SUPPORTING INFORMATION

Cho, Sung-Hee, and Guengerich, F. Peter (2013) Chem. Res. Toxicol. 26, xxx-xxx

Department of Biochemistry and Center in Molecular Toxicology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146

In Vivo Roles of Conjugation with Glutathione and O^6 -Alkylguanine DNA-Alkyltransferase in the Mutagenicity of the *bis*-Electrophiles 1,2-Dibromoethane and 1,2,3,4-Diepoxybutane in Mice

TABLE OF CONTENTS

Figure S1. GSH levels (A) and AGT activities (B) in livers of B6C3F1 male mice 6 h after treatment with vehicle, 1,2-dibromooethane (DBE, 30 mg/kg, ip), O^6 -BzGua (80 mg/kg, ip), or BSO (8 mg/kg, ip).

Figure S2. GSH levels in livers of Big Blue® transgenic mice 6 and 24 h after treatment with (A) vehicle, 1,2-dibromoethane (DBE), O^6 -BzGua/DBE, or BSO/DBE and (B) vehicle, DEB, O^6 -BzGua/DEB, or BSO/DEB.

Figure S3. Gel electrophoresis imaging measurements of AGT activity in livers of Big Blue® mice treated with vehicle, DBE, BSO, or O^6 -BzGua.

Figure S4. AGT activities in liver of Big Blue® transgenic mice at 6 and 24 h after treatment with (A) vehicle, DBE, O^6 -BzGua/DBE, or BSO/DBE and (B) vehicle, DEB, O^6 -BzGua/DEB, or BSO/DEB.

Table S1.Quantitative Analysis of DNA Adducts in Livers of Big Blue® Transgenic Mice6 and 24 h after Treatment with Vehicle, Dibromoethane, O^6 -BzGua/ Dibromoethane, or BSO/Dibromoethane

Table S2.Quantitative Analysis of DNA Adducts in Livers of Big Blue® Transgenic Mice6 and 24 h after Treatment with Vehicle, DEB, O^6 -BzGua/DEB, or BSO/DEB

Table S3. Independent Mutations in the Liver *cII* Gene of Big Blue[®] Transgenic Mice Treated with Vehicle, Dibromoethane, BSO/ Dibromoethane, or O^6 -BzGua/Dibromoethane

Table S4.Independent Mutations in the Liver cII Gene of Big Blue® Transgenic MiceTreated with Vehicle, DEB, BSO/DEB, or O^6 -BzGua/DEB

Figure S1. GSH levels (A) and AGT activities (B) in livers of B6C3F1 male mice 6 h after treatment with vehicle, 1,2-dibromooethane (DBE, 30 mg/kg, ip), O^6 -BzGua (80 mg/kg, ip), or BSO (8 mg/kg, ip). n = 5

Figure S2. GSH levels in liver of Big Blue® transgenic mice 6 and 24 h after treatment with (A) vehicle, 1,2-dibromooethane (DBE), O^6 -BzGua/DBE, or BSO/DBE and (B) vehicle, DEB, O^6 -BzGua/DEB, or BSO/DEB. O^6 -BzGua (80 mg/kg, ip) was administered 1 h prior to treatment with DBE (30 mg/kg, ip) or DEB (25 mg/kg, ip), and BSO (8 mg/kg, ip) was administered 2 h prior to treatment with DBE (30 mg/kg, ip) or DEB (25 mg/kg, ip).

Figure S3. Gel electrophoresis imaging measurements of AGT activity in liver extracts of Big Blue® mice treated with vehicle, dibromoethane (DBE), BSO, or O^6 -BzGua. The substrate (*upper bands*) and product (*lower bands*) were separated by denaturing gel electrophoresis after uracil DNA glycosylase/piperidine hydrolysis (3'-CGGAGCTCGGGCGTCTGCGUCXCTCCTGCGGCT-³²P 5' (X: O^6 -MeGua)/5'-GCCTCGAGCCAGCCGCAGACGCAGCGAGGA-3').

