkyne (HtPHA) (2)
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To a mixture of magnesium (0.156 g, 4.76 mmol) in anhydrous THF (2 mL) was added
a solution of (5-chloro-1-pentynyl)trimethylsilane 13 (0.1 g, 0.60 mmol) in THF (1 mL)
and I, (0.01 g, 0.039 mmol) under an atmosphere of nitrogen followed by a further
addition of 13 (0.85 mL, 4.76 mmol) in anhydrous THF (8 mL). Additional heating was
applied to maintain a temperature of approximately 60 °C. Upon complete addition, the
mixture was refluxed for 2.5 h and cooled to room temperature to afford the
corresponding Grignard reagent 14 which was used directly in the following step.

To a stirred solution of (£)-4-bromobut-2-enal 15 (0.428 g, 3.17 mmol) in anhydrous
THF (10 mL) was added Grignard reagent 14 dropwise at 0 °C. The mixture was stirred
at 0 °C for 2 h and quenched with saturated aqueous solution of NH4Cl. The mixture was
extracted with Et,O, dried and concentrated to provide bromide 16 as a yellow oil: 'H-

NMR (300 MHz) & 0.14 (9H, s), 1.55-1.65 (4H, m), 2.24-2.28 (2H, m), 3.96 (2H, d, J =
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6.9 Hz), 4.15-4.23 (1H, m), 5.75-5.97 (2H, m). The crude bromide 16 was carried
forward to the subsequent step without further purification.

To anthraquinone derivative 11 (0.1 g, 0.200 mmol) in THF (2 mL) and DMF (2 mL)
was added sequentially TBAF (0.168 g, 0.600 mmol) and bromide 16 (0.17 g, 0.6 mmol).
The mixture was stirred at room temperature overnight. Water (10 mL) was added then
the reaction extracted with EtOAc. The organic layers were combined, dried and
concentrated. The residue was purified via flash chromatography using Hexanes:EtOAc
(1:5 v/v) to afford product HaloTag PreHNE-alkyne (HtPHA) (2) as a yellow oil that
was homogeneous by 'H-NMR spectroscopy (0.03 g, 22% yield): '"H-NMR (400 MHz) &
1.30-1.36 (2H, m), 1.38-1.44 (2H, m), 1.52-1.63 (6H, m), 1.70-1.77 (2H, m), 1.94 (1H, t,
J = 2.6 Hz), 2.18-2.22 (2H, m), 3.40-3.59 (12H, m), 3.69 (2H, d, J = 3.6 Hz), 4.13-4.18
(1H, m), 4.55 (1H, dd, J= 7.2, 12.0 Hz), 4.62 (1H, dd, J = 6.0, 12.0 Hz), 5.83 (1H, dd, J
= 6.0, 15.2 Hz), 6.00-6.07 (1H, m), 6.46 (1H, t, J= 5.0 Hz), 7.74 (1H, d, J = 8.4 Hz),
7.75-7.79 (2H, m), 8.11 (1H, d, J = 8.4 Hz), 8.23-8.26 (2H, m). ’C-NMR (75 MHz) &
18.3, 24.3, 25.3, 26.6, 29.3, 32.4, 35.8, 38.4, 39.4, 45.0, 68.6, 69.6, 69.9, 70.0, 70.1, 71.2,
74.7, 84.2, 123.7, 125.6, 125.8, 126.7, 127.2, 132.5, 133.7, 134.2, 134.6, 134.8, 136.6,
137.9, 138.2, 157.3, 169.9, 182.4, 182.7. LRMS (LDI) calc’d for C3sH4,CINNaO; 646.3
(M+Na"), found 646.2.
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Scheme S3. Synthesis of PreHNE-alkyne (PHA) (4)
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2-Allyl-1-hydroxyanthracene-9,10-dione 6 (0.067 g, 0.253 mmol)' was dissolved in
DMF (5 mL). K,COs (0.1 g, 0.759 mmol) was added and the resulting mixture was
stirred at 60 °C for 10 min. The crude bromide 16 (0.22 g, 0.759 mmol) (Scheme S2) in
DMEF (2 mL) was added and the heating was continued at 60 °C for a further 2 h. Water
(20 mL) was added to dilute the mixture that was subsequently extracted with EtOAc (20
mL X 2). The organic layers were combined, dried and concentrated. The residue was
purified via flash chromatography using Hexanes/EtOAc (3:1 v/v) as eluent yielding the
desired TMS-alkyne product 17 as a yellow oil that was used directly in the following
step without further purification. '"H-NMR (300 MHz): & 0.13 (9H, s), 1.56-1.69 (4H, m),
2.24-2.27 (2H, m), 3.55 (2H, d, J= 5.7 Hz), 4.22-4.27 (1H, m), 4.52-4.54 (2H, d, J=5.7
Hz), 5.07-5.16 (2H, m), 5.89-6.14 (3H, m), 7.62 (1H, d, J = 8.0 Hz), 7.73-7.79 (2H, m),
8.09 (1H, d, J= 8.0 Hz), 8.21-8.27 (2H, m).

