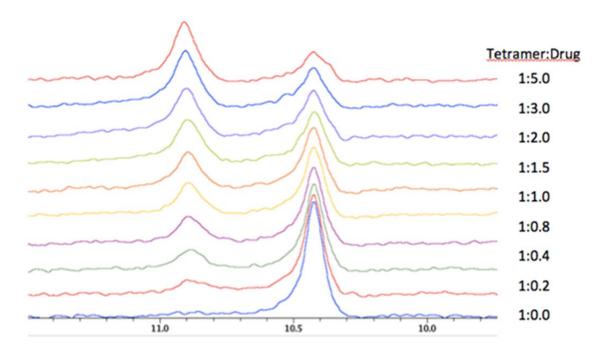
Supporting Information


3-Azatetracyclo[5.2.1.1^{5,8}.0^{1,5}]undecane derivatives: from wild-type inhibitors of the M2 ion channel of influenza A virus to derivatives with potent activity against the V27A mutant

Matias Rey-Carrizo, †,‡ Eva Torres, †,‡ Chunlong Ma, $^{\#,\S}$ Marta Barniol-Xicota, † Jun Wang, † Yibing Wu, † Lieve Naesens, $^{\perp}$ William F. DeGrado, † Robert A. Lamb, $^{\S, \circlearrowleft}$ Lawrence H. Pinto, $^{\#}$ Santiago Vázquez* †

Table of contents

Title Page and Table of contents	Page S1
Figure S1	Page S3
Table S1	Page S4
Cis-1,5-diethylbicyclo[3.3.0]octane-3,7-dione bishydrazone (18c)	Page S5
Mixture of <i>cis</i> -1,5-diethyl-3,7-diiodobicyclo[3.3.0]octan-2,7-diene and <i>cis</i> -1,5-diethyl-3,7-diiodobicyclo[3.3.0]octan-2,6-diene (<i>syn</i> - and <i>anti</i> -19c)	Page S5
Mixture of dimethyl 1,5-diethyl- <i>cis</i> -bicyclo[3.3.0]octa-2,7-diene-3,7-dicarboxylate and dimethyl 1,5-diethyl- <i>cis</i> -bicyclo[3.3.0]octa-2,6-diene-3,7-dicarboxylate (<i>syn</i> - and <i>anti</i> -20c)	Page S5
Mixture of <i>endo,endo-, endo,exo-</i> and <i>exo,exo-</i> dimethyl 1,5-diethyl- <i>cis</i> -bicyclo[3.3.0]octane-3,7-dicarboxylate (21c)	Page S6
Dimethyl 3,7-diethyltricyclo[3.3.0.0 ^{3,7}]octane-1,5-dicarboxylate (22c)	Page S7
3,7-Diethyltricyclo[3.3.0.0 ^{3,7}]octane-1,5-dicarboxylic acid (12c)	Page S7
Tricyclo[4.3.3.0 ^{1,6}]dodecane-8,11-dione bishydrazone (18d)	Page S8
Mixture of 8,11-diiodotricyclo[4.3.3.0 ^{1,6}]dodecan-7,11-diene and 8,11-diiodotricyclo[4.3.3.0 ^{1,6}]dodecan-7,10-diene (<i>syn</i> - and <i>anti</i> -19d)	Page S8

Mixture of dimethyl tricyclo[4.3.3.0 ^{1,6}]dodecan-7,11-diene-8,11-dicarboxylate and dimethyl tricyclo[4.3.3.0 ^{1,6}]dodecan-7,10-diene-8,11-dicarboxylate (<i>syn-</i> and <i>anti-</i> 20d)	Page S8
Mixture of <i>endo,endo</i> - and <i>endo,exo</i> - dimethyl tricyclo[4.3.3.0 ^{1,6}]dodecan-8,11-dicarboxylate (21d)	Page S9
Dimethyl tetracyclo[6.2.1.1 ^{3,10} .0 ^{3,8}]dodecane-1,10-dicarboxylate (22d)	Page S9
Tetracyclo[6.2.1.1 ^{3,10} .0 ^{3,8}]dodecane-1,10-dicarboxylic acid (12d)	Page S10
Elemental analysis data	Page S11

Figure S1. ¹H spectra showing chemical shift of W41 H^{ε1} as a function of drug concentration. The spectra were recorded for 1.6 mM M2TM in 80 mM DPC, 50mM phosphate buffer pH 7.5 at 313K on a Bruker Avance-I 800 MHz spectrometer. The stepwise titration was performed by addition of high concentration **16d** (250mM).

We used the same approach applied for rimantadine drug binding study on the wt M2.¹

$$\frac{[\text{Tetra} \bullet \text{Drug}]}{[\text{Tetra}]_{\text{T}}} = \frac{K_D + [\text{Tetra}]_{\text{T}} \times \text{N} + [\text{Drug}]_{\text{T}} - \sqrt{\left(K_D + [\text{Tetra}]_{\text{T}} \times \text{N} + [\text{Drug}]_{\text{T}}\right)^2 - 4[\text{Tetra}]_{\text{T}} \times \text{N} \times [\text{Drug}]_{\text{T}}}}{2[\text{Tetra}]_{\text{T}} \times \text{N}}$$

where $[\text{Tetra}]_T$ and $[\text{Drug}]_T$ are the total drugable tetramer and drug concentrations, respectively, N represents the number of drugs per tetrameter, K_D is the dissociation constant. N and K_D were fitted to the fraction of $[\text{Tetra}\bullet\text{Drug}]/[\text{Drug}]_T$, which was obtained by dividing the peak volume of W41 H^{El} at certain titration point by the maximum volume during the course of titration. Summary of the fitting is shown in Table S1.

-

¹ Cady, S. D.; Wang, J.; Wu, Y.; DeGrado, W. F.; Hong, M. J. Am. Chem. Soc. **2011**, 133, 4274-4284.

Table S1. Summary of fitting results

Ве	est-fit Values			
N	1.37 ± 0.28	1 ^a	1 ^a	1 ^a
K_D (μ M)	40 ± 24	4 ^a	100 a	400 ^a
Goodness of fit R ²	0.963	0.679	0.942	0.369
Absolute sum of squares	0.037	0.333	0.059	0.647

a: Values are fixed in the fitting.