AGT activities in liver of Big Blue® transgenic mice at 6 and 24 h after treatment Figure S4. with (A) vehicle, DBE, O⁶-BzGua/DBE, or BSO/DBE and (B) vehicle, DEB, O⁶-BzGua/DEB, or BSO/DEB. O⁶-BzGua (80 mg/kg, ip) was administered 1 h prior to treatment with DBE (30 mg/kg, ip) or DEB (25 mg/kg, ip), and BSO (8 mg/kg, ip) was administered 2 h prior to treatment with DBE (30 mg/kg, ip) or DEB (25 mg/kg, ip).

Table S1.	Quantitative Analysis of DNA Adducts in Livers of Big Blue® Transgenic Mice
6 and 24 h	after Treatment with Vehicle, Dibromoethane (, O ⁶ -BzGua/ Dibromoethane, or BSO/
Dibromoetl	ane

time	adducts	control ^a	dibromoethane	BSO/	0 ⁶ BzGua/
	per 10 ⁵ bases	(n = 5)	(n = 5)	dibromoethane	dibromoethane
				(n = 5)	(n = 5)
	N^7 G-ethyl-GSH	ND^{b}	4.8 ± 0.8	2.2 ± 0.3	5.2 ± 0.8
after 6 h					
	N ⁶ dA-ethyl-GSH	ND	ND	ND	ND
	N^{1} A-ethyl-GSH	ND	ND	ND	ND
after 24 h	N^7 G-ethyl-GSH	ND	3.5 ± 0.8	1.8 ± 0.6	3.4 ± 0.9
	N ⁶ dA-ethyl-GSH	ND	ND	ND	ND
	N ¹ A-ethyl-GSH	ND	ND	ND	ND

^aControl: not treated with DBE. ^bND, not detected (limit of detection 5 adducts/10⁸ bases)

Table S2.	Quantitative Analysis of DNA Adducts in Livers of Big Blue® Transgenic M	ice
6 and 24 h af	Treatment with Vehicle, DEB, O ⁶ -BzGua/DEB, or BSO/DEB	

time	adducts	control ^a	DEB	BSO/DEB	O ⁶ BzGua/DEB
	per 10 ⁷ bases	(<i>n</i> = 5)	(n = 5)	(n = 5)	(n = 5)
	N ⁷ G-(OH) ₂ butyl-GSH	ND^{b}	0.24 ± 0.07	0.13 ± 0.03	0.22 ± 0.02
after 6 h					
	N ⁶ dA-(OH) ₂ butyl-GSH	ND	0.22 ± 0.06	0.12 ± 0.02	0.23 ± 0.04
	<i>N</i> ³ A-(OH) ₂ butyl-GSH	ND	ND	ND	ND
	N ¹ dG-(OH) ₂ butyl-GSH	ND	ND	ND	ND
	N ³ dT-(OH) ₂ butyl-GSH	ND	ND	ND	ND
	N ⁴ dC-(OH) ₂ butyl-GSH	ND	ND	ND	ND
after 24 h	N^7 G-(OH) ₂ butyl-GSH	ND	0.19 ± 0.06	0.07 ± 0.02	0.17 ± 0.04
	N ⁶ dA-(OH) ₂ butyl-GSH	ND	0.18 ± 0.03	0.08 ± 0.04	0.17 ± 0.04
	<i>N</i> ³ A-(OH) ₂ butyl-GSH	ND	ND	ND	ND
	N ¹ dG-(OH) ₂ butyl-GSH	ND	ND	ND	ND
	N ³ dT-(OH) ₂ butyl-GSH	ND	ND	ND	ND
	N ⁴ dC-(OH) ₂ butyl-GSH	ND	ND	ND	ND

^aControl: not treated with DBE. ^bND, not detected (limit of detection 0.03 adducts/10⁷ bases)