A solution of 17 (0.1 g, 0.212 mmol) in MeOH (10 mL) was added K,CO; (0.176 g,
1.27 mmol) and the mixture was stirred at room temperature for 5 h. Water (20 mL) was
added and the mixture was extracted with EtOAc (20 mL x 2). The organic layers were
combined, dried and concentrated. The residue was purified via flash chromatography
using Hexanes/EtOAc (3:1 v/v) as eluent to yield PreHNE-alkyne without Halo linker
(PHA) (4) as a yellow oil that was homogeneous by 'H-NMR spectroscopy (0.02 g, 24%
yield): "H-NMR (300 MHz) & 1.59-1.69 (4H, m), 1.96 (1H, t, J = 2.1 Hz), 2.23-2.26 (2H,
m), 3.57 (2H, d, J = 6.6 Hz), 4.23-4.29 (1H, m), 4.55 (2H, d, /= 5.7 Hz), 5.10-5.18 (2H,
m), 5.91-6.16 (3H, m), 7.64 (1H, d, J= 7.8 Hz), 7.75-7.79 (2H, m), 8.10-8.12 (1H, d, J =
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8.1 Hz), 8.24-8.29 (2H, m). "C-NMR (75 MHz) & 18.3, 24.3, 34.4, 35.9, 68.6, 71.7, 74.3,
842, 117.2, 123.6, 124.7, 126.2, 126.7, 127.2, 131.2, 131.4, 133.5, 134.2, 134.8, 135.6,
135.8, 137.1, 142.7, 157.2, 182.7, 183.1. LRMS (LDI) calc’d for Co6H404 400.2 (M"),
found 400.1.
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Scheme S4. Synthesis of HNE-alkyne (5)°
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NaH (2.76 g, 69 mmol) was added to ethylenediamine (26.8 mL, 40 mmol) at 0 °C
under an atmosphere of nitrogen. Subsequent to stirring at room temperature for 1 h, the
reaction was heated at 60 °C for another hour. The reaction was then cooled to 45 °C and
homopropargylic alcohol 18 (2 mL, 16.4 mmol) was added. The mixture was heated to
60 °C for 1 h, then cooled to 0 °C, and 1N HCI (20 mL) was added. The reaction was
extracted with Et;O and the combined organic layers were dried over anhydrous Na;SOy,
filtered, and concentrated in vacuo. The residue was purified via flash chromatography
using Hexanes:EtOAc (2:1 v/v) as eluent yielding alcohol 19 as a yellow oil that was
homogeneous by 'H-NMR spectroscopy (1.44 g, 78% yield): '"H-NMR (300 MHz) &
1.47-1.62 (6H, m), 1.92 (1H, t,J=2.7 Hz), 2.18-2.23 (2H, m), 3.65 (2H, t, J = 6.3 Hz).

Alcohol 19 (1.44 g, 28.0 mmol) was dissolved in CH,Cl, (40 mL), PCC (5.53 g, 56
mmol) was added and the reaction was stirred at room temperature for 1 h. The mixture
was then filtered through Celite and the filtrate was concentrated. Flash chromatography
using Hexanes:Et;O (2:1 v/v) as eluent afforded aldehyde 20 as a colorless oil that was
homogeneous by 'H-NMR spectroscopy (1.16 g, 82% yield): '"H-NMR (300 MHz) &
1.55-1.63 (2H, m), 1.73-1.83 (2H, m), 1.94 (1H, t, J = 2.4 Hz), 2.22 (2H, dt, J=2.4, 7.2
Hz),2.45 (2H, dt,J= 1.8, 6.9 Hz), 9.78 (1H, t, /= 1.8 Hz).