Cis-1,5-diethylbicyclo[3.3.0]octane-3,7-dione bishydrazone (18c). To a solution of known² diketone 17c (15.0 g, 77.2 mmol) in absolute EtOH (225 mL) was added triethylamine (173 mL, 1.25 mmol) and hydrazine monohydrate (39.9 mL, 0.82 mmol). The mixture was heated to reflux for 3 hours. The dark yellow solution obtained was allowed to cool down to room temperature, it was then concentrated to a third of its volume and it was left at 4 °C overnight. The white precipitate was filtered, washed with cold 96% ethanol and dried under vacuum to give 18c (anti isomer) as white needles (14.95g, 87%), mp 139-140 °C. IR (KBr) v 3390, 3372, 3193, 2962, 2939, 2876, 2827, 1636, 1459, 1423, 1338, 1291, 1223, 1056, 826, 791, 675, 591, 513 cm⁻¹. ¹H NMR (400 MHz, CDCl₃) δ : 0.90 [t, J = 7.4 Hz, δ H, C1(5)-CH₂CH₃], 1.38 [q, J = 7.4 Hz, δ H, C1(5)-CH₂CH₃], 2.11 [dd, J = 18.0 Hz, J' = 0.8 Hz, 2H, 4(8)-H_{endo}], 2.23 [dd, J = 18.0Hz, J' = 1.6 Hz, 2H, 4(8)-H_{exo}], 2.37 [dd, J = 17.0 Hz, J' = 0.8 Hz, 2H, 2(6)-H_{endo}], 2.46 [dd, J = 17.0 Hz, J' = 1.6 Hz, 2H, 2(6)-H_{exo}], 4.84 (s, 4 H, 2 NH₂). ¹³C NMR (100.6 MHz, CDCl₃) δ: 9.8 [CH₃, C1(5)-CH₂CH₃], 26.0 [CH₂, C1(5)-CH₂CH₃], 35.2 [CH₂, C4(8)], 42.2 [CH₂, C2(6)], 52.4 [C, C1(5)], 157.7 [C=N, C3(7)]. MS, m/e (%); main ions: 222 (M⁺, 11), 206 (100), 193 (27), 152 (19), 151 (29), 150 (13), 149 (12), 91 (14).

Mixture of cis-1,5-diethyl-3,7-diiodobicyclo[3.3.0]octan-2,7-diene and cis-1,5diethyl-3,7-diiodobicyclo[3.3.0]octan-2,6-diene (syn- and anti-19c). To a stirred suspension of bis-hydrazone 18c (1.0 g, 4.5 mmol) in dry diethyl ether (72 mL) under an argon atmosphere, tetramethylguanidine (8.5 ml, 67.5 mmol) was added. The mixture was cooled to -18 °C and solid iodine (6.88 g, 27.1 mmol) was added in small portions during 1 hour. When the addition was over, the mixture was allowed to warm to room temperature and stirring was continued for 15 hours. The organic layer was washed with $Na_2S_2O_3$ (10% agueous solution, 5×30 ml) and brine (2 × 30 ml). The organic layer was dried (Na₂SO₄), filtered and concentrated under reduced pressure to give an orange solid that was purified by column chromatography (silica gel, n-hexane) to give a mixture of syn- and anti-19c (876 mg, 47% yield). From some selected fractions, pure syn-19c was obtained that was fully characterized, mp 63-64 °C (nhexane); IR (KBr) v3446, 2960, 2926, 2874, 1601, 1457, 1430, 1377, 1281, 1148, 1097, 1034, 1015, 964, 893, 853, 805, 790, 745 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 0.90 [t, J = 7.2 Hz, 3 H, C1-CH₂CH₃]*, 0.91 [t, J = 7.6 Hz, 3 H, C5-CH₂CH₃]*, 1.42 [q, $J = 7.2 \text{ Hz}, 2 \text{ H}, \text{C1-CH}_2\text{CH}_3$]*, 1.43 [q, $J = 7.2 \text{ Hz}, 2 \text{ H}, \text{C5-CH}_2\text{CH}_3$]*, 2.50 [dd, J =16.4 Hz, J' = 2 Hz, 2 H, 4(6)-H_{endo}], 2.62 [dd, J = 16.4 Hz, J' = 2 Hz, 2 H, 4(6)-H_{exo}], 6.01 [t, J = 2 Hz, 2 H, 2(8)-H]; ¹³C NMR (100.6 MHz, CDCl₃) δ 9.5 [CH₃, C1-CH₂CH₃]*, 9.9 [CH₃, C5-CH₂CH₃]*, 25.7 [CH₂, C1-CH₂CH₃]*, 26.0 [CH₂, C5-<u>C</u>H₂CH₃]*, 54.8 [CH₂, C4(6)], 58.0 (C, C5), 70.8 (C, C1), 92.5 [C-I, C3(7)], 142.4 [CH, C2(8)]. GC/MS (GC), m/e (%); main ions (syn and anti): rt (19.5 min): 414 (M⁺, 15), 287 $[(M-I^+, 56], 160 [(M-2I)^+, 100], 145 [(C_{11}H_{13})^+, 31], 131 [(C_{10}H_{11})^+, 48], 115 (20),$ 91 $[(C_7H_7)^+, 21]$; rt (19.6 min): 414 $(M^+, 15)$, 385 $[(M-C_2H_5)^+, 100]$, 258 $[(M-2C_2H_5)^+, 100]$ 10], 131 $[(C_{10}H_{11})^+, 22]$, 115 (11), 91 $[(C_7H_7)^+, 21]$.

