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Materials and Methods

Raman spectroscopy

Raman spectra have been a taken in a home-built Raman micro-spectrometer attached to

the same microscope stand as the CARS set-up. The excitation beam was provided by a

50 mW continuous wave laser of 532 nm wavelength and coupled into the microscope by a

Semrock LPD01-532RS-25 dichroic beamsplitter. The Raman scattering was collected in
∗To whom correspondence should be addressed
†School of Physics and Astronomy, Cardiff University, Cardiff, UK
‡Institute of Tissue Engineering and Repair, School of Dentistry, Cardiff University, Cardiff, UK
¶School of Biosciences, Cardiff University, Cardiff, UK

1



epi direction, transmitted through the dichroic beamsplitter and a Semrock BLP01-532R-25

long-pass filter, spectrally dispersed by a Horiba Jobin-Yvon iHR550 imaging spectrometer

with a 600 l/mm grating, and detected by a Andor Newton DU971N CCD camera, with

2 cm−1 resolution. To enable imaging, the excitation and the detection is confocal, with the

detection spatial filter given by the spectrometer input slit (30µm) and a 3 pixels (48µm)

vertical range on the CCD in a relayed intermediate image plane of the microscope with a

24× magnification. The spectral sensitivity was determined with a calibration source and

corrected in the Raman spectra to represent detected photons per second and wavenumber.

The Raman spectra have furthermore been corrected by the factor ν−3, where ν is the

frequency of Raman scattered light, to take into account1 the photon density of states factor

in the spontaneous Raman scattering, which is not present in the CARS susceptibility.

Samples

Polystyrene

Polystyrene (PS) grains (Sigma Aldrich, molecular weight ∼ 280000) were dissolved in

toluene (5% w/w final concentration) and then drop cast on a microscope slide. A #1

coverslip was placed on the solution, to provide and optically flat structure, prior to solvent

evaporation. We measured a resulting film thickness of 8µm using DIC microscopy.

Glycerol trioleate

Glycerol trioleate (GTO) was sourced from Sigma Aldrich. It is a symmetrical triglyceride

derived from glycerol and three units of the unsaturated fatty acid oleic acid. 15µl of GTO

was pipetted into a well created by the 9mm diameter opening of a 0.12 mm thick adhesive

imaging spacer (Grace BioLabs) attached to a microscope slide, and subsequently capped

with a #1 coverslip.
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Lipid mixtures

A series of mixtures of octanoic acid and α-linolenic acid from Sigma Aldrich were prepared at

different volume concentration. The two fatty acids show distinctive vibrational frequencies

as the former is a saturated lipid while the latter is polyunsaturated (see Fig. 2). The samples

have been prepared in the same format as GTO.

Cells

Mouse 3T3L1 cells were maintained in DMEM/F12 supplemented with 10% (v/v) foetal

bovine serum and 2mM L-glutamine in a humidified incubator (5% CO2). Cells were grown

until confluent and differentiated for up to 10 days by addition of 85 nM insulin and 2 nM

T3 to 3T3L1 maintenance medium with medium being replaced every 48 hours.

IMT11 2 mouse embryonic stem (mES) cells were maintained in a pluripotent state in

alpha MEM supplemented with 10% (v/v) foetal bovine serum (batch tested), 10% (v/v)

newborn calf serum (batch tested), 10−4 M beta mercaptoehtanol, 2mM L glutamine and

LIF (1000units/ml) (mES media) in a humidified incubator (5% CO2). The mES cells were

differentiated according to a protocol developed by Dani and coauthors .3 Briefly, mouse

ES cells were induced to differentiate by creating embryoid bodies (EBs) via the hanging

drop method. This was achieved by spotting 1000 cells/10µl in a bacteriological dish in mES

media without LIF. To create hanging drops bacteriological dishes were inverted atop smaller

bacteriological dishes filled with PBS for 2 days. Subsequently were inverted and EB’s were

treated with mES media supplemented with 10−6 M all-trans retinoic acid for 3 days, with

media being changed daily. EB’s were cultivated for a further 2 days in maintenance media

and approximately 2-4 EB’s/cm2 transferred to gelatin (0.1%) coated glass slides and allowed

to settle for 12 hours before culturing in mES media supplemented with 85 nM insulin, 2 nM

Triiodothyronine with media being replaced every 48 hours for up to 23 days.