Aldehyde 20 (1.16 g, 10.5 mmol) and piperidine (1.73 mL, 17.6 mmol) were added to a
solution of methyl 2-phenylsulfinylacetate (1.74 g, 8.78 mmol) in CH;CN (40 mL). The
reaction was stirred overnight at room temperature at which point aqueous NH4Cl
solution was added and the mixture extracted with CH,Cl,. The organic layer was

collected, dried and concentrated in vacuo. The residue was purified via flash
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chromatography using Hexanes:EtOAc (10:1 v/v) as eluent to afford ester 21 as a yellow
oil that was homogeneous by 'H-NMR spectroscopy (1.19 g, 74% yield): 'H-NMR (300
MHz) 6 1.51-1.76 (4H, m), 1.97 (1H, t, J = 2.7 Hz), 2.24 (2H, dt, J= 2.7, 6.9 Hz), 3.75
(3H, s), 4.36-4.38 (1H, m), 6.05 (1H, dd, J= 1.8, 15.9 Hz), 6.95 (1H, dd, J = 4.8, 15.6
Hz).

Ester 21 (0.4 g, 2.2 mmol) was dissolved in CH,Cl, (20 mL) and the reaction was
cooled to —80 °C. DIBAL-H (2.0 M in hexane, 4.45 mL, 4.4 mmol) was dissolved in
CH,Cl, (20 mL) and added dropwise. Subsequent to 1 h stirring at —80 °C, the reaction
was quenched with IN HCI (24.7 mL). The reaction was extracted with Et,O and the
organic layer was separated, dried and concentrated in vacuo. Flash chromatography
using Hexanes:Et,O (4:1 v/v) as eluent afforded the desired HNE-alkyne (HA) (5)° that
was homogeneous by 'H-NMR spectroscopy (0.0393 g, 12% yield): "H-NMR (300 MHz)
0 1.50-1.76 (4H, m), 1.92 (1H, t, J= 2.7 Hz), 2.19 (2H, dt, J= 2.7, 6.3 Hz), 2.61 (1H, br),
4.39-4.44 (1H, m), 6.25 (H, ddd, J = 1.2, 7.8, 15.9 Hz), 6.79 (1H, dd, J= 4.5, 15.6 Hz),
9.50 (1H, d, J = 7.5 Hz). "C-NMR (75 MHz) & 18.1, 24.0, 35.1, 69.1, 70.4, 83.8, 130.7,
159.2, 193.9.
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Small molecule characterization data

"H-NMR spectrum of HtPH (1)
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"H-"H-COSY-NMR spectrum of HtPH (1)
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spectrum of HtPHA (2)
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General materials and methods for biochemical protocols

All reagents were from Sigma unless otherwise noted. Cy5-azide was from lumiprobe
(B3030). G5 Ubiquitin isopeptidase inhibitor I and HNE were from Santa Cruz.
HaloTag® TMR Ligand was (G8251) from Promega. All primers were from IDT. Fusion
HotStartIl polymerase was from Thermo and all the restriction enzymes were from NEB.
phrGFP-Keapl and pcDNA3 GFP-PTEN mammalian expression plasmids (28025 and
10759, respectively) and pRK793 Tev protease (S219V mutant) bacterial expression
plasmid (8827) were from Addgene. The latter was a kind gift of Jeffrey Boucher,
Brandeis University, MA. pET28a empty vector was a kind gift of Professor Lizbeth
Hedstrom, Brandeis University, MA. pMIR_DsRed_IRES_His;Hl construct’ was
previously made. COS-1 and HEK-293 cells were from American Type Culture
Collection (ATCC). 1X PBS (Dulbecco’s phosphate-buffered saline), 1X TrypLE™
Express (stable trypsin-like enzyme with phenol red), 1X DMEM, and 100X penicillin-
streptomycin were from Invitrogen. Fetal bovine serum (FBS) (100 nm-triple filtered,
SH30071.03) was from Hyclone. Serum-compatible broad-spectrum transfection reagent
TransIT-2020 was from Mirus Bio LLC. Olympus CKX31 and Zeiss 510 meta confocal
microscope systems were used, respectively, for light and confocal fluorescence
microscopy. Fluorescence-activated cell sorting (FACS) was performed on a Beckton
Dickinson FACSCalibur flow cytometer and FACS data analysis was carried out using
FlowJo (version 7.6.4). In gel fluorescence analysis and imaging of the Coomassie-
stained gels were performed on Bio-Rad ChemiDoc-MP imaging system. Densitometric
quantitation was made by Bio-Rad Image Lab software (v 4.1). Cy5 excitation source
was red epi illumination and emission filter used was 695/55 filter. Light exposure
experiments were performed with the use of a hand-held UV lamp (Fisher, S45157, 365
nm, longwave 4 W tube). The lamp was positioned such that the lamp cover screen was
at a distance of 1-2 cm directly above either the monolayer cell culture or solutions
containing HNE precursors. His,-Tev-S219V was recombinantly expressed and purified

from E. coli using TALON affinity chromatography (clontech).
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UV-Vis analysis of photoinducible HNE release (Figure S1)