Mixture of dimethyl 1,5-diethyl-cis-bicyclo[3.3.0]octa-2,7-diene-3,7-dicarboxylate and dimethyl 1,5-diethyl-cis-bicyclo[3.3.0]octa-2,6-diene-3,7-dicarboxylate (synand anti-20c). A mixture of 19c (5.65 g, 13.65 mmol), triphenylphosphine (706 mg, 2.69 mmol), Pd(OAc)₂ (316 mg, 1.41 mmol), methanol (175 mL) and triethylamine (11.4 mL, 82.2 mmol) was purged with CO for 10 min and stirred and heated under

_

² Makhseed, S.; McKeown, N. B. Novel spiro-polymers with enhanced solubility. *Chem. Commun.* **1999**, 255-256.

reflux for 22 h under CO (about 1 atm). The black suspension was allowed to cool to room temperature and was evaporated in vacuo to dryness. The residue was taken in dichloromethane (200 mL) and filtered. The orange filtrate was washed with HCl (10% agueous solution, 3×200 mL), NaHCO₃ (saturated agueous solution, 3×200 mL) and brine (200 mL). The organic layer was dried (anhydrous Na₂SO₄), filtered and concentrated in vacuo to dryness to give a mixture of syn- and anti-20c as a brown oil. Column chromatography (silica gel, hexanes to ethyl acetate / hexanes mixture 2/8) gave a mixture of syn- and anti-20c (in the approx. ratio of 1:1, ¹H NMR or GC/MS) as a yellowish oil (2.36 g, 62% yield). IR (ATR) v2964, 2851, 1713, 1634, 1460, 1435, 1381, 1352, 1317, 1239, 1217, 1190, 1159, 1128, 1076, 961, 908, 892, 855, 797, 773, 749, 738, 687, 554 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ syn-**20c** 0.93 (t, J = 7.4 Hz, 3 H, $C1-CH_2CH_3$), 0.97 (t, J = 7.4 Hz, 3 H, C5-CH₂CH₃), 1.36-1.64 (complex signal, 4 H, C1-CH₂CH₃ and C5-CH₂CH₃), 2.45 [dd, J = 16.4 Hz, J' = 1.8 Hz, 2 H, 4(6)-H_a], 2.58 $[dd, J = 16.4 \text{ Hz}, J' = 1.8 \text{ Hz}, 2 \text{ H}, 4(6) - H_b], 3.70 [s, 6 \text{ H}, C3(7) - CO_2CH_3], 6.59 [t, J = 1.8 \text{ Hz}, 2 \text{ H}, 4(6) - H_b], 3.70 [s, 6 \text{ H}, C3(7) - CO_2CH_3], 6.59 [t, J = 1.8 \text{ Hz}, 2 \text{ H}, 4(6) - H_b], 3.70 [s, 6 \text{ H}, C3(7) - CO_2CH_3], 6.59 [t, J = 1.8 \text{ Hz}, 2 \text{ H}, 4(6) - H_b], 3.70 [s, 6 \text{ H}, C3(7) - CO_2CH_3], 6.59 [t, J = 1.8 \text{ Hz}, 2 \text{ Hz}, 4(6) - H_b], 3.70 [s, 6 \text{ H}, C3(7) - CO_2CH_3], 6.59 [t, J = 1.8 \text{ Hz}, 2 \text{ Hz}, 4(6) - H_b], 3.70 [s, 6 \text{ Hz}, C3(7) - CO_2CH_3], 6.59 [t, J = 1.8 \text{ Hz}, 2 \text{ Hz}, 4(6) - H_b], 3.70 [s, 6 \text{ Hz}, C3(7) - CO_2CH_3], 6.59 [t, J = 1.8 \text{ Hz}, 2 \text{ Hz}, 4(6) - H_b], 3.70 [s, 6 \text{ Hz}, C3(7) - CO_2CH_3], 6.59 [t, J = 1.8 \text{ Hz}, 2 \text{ Hz}, 4(6) - H_b], 6.50 [t, J = 1.8 \text{ Hz}, 2 \text{ Hz}, 4(6) - H_b], 6.50 [t, J = 1.8 \text{ Hz}, 2 \text{ Hz}, 4(6) - H_b], 6.50 [t, J = 1.8 \text{ Hz}, 2 \text{ Hz}, 4(6) - H_b], 6.50 [t, J = 1.8 \text{ Hz}, 2 \text{ Hz}, 4(6) - H_b], 6.50 [t, J = 1.8 \text{ Hz}, 2 \text{ Hz}, 4(6) - H_b], 6.50 [t, J = 1.8 \text{ Hz}, 2 \text{ Hz}, 4(6) - H_b], 6.50 [t, J = 1.8 \text{ Hz}, 2 \text{ Hz}, 4(6) - H_b], 6.50 [t, J = 1.8 \text{ Hz}, 2 \text{ Hz}, 4(6) - H_b], 6.50 [t, J = 1.8 \text{ Hz}, 2 \text{ Hz}, 4(6) - H_b], 6.50 [t, J = 1.8 \text{ Hz}, 2 \text{ Hz}, 4(6) - H_b], 6.50 [t, J = 1.8 \text{ Hz}, 2 \text{ Hz}, 4(6) - H_b], 6.50 [t, J = 1.8 \text{ Hz}, 2 \text{ Hz}, 4(6) - H_b], 6.50 [t, J = 1.8 \text{ Hz}, 2 \text{ Hz}, 4(6) - H_b], 6.50 [t, J = 1.8 \text{ Hz}, 2 \text{ Hz}, 4(6) - H_b], 6.50 [t, J = 1.8 \text{ Hz}, 2 \text{ Hz}, 4(6) - H_b], 6.50 [t, J = 1.8 \text{ Hz}, 2 \text{ Hz}, 4(6) - H_b], 6.50 [t, J = 1.8 \text{ Hz}, 2 \text{ Hz}, 4(6) - H_b], 6.50 [t, J = 1.8 \text{ Hz}, 2 \text{ Hz}, 4(6) - H_b], 6.50 [t, J = 1.8 \text{ Hz}, 4(6) - H_b], 6.50 [t, J = 1.8 \text{ Hz}, 4(6) - H_b], 6.50 [t, J = 1.8 \text{ Hz}, 4(6) - H_b], 6.50 [t, J = 1.8 \text{ Hz}, 4(6) - H_b], 6.50 [t, J = 1.8 \text{ Hz}, 4(6) - H_b], 6.50 [t, J = 1.8 \text{ Hz}, 4(6) - H_b], 6.50 [t, J = 1.8 \text{ Hz}, 4(6) - H_b], 6.50 [t, J = 1.8 \text{ Hz}, 4(6) - H_b], 6.50 [t, J = 1.8 \text{ Hz}, 4(6) - H_b], 6.50 [t, J = 1.8 \text{ Hz}, 4(6) - H_b], 6.50 [t, J = 1.8 \text{ Hz}, 4(6) - H_b], 6.50 [t, J = 1.8 \text{ H$ 1.8 Hz, 2 H, 2(8)-H]; anti-**20c** 0.93 [t, J = 7.4 Hz, 6 H, C1(5)-CH₂CH₃], 1.36-1.64 [complex signal, 4 H, C1(5)-C \underline{H}_2 CH₃], 2.49 [dd, J = 16.4 Hz, J' = 2.8 Hz, 2 H, 4(8)- H_a , 2.68 [broad d, J = 17.2 Hz, 2 H, 4(8)- H_b], 3.71 [2 s, 6 H, C3(7)-CO₂CH₃], 6.60 [d, J = 1.6 Hz, 2 H, 2(6)-H]; ¹³C NMR (100.6 MHz, CDCl₃) δ syn-20c 9.4 (CH₃, C1-CH₂CH₃)*, 9.8 (CH₃, C5-CH₂CH₃)*, 25.5 (CH₂, C1-CH₂CH₃)*, 26.3 (CH₂, C5-CH₂CH₃)* <u>CH</u>₂CH₃)*, 42.5 [CH₂, C4(6)], 51.5 (CH₃, 2 CO₂CH₃), 55.6 (C, C5), 68.4 (C, C1), 134.9 [C, C3(7)-syn], 150.3 [CH, C2(6)], 165.6 (C, CO₂CH₃); anti-20c 9.9 [CH₃, C1(5)-CH₂CH₃], 27.6 [CH₂, C1(5)-CH₂CH₃-anti], 40.7 [CH₂, C4(8)], 51.4 (CH₃, 2 CO₂CH₃), 61.2 [C, C1(5)], 132.9 [C, C3(7)], 144.0 [CH, C2(8)], 165.6 (C, CO₂CH₃). GC/MS, m/e (%); main ions (syn and anti): rt (19.9 min): 278 (M^+ , 23), 249 [$(M-C_2H_5)^+$, 14], 247 (49), 246 [(M-CH₃OH)⁻⁺, 100], 219 (27), 218 [(M-HCO₂CH₃)⁻⁺, 92], 217 (57), 203 (18), 193 $[(C_{12}H_{17}O)^+, 91]$, 189 $[(M-C_2H_5-HCO_2CH_3)^+, 69]$, 187 (29), 186 (16), 161 (37), 159 $[(C_{12}H_{16})^+, 87]$, 157 (25), 145 (20), 133 (20), 131 (32), 130 (22), 129 $[(C_{10}H_{10})^+, 57]$, 128 (27), 117 (22), 115 (38), 105 (26), 93 (22), 91 $[(C_7H_7)^+, 37]$, 77 (18); rt (20.0 min): 278 (M^{+} , 12), 249 [(M- C_2H_5)⁺, 26], 247 (20), 219 (46), 218 [(M- HCO_2CH_3)⁺, 100], 217 (27), 189 $[(M-C_2H_5-HCO_2CH_3)^+, 31]$, 159 $[(C_{12}H_{16})^+, 49]$, 129 $[(C_{10}H_{10})^+, 28]$, 115 (16), 91 $[(C_7H_7)^+, 15]$. HRMS-ESI+ m/z $[M+H]^+$ calcd for $[C_{16}H_{22}O_4+H]^+$: 279.1591, found: 279.1593.