Table S3. Independent Mutations in the Liver *cII* Gene of Big Blue® Transgenic Mice Treated with Vehicle, Diibromoethane (DBE), BSO/ Diibromoethane, or O^6 -BzGua/ Dibromoethane

		amino acid	sequence context	number of independent mutations				
position ^a	mutation ^b	change	$5' \rightarrow 3'^{C}$	vehicle	DBE	BSO/DBE	O ⁶ -BzGua/DBE	
1	$A \rightarrow G$	Met \rightarrow Val	cat <u>A</u> TGgtt		1			
	$A \rightarrow T$	Met \rightarrow Leu	cat <u>A</u> TGgtt			1		
2	$T \rightarrow A$	Met \rightarrow Lys	catA <u>T</u> Ggtt			1		
	$T \rightarrow C$	Met \rightarrow Thr	catA <u>T</u> Ggtt		1			
3	$G \rightarrow A$	Met \rightarrow Ile	catAT <u>G</u> gtt		1	1	2	
	$G \rightarrow C$	Met \rightarrow Ile	catAT <u>G</u> gtt			1		
	$G \rightarrow T$	Met \rightarrow Ile	catAT <u>G</u> gtt		1	1	1	
15	C→A	Asn →Lys	gcaAA <u>C</u> aaa	1		1		
16	$A \rightarrow T$	Lys \rightarrow Stop	aac <u>A</u> AAcgc			1		
19	$C \rightarrow T$	Arg \rightarrow Cys	aaa <u>C</u> GCaac		1	1		
25	$G \rightarrow A$	Glu \rightarrow Lys	aac <u>G</u> AGgct	2	1	1	1	
	$G \rightarrow T$	Glu → Stop	aac <u>G</u> AGgct	1	1			
26	$A \rightarrow G$	Glu → Gly	aacG <u>A</u> Ggct			1		
31	$C \rightarrow A$	Leu \rightarrow Ile	gct <u>C</u> TAcga		1		1	
34	$C \rightarrow T$	Arg \rightarrow Stop	cta <u>C</u> GAatc	3	2	2	1	
35	$G \rightarrow A$	Arg → Glu	ctaCGAatc	1	1	1		
	$G \rightarrow T$	Arg → Leu	ctaCGAatc				1	
39	$C \rightarrow G$	Ile \rightarrow Met	cgaAT <u>C</u> gag			1		
40	$G \rightarrow A$	Glu → Lys	atc <u>G</u> AGagt		1			
39-40	$CG \rightarrow AT$	Glu → Stop	cgaAT <u>CG</u> AGagt			1		
41	$A \rightarrow T$	Glu → Val	atcG <u>A</u> Gagt		1			
	$A \rightarrow G$	Glu → Gly	atcG <u>A</u> Gagt				1	
50	$T \rightarrow C$	Leu \rightarrow Ser	gcgT <u>T</u> Gctt		1			
51	$G \rightarrow T$	Leu → Phe	gcgTT <u>G</u> ctt			1	1	
55	$A \rightarrow C$	Asn \rightarrow His	ctt <u>A</u> ACaaa		1		1	
64	$G \rightarrow A$	Ala \rightarrow Thr	atc <u>G</u> CAatg		1	1		
74	$G \rightarrow A$	Gly → Glu	cttGGAact		1	1	1	
	$G \rightarrow T$	Gly → Val	cttG <u>G</u> Aact	1		1		
89	$C \rightarrow A$	Ala → Glu	acaG <u>C</u> Ggaa				1	
	$C \rightarrow T$	Ala \rightarrow Val	acaG <u>C</u> Ggaa	1	1	2	1	
101	$G \rightarrow T$	Gly → Val	gtgG <u>G</u> Cgtt		1			
103	$G \rightarrow A$	$Val \rightarrow Ile$	ggc <u>G</u> TTgat	3	1	2	1	
	$G \rightarrow C$	$Val \rightarrow Leu$	ggc <u>G</u> TTgat	1			1	
	G → T	Val \rightarrow Phe	ggc <u>G</u> TTgat	1		1		
108	$T \rightarrow C$	$Asp \not \to Asp$	gatGA <u>T</u> aag				1	
113	$C \rightarrow T$	Ser \rightarrow Leu	aagT <u>C</u> Gcag	1	1	1		
115	$C \rightarrow A$	$Gln \rightarrow Lys$	tcg <u>C</u> AGatc		1		1	
	$C \rightarrow T$	$Gln \rightarrow Stop$	tcg <u>C</u> AGatc		1	1		
118	$A \rightarrow T$	Ile \rightarrow Phe	cag <u>A</u> TCagc	1				
124	$A \rightarrow G$	Arg \rightarrow Gly	agcAGGtgg				1	