Photoinducible HNE release from an analogous anthraquinone-based platform in an
aqueous organic solvent mixture has been previously characterized by the use of NMR.'
The time course of HNE release was monitored on a Shimadzu UV-2600 UV-Visible
spectrophotometer equipped with peltier temperature controller. HaloTag PreHNE and
HaloTag PreHNE-alkyne ligands (HtPH and HtPHA) (1 and 2, respectively) were diluted
to a final concentration of 150 uM in 20 mM Hepes (pH=7.6) in a 1 cm quartz cuvette,
and incubated under a 365 nm, 4 W hand-held lamp at 37 °C for indicated periods prior to
spectral data acquisition at 37 °C. An authentic sample of HNE (Santa Cruz Biotech)
under identical conditions yielded A, at 228 nm, suggesting a time-dependent release of
HNE from photolysis of HtPH (1) and HtPHA (2) (Figure S1). Interference from
absorbance changes in anthraquinone moiety precluded us from absolute quantitation of
liberated HNE (Figure Sla). The use of NMR was limited by the compounds’ solubility
in neat D,0 at the concentrations required for reliable quantitation under a short reaction
time. Nevertheless, UV-Vis analysis showed saturation of the rise in absorbance was

reached within 30 min at 37 °C for both HtPH and HtPHA (Figure S1b).

Construction of IRES-based bicistronic mammalian expression plasmid encoding
DsRed and Halo—Keap1 genes (pMIR-DsRed-IRES-HaloKeap1) (Figure S2)

Ligase-free PCR cloning was used to construct the titled plasmid using the set of primers
shown in Table S1. HaloKeap! fusion gene containing Tev cleavage site was first built
into a pET28a vector to obtain the plasmid, pET28a_HaloKeap1 (Table S1A). In order to
achieve this, human Keapl gene was cloned out from the commercially available
plasmid, phrGFP-Keapl (Addgene) using the primers fwd-1 and rev-1 shown (Table
S1A). The resultant PCR product was extended using the shown extended primers fwd-
ext-1 and rev-ext-1. These two PCR products served as mega-primers for the subsequent
PCR-cloning into the linearized pET28a_Halo vector. The identity of
pET28a_HaloKeap! plasmid was verified by sequencing of the entire gene at the Cornell

University Life Science Core Laboratories Center.

S-18



Supporting Information Fang, Fu et al.

Using the plasmid pET28a_HaloKeapl, HaloKeapl fusion gene containing Tev
cleavage site (Figure S2) was cloned out using the fwd-2 and rev-2 primers shown
(Table S1B) yielding to the first PCR product. This product was subsequently extended
using the fwd and rev extender primers (fwd-ext-2 and rev-ext-2) shown to give the
second set of PCR products. A linearized pMIR_DsRed_IRES_His,H1 plasmid® was
used as a template in the final PCR-cloning step, wherein the second PCR products above
served as mega primers. The identity of the final desired construct pMIR-
DsRed_IRES_HaloKeapl was verified by sequencing of the entire fusion gene at the

Cornell University Life Science Core Laboratories Center.

Construction of mammalian expression plasmid encoding Halo-PTEN genes
(pPMIR-HaloPTEN) (Figure S3)

Ligase-free PCR cloning was used to construct the titled plasmid using the set of primers
shown in Table S2. HaloPTEN fusion gene containing Tev cleavage site was first built
into a pET28a vector to obtain the plasmid, pET28a_HaloPTEN (Table S2). In order to
achieve this, human PTEN gene was cloned out from the commercially available
plasmid, pcDNA3-GFP-PTEN (Addgene) using the primers fwd-1 and rev-1 shown
(Table S2A). The resultant PCR product was extended using the shown extended primers
fwd-ext-1 and rev-ext-1. These two PCR products served as mega-primers for the
subsequent PCR-cloning into the linearized pET28a_Halo vector. The identity of
pET28a_HaloPTEN plasmid was verified by sequencing of the entire gene at the Cornell
University Life Science Core Laboratories Center.