Mixture of endo, endo, endo, exo- and exo, exo- dimethyl 1,5-diethyl-cisbicyclo[3.3.0]octane-3,7-dicarboxylate (21c). A mixture of 20c (4.45 g, 15.99 mmol) was dissolved in absolute ethanol (120 mL), Pd on charcoal (1.34 g, 54% water content, ca. 5% Pd, equivalent to 30.9 mg of Pd) was added and the resulting mixture was hydrogenated at 400 psi at room temperature for 7 days. The suspension was filtered, and the solvent was evaporated in vacuo to give a mixture of endo, endo-, endo, exo- and exo, exo- stereoisomers of **21c** (3.47 g, 77% yield) as an oil. IR (ATR) v2959, 2878, 1730, 1458, 1434, 1364, 1265, 1192, 1171, 1042, 1027, 930, 830, 761, 668 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ endo,endo-21c 0.87 [t, J = 7.5 Hz, 3 H, C1(5)-CH₂CH₃], 1.24 [q, J = 7.5 Hz, 4 H, C1(5)-C $\underline{\text{H}}_2$ CH₃], 1.89 [dd, J = 13.5 Hz, J' = 10.0 Hz, 4 H, $2(4,6,8)-H_a$], 1.98 [dd, J = 13.5 Hz, J' = 8.5 Hz, 4 H, $2(4,6,8)-H_b$], 2.88 [m, 2 H, 3(7)-H], 3.67 [s, 6 H, 3(7)-CO₂CH₃]; endo, exo-21c and exo, exo-21c 0.88 [t, J = 7.5 Hz, 3 H, C1(5)- CH_2CH_3 , 0.89 [t, J = 7.5 Hz, 3 H, C1(5)- CH_2CH_3], 1.26-1.39 (complex signal, C1(5)-CH₂CH₃], 1.54 (d, <math>J = 12.5 Hz), 1.59 (d, J = 11.0 Hz), 1.75 (t, J = 12.5 Hz), 1.88 (m) and 2.03 (dd, J = 14.5 Hz, J' = 7.0 Hz) (CH₂), 2.59 (tt, 1 H, J = 14.0 Hz, J' = 9.0Hz), 2.75 (tt, 1 H, J = 14.5 Hz, J' = 9.0 Hz) and 2.87 (m) (CH), 3.66 (s, 6 H, OCH₃), 3.67 (s, 6 H, OCH₃); ¹³C NMR (100.6 MHz, CDCl₃) δ endo, endo-**21c** 9.9 [CH₃, C1(5)-CH₂CH₃], 25.8 [CH₂, C1(5)-CH₂CH₃-anti], 38.2 [CH₂, C2(4,6,8)], 51.7 (CH₃, 2