125	$G \rightarrow T$	Arg \rightarrow Met	agcA <u>G</u> Gtgg				1
141	$G \rightarrow A$	Trp \rightarrow Stop	gacTG <u>G</u> att		1	1	1
	$G \rightarrow T$	$\mathrm{Trp} \rightarrow \mathrm{Cys}$	gacTG <u>G</u> att	1		1	
145	$C \rightarrow A$	Pro \rightarrow Thr	att <u>C</u> CAaag		1		1
160	$C \rightarrow A$	Leu \rightarrow Met	atg <u>C</u> TGctt		1		
	$C \rightarrow G$	Leu \rightarrow Val	atg <u>C</u> TGctt				1
164	$T \rightarrow A$	Leu → His	ctgC <u>T</u> Tgct				1
175	$G \rightarrow T$	$Glu \rightarrow Stop$	ctt <u>G</u> AAtgg		1		
178/185	+G	Frameshift	t <u>GGGGGG</u> t	3	1	3	2
179	$G \rightarrow A$	Trp \rightarrow Stop	gaaT <u>G</u> Gggg		1		1
	$G \rightarrow T$	$Trp \rightarrow Leu$	gaaT <u>G</u> Gggg		1		1
179-184	-G	Frameshift	t <u>GGGGGG</u> t	1	1	1	1
182	$G \rightarrow T$	$Gly \rightarrow Val$	tggG <u>G</u> Ggtc		1		
185	$T \rightarrow G$	Val \rightarrow Gly	gggG <u>T</u> Cgtt	1	1	1	1
190	$G \rightarrow C$	$Asp \not \to Gln$	gtt <u>G</u> ACgac	1			
193	$G \rightarrow T$	Asp \rightarrow Tyr	gac <u>G</u> ACgac		1		1
196	$G \rightarrow A$	$Asp \not \to Asn$	gac <u>G</u> ACatg	4	1	3	1
	$G \rightarrow T$	Asp \rightarrow Tyr	gac <u>G</u> ACatg		1		
200	$T \rightarrow A$	Met \rightarrow Lys	gacA <u>T</u> Ggct				1
206	G → T	Arg \rightarrow Leu	gctC <u>G</u> Attg				1
	$G \rightarrow A$	Arg \rightarrow Gln	gctC <u>G</u> Attg	2	1	2	1
211	$G \rightarrow C$	Ala \rightarrow Pro	ttg <u>G</u> CGcga	1			
	$G \rightarrow A$	Ala \rightarrow Thr	ttg <u>G</u> CGcga			1	
212	$C \rightarrow T$	Ala \rightarrow Val	ttgG <u>C</u> Gcga	2	1	1	1
214	$C \rightarrow T$	Arg \rightarrow Stop	gcg <u>C</u> GAcaa	2	1	1	1
220	$G \rightarrow T$	Val \rightarrow Phe	caa <u>G</u> TTgct	1		1	
224-225	GT → TG	Ala \rightarrow Val	gttG <u>CT</u> gcg				1
274	$C \rightarrow A$	$Gln \rightarrow Lys$	gaa <u>C</u> AAatc		1		1
287	A → T	$\operatorname{Glu} \rightarrow \operatorname{Val}$	atgG <u>A</u> Gttc	1			
Total				37	40	42	38

^aPosition 1 is the first base of the start codon in the *cII* coding sequuence.