Using the plasmid pET28a_PTEN, HaloPTEN fusion gene containing Tev
cleavage site (Figure S3) was cloned out using the fwd-2 and rev-2 primers shown
(Table S2B) yielding to the first PCR product. This product was subsequently extended
using the fwd and rev extender primers (fwd-ext-2 and rev-ext-2) shown to give the
second set of PCR products. A linearized pMIR_DsRed_IRES_His,H1 plasmid® was
used as a template in the final PCR-cloning step, wherein the second PCR products above
served as mega primers. The identity of the final desired construct pMIR-HaloPTEN was
verified by sequencing of the entire fusion gene at the Cornell University Life Science

Core Laboratories Center.
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Cell culture protocol

COS-1 and HEK-293 cells (ATCC) were cultured in DMEM (Invitrogen) supplemented
with 10% v/v FBS (Hyclone) in the presence of 1X penicillin-streptomycin antibiotics
(Invitrogen 15140-122). All cells were cultivated in adherent culture plates (15 x 65 mm,
Corning) in a humidified atmosphere of 5% CO, at 37 °C. COS-1 cells were harvested by
trypsinization (Invitrogen) and HEK-293 cells were dislodged by gently washing the

plates with complete media.

Cell viability analysis by flow cytometry analysis

Samples originating from treated and untreated COS-1 cells were prepared by
resuspending the freshly harvested cell pellets in 1% FBS in 1X PBS with 4 pg/mL
propidium iodide (Sigma). Data were collected using a Beckton Dickinson FACSCalibur
flow cytometer and analysis was carried out using FlowJo (v 7.6.4). G5 Ubiquitin
isopeptidase inhibitor I (Santa Cruz) was used as a positive control for cell death

initiation.

Confocal fluorescence microscopy analysis

COS-1 cells were cultivated in glass bottom dishes (D35-20-1.5N, In Vitro Scientific)
and imaged using a Zeiss 510 metal confocal fluorescence microscope (63x oil) 24-30 h
post transfection. Where applicable, treatment with indicated small molecules was carried

out prior to analysis.

Protocol for HaloTag fusion protein-directed targeting with HNE(-alkyne) in living
mammalian cells

Optimized transfection was achieved using serum-compatible Mirus TransIT-
2020 transfection reagent with the use of complete media. Transfection was typically
performed at 50-60% confluency according to the Mirus optimized protocol.

pMIR_DsRed_IRES_HaloKeapl and pMIR_HaloPTEN plasmids were purified by
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Maxiprep kit (Qiagen). All steps post transfection were handled under dim light or in the
dark. Subsequent to transfection (24-30 h), cells were rinsed (x2) with serum-free media
and treated with one of the following: HtPH (25-50 M) (compound 1, Scheme S1),
HtPHA (25-50 M) (compound 2, Scheme S2), PHA (50 M) (compound 4, Scheme
S3), HaloTag® TMR (5 uM), HA (25 uM) (compound 5, Scheme S4) or DMSO for 2-3 h
in serum-free media. In blocking experiments (Figure S4 and S5), samples were first
treated with either unsubstituted chloroalkane ligand alone (compound 3, Scheme S1)
(100 M), or compound 1 (136 yM). Second, cells were rinsed with serum-free media
(x2) prior to treatment, respectively, with compound 2 (25-50 #M), or HaloTag® TMR (5
uM). For all samples, at the end of final compound treatment, rinsing (x2) was performed
every 30 min over 1.5 h with the serum-free media. For the samples designated for light
exposure, plate covers were removed and adhered cells were exposed to 365 nm, 4 W
lamp for 20 min at room temperature (at ~1 inch distance from the light source) and
reincubated at 37 °C for a further 5 min prior to harvest. In the experiments where the
entire cell was treated with HA (compound 5), cells were harvested subsequent to 20 min
incubation with HA. Cells were then washed thoroughly to remove residual HNE-alkyne
in the buffer.