CO₂CH₃), 57.3 [C, C1(5)], 177.2 (C, CO₂CH₃); endo,exo-21c and exo,exo-21c 10.0 (CH₃), 10.2 (CH₃), 28.0 (CH₂), 30.9 (CH₂), 40.2 (CH), 40.5 (CH₂), 41.5 (CH), 41.9 (CH₂), 42.7 (CH), 43.1 (CH₂), 51.60 (CH₃), 51.62 (CH₃), 55.2 (C), 55.3 (C), 176.1 (C), 176.2 (C), 176.5 (C). GC/MS (GC), m/e (%); main ions (only two peaks were observed): rt (19.6 min): 282 (M⁺, 2), 251 (37), 250 [(M-CH₃OH)⁺, 100], 222 (36), 221 (22), 218 [(M-2CH₃OH)⁺, 61], 193 (55), 191 (41), 190 (98), 183 (27), 163 (43), 162 (34), 161 (42), 142 (18), 136 (17), 135 (38), 134 (16), 133 [(C₁₀H₁₄)⁺, 78], 122 (21), 121(39), 110 (18), 107 [(C₈H₁₀)⁺, 53], 105 (30), 93 (39), 91 (33), 79 (34), 77 (18), 59 (18), 55 (24); rt (19.7 min): 282 (M⁺, 2), 251 (28), 250 [(M-CH₃OH)⁺, 73], 222 (48), 221 (38), 218 [(M-2CH₃OH)⁺, 56], 193 (47), 191 (31), 190 (28), 181 (16), 163 (66), 162 (26), 161 (47), 158 (98), 149 (21), 142 (32), 136 (24), 135 (38), 133 [(C₁₀H₁₄)⁺, 100], 126 (21), 124 (29), 123 (31), 121 (60), 110 (20), 107 [(C₈H₁₀)⁺, 90], 105 (43), 95 (27), 93 (64), 91 (52), 81 (35), 79 (59), 77 (32), 67 (27), 59 (34), 55 (44). HRMS-ESI+ m/z [M+H]⁺ calcd for [C₁₆H₂₆O₄+H]⁺: 283.1904, found: 283.1897.

Dimethyl 3,7-diethyltricyclo[3.3.0.0^{3,7}]octane-1,5-dicarboxylate (22c). A solution of LiHMDS was prepared by reacting a solution of HMDS (3.56 mL, 17.0 mmol) in anhydrous THF (14 mL) with n-butyllithium (8.0 mL, 2.0 M in hexanes, 16.0 mmol) at -68°C under argon for 1 h. Then, a solution of a stereoisomeric mixture of diesters 21c (2.0 g, 7.08 mmol) in anhydrous THF (14 mL) was added dropwise keeping the temperature at -68°C. Stirring was continued for 1 h at this temperature and then a solution of iodine (1.80 g, 7.08 mmol) in anhydrous THF (32 mL) was added dropwise. The mixture was maintained 1 h at -68°C and then allowed to warm to room temperature over 15 h. The mixture was acidified with HCl (10% aqueous solution) until pH 2 (10 mL) and the THF was removed in vacuo. The remaining aqueous phase was extracted with diethyl ether $(4 \times 50 \text{ mL})$ and the combined organic extracts were washed with Na₂S₂O₃ (10% agueous solution, 3×100 mL) and brine (2 × 100 mL), dried (Na₂SO₄), filtered and evaporated to dryness under reduced pressure to furnish a dark red oil. Column chromatography of this residue (silica gel, hexanes / ethyl acetate, 9 / 1) gave diester **22c** (930 mg, 47% yield) as an orange oil. IR (ATR) v2962, 2891, 1732, 1479, 1459, 1435, 1378, 1325, 1301, 1285, 1219, 1192, 1155, 1132, 1081, 1063, 1042, 1002, 942, 915, 775, 763, 730, 647 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 0.90 [t, J = 7.4 Hz, 6 H, C3(7)-CH₂CH₃], 1.57 [d, J = 7.0 Hz, 4 H, 2(4,6,8)-H_a], 1.59 [q, J = 7.4H, 4 H, C3(7)-C $\underline{\text{H}}_2\text{CH}_3$], 2.01 [d, J = 7.0 Hz, 4 H, 2(4,6,8)- $\underline{\text{H}}_b$], 3.67 [s, 6 H, CO₂C $\underline{\text{H}}_3$]; ¹³C NMR (100.6 MHz, CDCl₃) δ 10.0 [CH₃, C3(7)-CH₂CH₃], 22.7 [CH₂, C3(7)-CH₂CH₃], 51.6 (CH₃, 2 CO₂CH₃), 52.9 [CH₂, C2(4,6,8)], 53.0 [C, C3(7)], 57.3 [C, C1(5)], 173.6 (C, CO₂CH₃). GC/MS, m/z (%); main ions: 280 (M⁻⁺, 1), 249 (41), 248 (25), 220 (100), 191 (67), 189 (28), 181 (72), 180 (25), 179 (44), 161 (87), 160 (27), 149 (88), 133 (20), 131 (37), 121 (60), 119 (30), 105 (38), 93 (31), 91 (49), 77 (21). HRMS-ESI+ m/z $[M+H]^+$ calcd for $[C_{16}H_{24}O_4+H]^+$: 281.1753, found: 281.1750.

3,7-Diethyltricyclo[3.3.0.0^{3,7}]**octane-1,5-dicarboxylic acid** (12c). A mixture of 22c (2.32 g, 8.28 mmol) and a solution of KOH (40%) in MeOH (24 mL) was heated under reflux for 3 h. Water (24 mL) was added and heating under reflux was continued for 6 h more. The solution was made acidic with conc. aqueous HCl (25 mL) and concentrated in vacuo. The dark solid was extracted with boiling diethyl ether (6 × 50 mL). The combined organic extracts were dried (Na₂SO₄), filtered and evaporated to dryness under reduced pressure to furnish **12c** (1.32 g, 63% yield) as a pale yellow solid, mp 205-206 °C; IR (KBr) ν 2971, 2930, 2705, 2604, 1702, 1420, 1312, 1235, 1151, 1091, 938, 729 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 0.91 [t, J = 7.2 Hz, 6 H, C3(7)-CH₂CH₃], 1.56-1.64 [complex signal, 8 H, C3(7)-CH₂CH₃ and 2(4,6,8)-H_a], 2.03 [d, J = 7.6 Hz, 4 H, 2(4,6,8)-H_b], 10.65 (broad s, 2 H, CO₂H); ¹³C NMR (100.6 MHz, CDCl₃) δ 10.0

[CH₃, C3(7)-CH₂CH₃], 22.7 [CH₂, C3(7)-CH₂CH₃], 52.7 [CH₂, C2(4,6,8)], 53.3 [C, C3(7)], 57.9 [C, C1(5)], 180.1 [C=O, C9(11)]. MS, m/z (%); main ions: 234 [(M-H₂O), 5]⁺, 206 [(M-HCO₂H)⁺, 55], 177 (67), 167 (100), 166 (37), 165 (31), 163 (33), 162 (47), 149 (63), 137 (18), 133 (28), 131 (23), 121 (54), 119 (23), 107 (21), 105 (40), 93 (46), 91 (60), 79 (34), 77 (38), 69 (19), 57 (29). HRMS-ESI+ m/z [M+H]⁺ calcd for [C₁₄H₂₀O₄+H]⁺: 253.1434, found: 253.1428.