^bPresented in term of sequence change on nontranscribed DNA strand.

^cUppercase indicates target codon and target basees are underlined.

		amino acid	sequence context	number of independent mutations			
position ^a	mutation ^b	change	5' → 3' ^C	vehicle	DEB	BSO/DEB	0 ⁶ -BzGua/DEB
1	$A \rightarrow G$	Met \rightarrow Val	cat <u>A</u> TGgtt		2	1	
	$A \rightarrow T$	Met \rightarrow Leu	cat <u>A</u> TGgtt		1		
2	$T \rightarrow A$	Met \rightarrow Lys	catA <u>T</u> Ggtt				1
	$T \rightarrow C$	Met \rightarrow Thr	catA <u>T</u> Ggtt				1
3	$G \rightarrow A$	Met \rightarrow Ile	catAT <u>G</u> gtt			1	1
	G → T	Met \rightarrow Ile	catAT <u>G</u> gtt		1		
15	C→A	Asn → Lys	gcaAA <u>C</u> aaa	1			
16	A → T	Lys \rightarrow Stop	aac <u>A</u> AAcgc				1
19	$C \rightarrow T$	Arg \rightarrow Cys	aaa <u>C</u> GCaac		1	1	1
25	$G \rightarrow A$	Glu → Lys	aac <u>G</u> AGgct	2	1	1	2
	$G \rightarrow T$	Glu → Stop	aac <u>G</u> AGgct	1		1	1
26	$A \rightarrow G$	Glu → Gly	aacG <u>A</u> Ggct		1		
31	$C \rightarrow A$	Leu \rightarrow Ile	gct <u>C</u> TAcga		1		1
32	$T \rightarrow C$	Leu \rightarrow Pro	gctC <u>T</u> Acga		1		1
34	$C \rightarrow T$	Arg \rightarrow Stop	cta <u>C</u> GAatc	3	2	1	2
35	$G \rightarrow A$	Arg → Glu	ctaCGAatc	1			1
	$G \rightarrow T$	Arg \rightarrow Leu	ctaCGAatc		1	1	1
40	$G \rightarrow A$	Glu → Lys	atc <u>G</u> AGagt		1		1
41	$A \rightarrow T$	Glu → Val	atcG <u>A</u> Gagt			1	
	$A \rightarrow G$	Glu → Gly	atcG <u>A</u> Gagt		1	1	
50	$T \rightarrow C$	Leu \rightarrow Ser	gcgT <u>T</u> Gctt		1	1	
51	G → T	Leu → Phe	gcgTT <u>G</u> ctt		1	1	
55	$A \rightarrow C$	Asn \rightarrow His	ctt <u>A</u> ACaaa		2	1	1
58	$A \rightarrow G$	Lys → Glu	aac <u>A</u> AAatc		1	1	
64	$G \rightarrow A$	Ala → Thr	atc <u>G</u> CAatg			1	1
73-74	GG → CT	Glu → Ile	ctt <u>GG</u> Aact			1	
74	G → T	Gly → Val	cttG <u>G</u> Aact	1		1	
82	$A \rightarrow G$	Lys → Glu	gag <u>A</u> AGaca		1		1
89	$C \rightarrow A$	Ala → Glu	acaG <u>C</u> Ggaa		1		1
	$C \rightarrow T$	Ala \rightarrow Val	acaG <u>C</u> Ggaa	1		1	1
100	G → T	$\mathrm{Gly} \mathrel{\boldsymbol{\rightarrow}} \mathrm{Cys}$	gtg <u>G</u> GCgtt		1	1	
101	G → T	Gly → Val	gtgG <u>G</u> Cgtt			1	
103	$G \rightarrow A$	$Val \rightarrow Ile$	ggc <u>G</u> TTgat	3		2	1
	$G \rightarrow C$	$Val \rightarrow Leu$	ggc <u>G</u> TTgat	1		1	
	$G \rightarrow T$	Val \rightarrow Phe	ggc <u>G</u> TTgat	1			1
108	$T \rightarrow C$	$Asp \not \to Asp$	gatGA <u>T</u> aag				1
109	$A \rightarrow G$	Lys → Glu	gat <u>A</u> AGtcg				1
113	$C \rightarrow T$	Ser \rightarrow Leu	aagT <u>C</u> Gcag	1	1	1	1
115	$C \rightarrow T$	$Gln \rightarrow Stop$	tcg <u>C</u> AGatc		1	1	1
118	$A \rightarrow T$	Ile \rightarrow Phe	cag <u>A</u> TCagc	1			
124	$A \rightarrow G$	Arg \rightarrow Gly	agc <u>A</u> GGtgg		1		1
125	$G \rightarrow T$	Arg \rightarrow Met	agcA <u>G</u> Gtgg				1
141	$G \rightarrow A$	Trp → Stop	gacTGGatt		1	1	