Subsequent to centrifugation (500 x g, 8 min) and washing with 1X PBS (x3), the
resultant cell pellets were flash frozen in lig N, and subjected to 3 cycles of freeze-thaw
in 50 mM Hepes (pH 7.6) and 0.3 mM TCEP. All procedures hereafter were performed at
4 °C. Debris was removed by centrifugation (18,000 x g, 8 min). Supernatant was made
up to final volume of 25 uL containing in final concentrations, 50 mM Hepes (pH 7.6),
0.3 mM TCEP and 0.1 mg/mL His,-Tev-S219V. The mixture was incubated at 37 °C for
30 min, and subsequently subjected to click reaction. All steps hereafter were handled in
the dark. Briefly, in a final volume of 30 uL, the reaction mixture contained, 50 mM
Hepes (pH 7.6), 1.7 mM TCEP, 5% v/v t-BuOH, 1 mM CuSO,, 10 uM CyS5azide and
Tev-protease-treated lysate above. Subsequent to 30 min incubation at 37 °C, the reaction
was quenched with 4X laemmli buffer that contained 3% BME and further incubated for
5 min at 37 °C. 30 uL was directly loaded into each well of 10% polyacrylamide gel.

Upon completion of gel-electrophoresis, the gel was rinsed with ddH,O (x2, 5 min) and
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analyzed for Cy5 signal on a Bio-Rad ChemiDoc-MP and subsequently coomassie-

stained.

Figure S1. Time-dependent HNE-release profile monitored by UV-Vis
spectrophotometer. 150 uM 1 or 2 in 20 mM Hepes (pH=7.6) was exposed to 365 nm, 4
W lamp at 37 °C for indicated periods prior to spectral acquisition at 37 °C. (a)
Representative UV-Vis profile from photolysis of HtPH (1). (b) Kinetic profiles for time-
dependent release of HNE (®) and HNE-alkyne () from HtPH (1) and HtPHA (2),
respectively (Figure 2). Error bars are S.D. (N = 3). A= 228 nm for an authentic sample
of HNE (Santa Cruz Biotech) measured under identical conditions.
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Figure S2. Dual expression construct for DsRed and Halo—Keap1 proteins

—I_)—\ DsRed | IRES |H Hao @ Keap1

@ Tev protease recognition site

Amino acid sequence of Halo—Keap1 fusion protein (blue, Halo; grey, Tev recognition
sequence; green, human Keapl)

Halo—Keapl, 104 kDa
Keapl, 70 kDa

MAEIGTGFPFDPHYVEVLGERMHYVDVGPRDGTPVLFLHGNPTSSYVWRNIIP
HVAPTHRCIAPDLIGMGKSDKPDLGYFFDDHVRFMDAFIEALGLEEVVLVIHDW
GSALGFHWAKRNPERVKGIAFMEFIRPIPTWDEWPEFARETFQAFRTTDVGRK
LIIDQNVFIEGTLPMGVVRPLTEVEMDHYREPFLNPVDREPLWRFPNELPIAGEP
ANIVALVEEYMDWLHQSPVPKLLFWGTPGVLIPPAEAARLAKSLPNCKAVDIGP
GLNLLQEDNPDLIGSEIARWLSTLEISGSGENLYFQGSGMQPDPRPSGAGACCR
FLPLQSQCPEGAGDAVMYASTECKAEVTPSQHGNRTFSYTLEDHTKQAFGIMNEL
RLSQQLCDVTLQVKYQDAPAAQFMAHKVVLASSSPVFKAMFTNGLREQGMEVVSI
EGIHPKVMERLIEFAYTASISMGEKCVLHVMNGAVMYQIDSVVRACSDFLVQQLDP
SNAIGIANFAEQIGCVELHQRAREYIYMHFGEVAKQEEFFNLSHCQLVTLISRDDLN
VRCESEVFHACINWVKYDCEQRRFYVQALLRAVRCHSLTPNFLQMQLQKCEILQS
DSRCKDYLVKIFEELTLHKPTQVMPCRAPKVGRLIYTAGGYFRQSLSYLEAYNPSD
GTWLRLADLQVPRSGLAGCVVGGLLYAVGGRNNSPDGNTDSSALDCYNPMTNQ
WSPCAPMSVPRNRIGVGVIDGHIYAVGGSHGCIHHNSVERYEPERDEWHLVAPML
TRRIGVGVAVLNRLLYAVGGFDGTNRLNSAECYYPERNEWRMITAMNTIRSGAGV
CVLHNCIYAAGGYDGQDQLNSVERYDVETETWTFVAPMKHRRSALGITVHQGRIY
VLGGYDGHTFLDSVECYDPDTDTWSEVTRMTSGRSGVGVAVTMEPCRKQIDQQN
CTC
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Figure S3. Expression construct for Halo-PTEN protein