Tricyclo[4.3.3.0^{1,6}]dodecane-8,11-dione bishydrazone (18d). From diketone 17d (37.3 g, 0.19 mol), triethylamine (431 mL, 3.11 mmol) and hydrazine monohydrate (97.4 mL, 2.02 mmol) in absolute EtOH (525 mL) and following the same procedure as reported for 18c, 18d was obtained as an orange sticky solid (42.5 g, 99%) yield). An analytical sample of 18d (anti isomer) was obtained by crystallization from chloroform, mp 142-143 °C. IR (KBr) v 3353, 3195, 2921, 2862, 2841, 1654, 1444, 1420, 1339, 1267, 1225, 1079, 872, 862, 813, 687, 507 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 1.45 [broad s, 8 H, 3(4)-H₂ and 2(5)-H₂], 2.15 [dd, J = 18.0 Hz, J' = 1.6 Hz, 2 H, 9(12)-H_a], 2.32 [dd, J = 17.0 Hz, J' = 1.6 Hz, 2 H, 7(10)-H_b], 2.34 [dd, J = 18.0 Hz, $J' = 1.8 \text{ Hz}, 2 \text{ H}, 9(12) - \text{H}_b$, 2.47 [broad d, $J = 17.2 \text{ Hz}, 2 \text{ H}, 7(10) - \text{H}_a$], 4.85 (broad s, 4) H, NH₂); ¹³C NMR (100.6 MHz, CDCl₃) δ 21.3 (CH₂, C3)*, 21.6 (CH₂, C4)*, 30.4 (CH₂, C2)*, 32.1 (CH₂, C5)*, 37.5 [broad CH₂, C9(12)], 42.5 [broad CH₂, C7(10)], 46.4 (C, C1)*, 47.6 (C, C5)*, 157.5 [C=N, C3(7)]. MS, m/z (%); main ions: 220 (M⁺, 19), 204 (100), 191 (18), 188 (25), 150 (39), 149 (39), 148 (23), 105 (16), 91 (30), 79 (17). HRMS-ESI+ m/z $[M+H]^+$ calcd for $[C_{12}H_{20}N_4+H]^+$: 221.1761, found: 221.1756.

8,11-diiodotricyclo[4.3.3.0^{1,6}]dodecan-7,11-diene diiodotricyclo[4.3.3.0^{1,6}]dodecan-7,10-diene (syn- and anti-19d). From bis-hydrazone **18d** (1.0 g, 4.54 mmol), tetramethylguanidine (8.6 ml, 68.1 mmol) and iodine (9.22 g, 36.3 mmol) in dry diethyl ether (50 mL) and following the same procedure as reported for 19c, 19d was obtained as an pink solid (1.07 g, 57% yield). An analytical sample of **19d** (syn and anti mixture) was obtained by crystallization from n-pentane, mp 91-92 °C. IR (KBr) v 3404, 3042, 2916, 2843, 1599, 1436, 1270, 1210, 1097, 1074, 989, 856, 790, 739, 594 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ anti-**19d** 1.25-1.72 [complex signal, 8 H, 2(5)-H₂ and 3(4)-H₂], 2.51 [dd, J = 16.4 Hz, J' = 1.6 Hz, 2 H, 9(12)-H_a], 2.62 [dd, $J = 16.4 \text{ Hz}, J' = 2.4 \text{ Hz}, 2 \text{ H}, 9(12) - \text{H}_b$, 5.85 [m, 2 H, 7(10)-H]; $\delta \text{ syn-19d}$ 1.25-1.55 [complex signal, 8 H, 2(5)- H_2 and 3(4)- H_2], 2.54 [m, 4 H, 9(10)- H_2], 5.88 [t, J = 2.0 Hz, 2 H, 7(12)-H]; ¹³C NMR (100.6 MHz, CDCl₃) δ anti-**19d** 19.0 [CH₂, C3(4)], 31.0 [CH₂, C2(5)], 52.6 [CH₂, C9(12)], 59.0 [C, C1(6)], 91.1 [C, C8(11)], 148.5 [CH, C7(10)]; 8 syn-19d 19.7 (CH₂, C3)*, 20.8 (CH₂, C4)*, 31.4 (CH₂, C2)*, 31.8 (CH₂, C5)*, 53.2 (C, C1), 55.9 [CH₂, C9(10)], 65.9 (C, C6), 92.6 [C, C8(11)], 143.9 [CH, C7(12)]. GC/MS, m/z (%); main ions (syn and anti): rt (20.2 min): 412 (M^{+} , 26), 285 [(M-I)⁺, 40], 158 [(M-2I)⁺, 100], 157 (51), 143 (24), 130 (34), 129 (48), 128 (28), 117 (27), 116 (22), 115 (49), 102 (23), 91 (40); rt (20.3 min): 412 (M⁺, 13), 285 [(M-I)⁺, 84], 158 [(M-2I)⁺, 100], 143 (17), 130 (26), 129 (35), 128 (23), 117 (18), 115 (34), 102 (11), 91 (23).