Table S4.Independent Mutations in the Liver cII Gene of Big Blue® Transgenic MiceTreated with Vehicle, DEB, BSO/DEB, or O^6 -BzGua/DEB

	G → T	$Trp \rightarrow Cys$	gacTG <u>G</u> att	1		1	
145	$C \rightarrow A$	Pro \rightarrow Thr	att <u>C</u> CAaag				1
154-155	TC → AG	Ser \rightarrow Arg	ttc <u>TC</u> Aatg		1		
160	$C \rightarrow G$	Leu \rightarrow Val	atg <u>C</u> TGctt				1
175	$G \rightarrow C$	Glu → Gln	ctt <u>G</u> AAtgg				1
	$G \rightarrow T$	Glu → Stop	ctt <u>G</u> AAtgg				1
178/185	+G	Frameshift	t <u>GGGGGG</u> t	3	2	2	2
179	$G \rightarrow A$	Trp \rightarrow Stop	gaaT <u>G</u> Gggg		1	1	1
179-184	-G	Frameshift	t <u>GGGGGG</u> t	1	3		1
185	$T \rightarrow G$	Val \rightarrow Gly	gggG <u>T</u> Cgtt	1			
190	$G \rightarrow C$	Asp → Gln	gtt <u>G</u> ACgac	1	1		
196	$G \rightarrow A$	$Asp \not \to Asn$	gac <u>G</u> ACatg	4	1	2	1
	$G \rightarrow T$	Asp \rightarrow Tyr	gac <u>G</u> ACatg			1	
200	$T \rightarrow C$	Met \rightarrow Thr	gacA <u>T</u> Ggct		1		
206	G → A	$\operatorname{Arg} \rightarrow \operatorname{Gln}$	gctCGAttg	2	1	2	1
211	$G \rightarrow C$	Ala → Pro	ttg <u>G</u> CGcga	1			
212	$C \rightarrow A$	Ala → Glu	ttgG <u>C</u> Gcga		2		
	$C \rightarrow T$	Ala \rightarrow Val	ttgG <u>C</u> Gcga	2		1	1
214	$C \rightarrow T$	Arg \rightarrow Stop	gcg <u>C</u> GAcaa	2	1	2	1
215	G → T	Arg \rightarrow Leu	gcgC <u>G</u> Acaa			1	
220	$G \rightarrow T$	Val \rightarrow Phe	caa <u>G</u> TTgct	1			
274	$C \rightarrow A$	$Gln \rightarrow Lys$	gaa <u>C</u> AAatc			1	
287	$A \rightarrow T$	$Glu \rightarrow Val$	atgG <u>A</u> Gttc	1			
Total				37	40	39	40

^aPosition 1 is the first base of the start codon in the *cII* coding sequence.

^bPresented in term of sequence change on nontranscribed DNA strand.

^cUppercase indicates target codon and target bases are underlined.