>

@ Tev protease recognition site

Amino acid sequence of Halo-PTEN fusion protein (blue, Halo; grey, Tev recognition
sequence; orange, human PTEN)

Halo-PTEN, 82 kDa
PTEN, 47 kDa

MAEIGTGFPFDPHYVEVLGERMHYVDVGPRDGTPVLFLHGNPTSSYVWRNIIP
HVAPTHRCIAPDLIGMGKSDKPDLGYFFDDHVRFMDAFIEALGLEEVVLVIHDW
GSALGFHWAKRNPERVKGIAFMEFIRPIPTWDEWPEFARETFQAFRTTDVGRK
LIIDQNVFIEGTLPMGVVRPLTEVEMDHYREPFLNPVDREPLWRFPNELPIAGEP
ANIVALVEEYMDWLHQSPVPKLLFWGTPGVLIPPAEAARLAKSLPNCKAVDIGP
GLNLLQEDNPDLIGSEIARWLSTLEISGSGENLYFQGSGMTAIIKEIVSRNKRRYQ
EDGFDLDLTYIYPNIIAMGFPAERLEGVYRNNIDDVVRFLDSKHKNHYKIYNLCAERH
YDTAKFNCRVAQYPFEDHNPPQLELIKPFCEDLDQWLSEDDNHVAAIHCKAGKGR
TGVMICAYLLHRGKFLKAQEALDFYGEVRTRDKKGVTIPSQRRYVYYYSYLLKNHL
DYRPVALLFHKMMFETIPMFSGGTCNPQFVVCQLKVKIYSSNSGPTRREDKFMYFE
FPQPLPVCGDIKVEFFHKQNKMLKKDKMFHFWVNTFFIPGPEETSEKVENGSLCDQ
EIDSICSIERADNDKEYLVLTLTKNDLDKANKDKANRYFSPNFKVKLYFTKTVEEPSN
PEASSSTSVTPDVSDNEPDHYRYSDTTDSDPENEPFDEDQHTQITKV
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Figure S4. Keapl targeted delivery of HNE. COS-1 cells transiently overexpressing
DsRed and Halo—Keap1 (Figure S2) were treated with 25 puM HtPHA (2) for 2.5 h at 37
°C. Subsequent to rinsing with serum-free media (x2) every 30 min over 1.5 h, designated
plates were exposed to a hand-held 4 W lamp (365 nm) for 30 min at room temperature,
and further incubated for 5 min at 37 °C prior to harvest. Cells were lysed at 4°C and
lysates were subjected to Tev cleavage for 30 min at 37 °C followed by click reaction
with Cy5-azide for 20 min at 37°C. Samples were analyzed by SDS-PAGE. a) Resultant
SDS-PAGE with Coomassie staining. b) In-gel fluorescence analysis of the same SDS-
PAGE with Cy5 excitation. Lane 1, ladder; Lane 2, negative control from cells not
exposed to light; Lane 3, results from cells exposed to light; Lane 4, identical to Lane 3
except that Tev was replaced with buffer; Lane 5, identical to Lane 3 except that PHA
(compound 4, Scheme S3) was used; Lane 6, ladder; Lane 7, halo binding site pre-
blocked with unsubstituted chloroalkane ligand alone (compound 3, Scheme SI)
followed by treatment with HtPHA (compound 2, Scheme S2); Lane 8, independent
duplicate of Lane 3; Lane 9, identical to Lane 3 and Lane 8, but performed on non-
transfected cells with no halo-fusion protein.