Mixture of dimethyl tricyclo[4.3.3.0^{1,6}]dodecan-7,11-diene-8,11-dicarboxylate and dimethyl tricyclo[4.3.3.0^{1,6}]dodecan-7,10-diene-8,11-dicarboxylate (syn- and anti-20d). From a mixture of 19d (5.70 g, 13.70 mmol), triphenylphosphine (719 mg, 2.74 mmol), Pd(OAc)₂ (308 mg, 1.37 mmol) and triethylamine (11.4 mL, 82.2 mmol) in methanol (180 mL) and following the same procedure as reported for 20c, 20d was obtained as a black oil. Column chromatography (silica gel, hexanes to ethyl acetate / hexanes mixture 2/8) gave a mixture of syn- and anti-20d (in the approx. ratio of 1:1, ¹H

_

³ Weiss U.; Edwards, J. M. A one-step synthesis of ketonic compounds of the pentalane, [3.3.3]- and [4.3.3]propellane series. *Tetrahedron Lett.* **1968**, *47*, 4885-4887.

NMR) as a white solid (2.43 g, 64% yield), mp 71-72 °C (hexane). IR (KBr) ν 3026, 3001, 2954, 2921, 2899, 2853, 1713, 1627, 1609, 1437, 1352, 1282, 1264, 1244, 1224, 1206, 1194, 1106, 1084, 979, 950, 898, 777, 749, 602, 552 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ *anti*-**20d** 1.20-1.83 [complex signal, 8 H, 2(5)-H₂ and 3(4)-H₂], 2.58 [dd, J = 16.2 Hz, J' = 1.6 Hz, 2 H, 9(12)-H_a], 2.65 [dd, J = 16.4 Hz, J' = 2.8 Hz, 2 H, 9(12)-H_b], 3.70 (s, 6 H, CO₂CH₃), 6.47 [m, 2 H, 7(10)-H]; δ *syn*-**20d** 1.25-1.60 [complex signal, 8 H, 2(5)-H₂ and 3(4)-H₂], 2.50 [m, 4 H, 9(10)-H₂], 3.71 (s, 6 H, CO₂CH₃), 6.47 [m, 2 H, 7(12)-H]; ¹³C NMR (100.6 MHz, CDCl₃) δ *anti*-**20d** 19.7 [CH₂, C3(4)], 31.4 [CH₂, C2(5)], 43.6 [CH₂, C9(12)], 51.5 (CH₃, CO₂CH₃), 56.0 [C, C1(6)], 135.2 [C, C8(11)], 151.9 [CH, C7(10)], 165.9 (C, CO₂CH₃); δ *syn*-**20d** 20.5 (CH₂, C3)*, 21.0 (CH₂, C4)*, 31.6 (CH₂, C2)*, 32.3 (CH₂, C5), 39.6 [CH₂, C9(10)], 50.7 (C, C1), 51.5 (CH₃, CO₂CH₃), 63.2 (C, C6), 132.2 [C, C8(11)], 145.5 [CH, C7(12)], 166.0 (C, CO₂CH₃). MS, m/z (%); main ions: 276 (M⁺, 40), 244 (100), 217 (48), 216 (42), 185 (34), 184 (18), 157 (47), 131 (16), 129 (29), 128 (17), 117 (21), 115 (28), 91 (21). HRMS-ESI+ m/z [*M*+H]⁺ calcd for [C₁₆H₂₀O₄+H]⁺: 277.1434, found: 277.1435.

Mixture of endo, endo- and endo, exo- dimethyl tricyclo [4.3.3.0^{1,6}] dodecan-8,11dicarboxylate (21d). A mixture of 20d (5.43 g, 19.7 mmol) was dissolved in absolute ethanol (120 mL), Pd on charcoal (1.09 g, 54% water content, ca. 5% Pd, equivalent to 25.1 mg of Pd) was added and the resulting mixture was hydrogenated at 400 psi at room temperature for 14 days. The suspension was filtered, and the solvent was evaporated in vacuo to give a mixture of endo, endo- and endo, exo- stereoisomers of 21d (4.06 g, 74% yield) as a yellow oil. IR (ATR) v2924, 2861, 1730, 1700, 1460, 1434, 1364, 1308, 1278, 1192, 1167, 1121, 1020, 930, 890, 830, 761, 722 cm⁻¹; ¹H NMR (400 MHz. CDCl₃) δ 1.20-1.52 [complex signal, 8 H, 2(5)-H₂ and 3(4)-H₂], 1.87-2.02 [complex signal, 8 H, 7(9,10,12)-H₂], 2.93-3.11 [complex signal, 2 H, 8(11)-H], 3.67 (s, 6 H, CO₂C<u>H</u>₃); ¹³C NMR (100.6 MHz, CDCl₃) δ endo,exo-**21d** 20.8 [CH₂, C3(4)], 31.1 [CH₂, C2(5)], 39.6 (CH) and 40.9 (CH) (C8 and C11), 40.1 (CH₂) and 41.1 (CH₂) [C7(9)] and C10(12), 51.69 [C, C1(6)], 51.8 (CH₃, CO_2 CH₃), 177.3 (C, CO_2 CH₃); δ endo, endo-21d 21.6 [CH₂, C3(4)], 32.3 [CH₂, C2(5)], 40.1 [CH, C8(11)], 40.7 [CH₂, C7(9,10,12)], 50.7 (C, C1), 51.6 [C, C1(6)], 51.72 (CH₃, CO₂CH₃), 177.3 (C, CO₂CH₃). GC/MS, m/z (%); main ions: 280 (M⁺, 2), 248 [(M-CH₃OH)⁺, 100], 220 [(M- $HCO_2H)^{+}$, 82], 216 (59), 189 (36), 188 (58), 179 (52), 161 (83), 158 (30), 147 (25), 134 (55), 121 (59), 119 (87), 105 (37), 93 (52), 91 (76), 79 (45), 77 (25). HRMS-ESI+ m/z $[M+H]^+$ calcd for $[C_{16}H_{24}O_4+H]^+$: 281.1747, found: 281.1747.