* Halo—Keapl1, 104 kDa
+, Keapl, 70 kDa
x, Halo, 33 kDa

a) b)
MW/kDa
250
150

100 *
75

+
50

37 ®
25

1 2 3 45 6 7 8 9 1 2 3 45 6 7 829
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Figure S5. Representative data on PTEN-targeted delivery of HNE. Cultured HEK-
293 cells transiently overexpressing Halo-PTEN were treated with 25 yM HtPHA (2) for
2.5 hat 37 °C. Subsequent to rinsing with serum-free media (x2) every 30 min over 1.5 h,
designated plates were exposed to a hand-held 4 W lamp (365 nm) for 20 min at room
temperature, and further incubated for 5 min at 37 °C prior to harvest. Cells were lysed at
4°C and lysates were subjected to Tev cleavage for 30 min at 37 °C followed by click
reaction with Cy5-azide for 30 min at 37°C. Samples were analyzed by SDS-PAGE. a)
Resultant SDS-PAGE with Coomassie staining. b) In-gel fluorescence analysis of the
same SDS-PAGE with Cy5 excitation. Lane 1, ladder; Lane 2, results from sample where
Tev treatment in lysate was replaced with buffer without Tev; Lane 3, results from cells
exposed to light; Lane 4, halo binding site on Halo-PTEN was pre-blocked with linker
alone (compound 3, Scheme S1) followed by treatment with HtPHA (compound 2,
Scheme S2); Lane 5, cells were treated with 25 yuM HA (compound 5, Scheme S4) for 20
min; Lane 6, identical to Lane 3 but performed on non-transfected cells with no halo-
fusion protein; Lane 7, negative control from cells not exposed to light; Lane 8§,
independent duplicate of Lane 3; Lane 9, independent duplicate of Lane 4; Lane 10,
independent duplicate of Lane 7. From the independent duplicate data sets shown here
and from additional duplicates shown only during the manuscript reviewing stage,
average Cy5 signal intensity transfer from Halo band before light exposure, to PTEN
band after light exposure, is quantitated to be 28 + 10% (n = 4).

* Halo—-PTEN, 82 kDa
+, PTEN, 47 kDa
x, Halo, 33 kDa

mwy @) b)
kDa '
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Table S1

(A)  Primers for cloning out human Keapl gene from phrGFP-Keap1 plasmid and
dropping into pET28a_Halo vector, to construct pET28a_HaloKeapl wherein Tev
cleavage site exists between Halo and Keapl1.

Fwd-1:
TCGAGATTTCCGGCTCCGGAGAAAACTTGTATTTCCAGGGCTCAGGGATGCA
GCCAGATC

Rev-1:
TCAACAGGTACAGTTCTGCTGGTCAAT

Fwd-ext-1:
GGACCTGATCGGCAGCGAGATCGCGCGCTGGCTGTCGACGCTCGAGATTTCC
GGCTCCGG

Rev-ext-1:
CTCAGCTTCCTTTCGGGCTTTGTTATCAACAGGTACAGTTCTGCTGGTCAAT

(B) Primers for cloning out HaloKeap1 gene from pET28a_HaloKeapl, to construct
pMIR-DsRed-IRES-HaloKeap1.

Fwd-2:
TTTTCCTTTGAAAAACACGATGATAATATGGCCACAACCATGGCAGAAATCG
GTACTGGC

Rev-2:
TTTAGTACTCTTGAGTCTGGACTTTCTGATCAACAGGTACAGTTCTGCTGGTC

Fwd-ext-2:
ACGTCTAGGCCCCCCGAACCACGGGGACGTGGTTTTCCTTTGAAAAACACGA
TGATAATA

Rev-ext-2:
AGTTTTAAGGAAAATCCATTATTATTAAAAGTTTAGTACTCTTGAGTCTGGAC
TTTCTGA
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Table S2

(A) Primers for cloning out human PTEN gene from pcDNA3-GFP-PTEN plasmid and
dropping into pET28a_Halo vector, to construct pET28a_HaloPTEN wherein Tev
cleavage site exists between Halo and PTEN.

Fwd-1:
TCGAGATTTCCGGCTCCGGAGAAAACTTGTATTTCCAGGGCTCAGGGATGAC
AGCCATCAT

Rev-1:
TCAGACTTTTGTAATTTGTGTATGCTG

Fwd-ext-1:
GGACCTGATCGGCAGCGAGATCGCGCGCTGGCTGTCGACGCTCGAGATTTCC
GGCTCCGG

Rev-ext-1:
CTCAGCTTCCTTTCGGGCTTTGTTATCAGACTTTTGTAATTTGTGTATGCTG

(B) Primers for cloning out HaloPTEN gene from pET28a_HaloPTEN, to construct
pMIR-HaloPTEN.

Fwd-2:
TAGTGAACCGTGGATCCACCATGGCAGAAATCGGTACTGGC

Rev-2:
AGTGCCAAGCTAGCGGCCTCAGACTTTTGTAATTTGTGTATGCTGAT

Fwd-ext-2:
AGGCGTGTACGGTGGGAGGTCTATATAAGCAGAGCTGGTTTAGTGAACCGTG
GATCCACC

Rev-ext-2:
ACGCCAGGGTTTTCCCAGTCACGACGTTGTAAAACGACGGCCAGTGCCAAGC
TAGCGGCC
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Appendix continued:
LDI (Laser Desorption-Ionization) mass spectra of compounds 1, 2 and 4
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