Dimethyl tetracyclo[6.2.1.1^{3,10}.0^{3,8}]dodecane-1,10-dicarboxylate (22d). From a solution of HMDS (2.50 mL, 11.73 mmol) in anhydrous THF (10 mL), n-butyllithium (5.0 mL, 2.0 M in hexanes, 10.0 mmol) a stereoisomeric mixture of diesters 21d (1.37 g, 4.89 mmol) in anhydrous THF (10 mL) and a solution of iodine (1.24 g, 4.89 mmol) in anhydrous THF (22 mL) and following the same procedure as reported for 22c, a dark red oil containing 22d was obtained. Column chromatography of this residue (silica gel, from hexanes to hexanes / ethyl acetate, 87 / 13) gave diester 22d (771 mg, 57% yield) as a yellow solid, mp 72–73 °C (hexanes). IR (ATR) v3432, 2937, 2856, 1734, 1455, 1436, 1301, 1198, 1176, 1115, 1080, 1031, 930, 799, 758, 566 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 1.57 [m, 4 H, 5(6)-H₂], 1.65 [m, 4 H, 4(7)-H₂], 1.77 [d, J =7.2 H, 4 H, 2(9,11,12)-H_a], 1.87 [d, J = 7.2 Hz, 4 H, 2(9,11,12)-H_b], 3.66 [s, 6 H, CO₂CH₃]; ¹³C NMR (100.6 MHz, CDCl₃) δ 18.8 [CH₂, C5(6)], 25.4 [CH₂, C4(7)], 48.0 [C, C3(8)], 51.6 (CH₃, 2 CO₂CH₃), 53.9 [CH₂, C2(9,11,12)], 57.5 [C, C1(10)], 173.5 (C, CO_2CH_3). GC/MS, m/z (%); main ions: 279 [(M+H)⁺, 13], 247 (32), 246 (51), 237 (31), 219 (25), 205 (17), 203 (19), 196 (13), 188 (18), 179 (53), 177 (30), 164 (55), 159 (37), 147 (63), 133 (16), 131 (25), 119 (100), 117 (29), 115 (19), 105 (25), 91 (64), 79 (21), 77 (21). HRMS-ESI+ m/z $[M+H]^+$ calcd for $[C_{16}H_{22}O_4+H]^+$: 279.1591, found: 279.1588.

Tetracyclo[6.2.1.1^{3,10}.0^{3,8}]**dodecane-1,10-dicarboxylic acid** (12d). From 22d (722 mg, 2.59 mmol) and a solution of KOH (40%) in MeOH (7 mL) and following the same procedure as for 12c, diacid 12d (520 mg, 80% yield) was obtained as a pale yellow solid, mp 239-240 °C; IR (ATR) ν 2931, 2859, 2693, 2592, 1696, 1418, 1299, 1236, 1201, 1083, 1038, 885, 714, 600 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 1.58 [m, 4 H, 5(6)-H₂], 1.66 [m, 4 H, 4(7)-H₂], 1.81 [d, J = 7.4 H, 4 H, 2(9,11,12)-H_a], 1.91 [d, J = 7.4 Hz, 4 H, 2(9,11,12)-H_b], 9.88 [very broad s, 2 H, CO₂H]; ¹³C NMR (100.6 MHz, CDCl₃) δ 18.8 [CH₂, C5(6)], 25.3 [CH₂, C4(7)], 48.3 [C, C3(8)], 53.7 [CH₂, C2(9,11,12)], 58.0 [C, C1(10)], 179.9 (C, CO₂CH₃). GC/MS, m/z (%); main ions: 250 (M⁺⁺, 3), 232 [(M-H₂O)⁺⁺, 48], 204 (37), 165 (78), 164 (28), 160 (30), 159 (36), 150 (67), 147 (53), 146 (26), 145 (26), 131 (44), 119 (89), 117 (53), 115 (28), 105 (30), 93 (17), 92 (20), 91 (100), 79 (33), 77 (40), 65 (20). HRMS-ESI- m/z [M-H]⁻⁻ calcd for [C₁₄H₁₈O₄-H]⁻⁻: 249.1132, found: 249.1135.

Elemental analysis data:

Compound	Molecular Formula		Calcu	Calculated			Found	pur	
		C	Н	Z	X	C	Η	Z	X
$14a \cdot HCI \cdot 0.5H_2O$	$C_{12}H_{19}N \cdot HCl \cdot 0.5H_2O$	64.70	9.50	6.29	15.91	64.73	98.6	89'9	16.11
$15a \cdot HCI \cdot 0.2H_2O$	$C_{13}H_{21}N \cdot HCI \cdot 0.2H_2O$	67.48	92.6	90.9	15.32	67.57	<i>L</i> 5.6	6.33	15.42
16a ·HCl·0.33Et ₂ O	$C_{13}H_{21}N_3 \cdot HC1 \cdot 0.33Et_2O$	61.37	9.10	14.99	12.65	61.70	20.6	14.62	13.04
$14\mathbf{b} \cdot \mathrm{HCl} \cdot 0.35 \mathrm{H}_2 \mathrm{O}$	$C_{10}H_{15}N \cdot HCl \cdot 0.35H_2O$	62.56	8.77	7.30	18.46	62.67	80.6	7.44	18.46
16b ·1.75HCl	C ₁₁ H ₁₇ N ₃ ·1.75HCl	51.80	7.41	16.47	pu	52.03	<i>1.</i> 72	16.79	pu
14c $\cdot \text{C}_4 \text{H}_6 \text{O}_6 \cdot 0.25 \text{H}_2 \text{O}$	$C_{14}H_{23}N \cdot C_4H_6O_6 \cdot 0.25H_2O$	90.09	8.26	3.89	-	90.09	8.51	4.06	-
$16c \cdot HCI \cdot 0.3H_2O$	$C_{15}H_{25}N_3 \cdot HC1 \cdot 0.3H_2O$	62.29	9.27	14.53	12.26	61.90	91.6	14.93	12.31
$14\mathbf{d} \cdot \mathrm{C}_4 \mathrm{H}_6 \mathrm{O}_6 \cdot 1 \mathrm{CH}_3 \mathrm{OH}$	$C_{14}H_{21}N \cdot C_4H_6O_6 \cdot 1CH_3OH$	59.20	8.11	3.63	ı	59.41	80.8	3.47	1
$16d \cdot HCl \cdot 0.25H_2O$	$C_{15}H_{25}N_3 \cdot HC1 \cdot 0.25H_2O$	62.92	8.62	14.68	pu	63.04	8.55	14.49	pu
18c	$C_{12}H_{14}N$	64.83	9.97	25.20	-	64.78	10.09	25.11	-
syn- and anti-19c	$C_{12}H_{16}I_{2}$ •0.1hexane	35.80	4.15	-	60.05	35.51	3.95	-	60.43
syn- and anti-19d	$C_{12}H_1$ 4 I_2	34.98	3.42	1	61.60	34.87	3.34	-	61.49