The cells were subsequently washed in PBS and fixed using 4% (w/v) paraformaldehyde

and stored at 4 degrees in PBS/50 units/ml penicillin/streptomycin prior to CARS analy-
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sis. The cells were routinely screened for mycoplasma using the VenorGeM Mycoplasma

Detection kit (Cambio, Cambridge, UK).

Spectral extrapolation for field retrieval algorithms

The fast Fourier transform (FFT) assumes a periodic data set, but the CARS intensity ratio

spectra ĪC are not periodic. We create an input vector for FFT which suppresses the resulting

artifacts by extrapolating the CARS intensity ratio to zero frequency with a constant equal

to the measured ĪC at the lowest measured frequency. We use a frequency step given by the

experimental spectral step and we interpolate, if needed, the measured ĪC to an even spacing

of the frequency including zero. We then mirror the frequency range to negative frequencies,

resulting in N1 frequency points. To avoid wrap-around effects, we then extend the length of

the vector to N = 2m elements symmetric around zero frequency, where m is chosen as the

smallest integer so that N > 2N1. This extension uses the constant value of the maximum

measured frequency. The resulting periodic spectrum is continuous.

Details of the iterative Kramers-Kronig (IKK) method

The IKK method uses the self-consistency iteration

¯̃χ{i+1}
v = αF(θ̃(t)F−1((ĪC − | ¯̃χ{i}

v |2 − | ¯̃χ{i}
e |2)/| ¯̃χ{i}

e |) + (1− α) ¯̃χ{i}
v , (1)

with loop index i = 0, 1, .. and damping factor α. During the iterations the RMS σ{i} of the

residual ĪC −
(
| ¯̃χ{i}

v |2 + | ¯̃χ{i}
e |2 + 2ℜ

(
¯̃χ
{i}
v

¯̃χ
{i}
e

))
over the measured spectral region is used

to evaluate the convergence, which is estimated by the ratio r = σ{i+1}/σ{i}. We found

that using α = 1, i.e. without convergence control, the iteration can fail to converge for

| ¯̃χv/ ¯̃χe| ≤ 2. We therefore use α<1, and we initialize α with 0.1..0.8, higher for smaller

resonant contributions. During iteration we control the convergence by adjusting α in the

following way. If r > 1, α is changed according to α{i+1} = (α{i})β+ , otherwise α{i+1} =
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Figure S1: Retrieved imaginary part of the susceptibility in a lipid droplet using MKK (in
arbitrary units, normalized, black line) and PCKK (red line).

(α{i})β− . The parameters β+ and β− control the speed of convergence control and were set

to 1.2 and 0.98, respectively. The iteration of Eq.(5) proceeds sequentially through three

phases, with the value of α reset to the initial value at the beginning of each phase. Each

phase ends after n iterations without improvement of σ, where n = 3 was chosen. In phase

one, we set ¯̃χ
{0}
v = 0, and ¯̃χ

{0}
e is set constant, equal to the value of

√
ĪC at the lowest

measured frequency. In phase two, | ¯̃χe|2 is set in each iteration loop to the spectral average

of ĪC − | ¯̃χv|2. In phase three, ĪC in the spectral region outside the measurement is set to the

self-consistent spectrum | ¯̃χv|2 + | ¯̃χe|2 + 2ℜ( ¯̃χv
¯̃χ∗
e). The ¯̃χv and ¯̃χe returned by the algorithm

are the ones with the lowest σ during iteration.

Use of CARS reference in the MKK method

In the MKK method,4 the phase ϕ of the susceptibility is calculated by generating a temporal

response using the inverse Fourier transform (IFT) of ln
(√

IC
)

for positive times and the

IFT of ln
(√

Iref
)

for negative times. This is equal to using the IFT of ln
(√

IC/Iref

)
for

positive times as in PCKK and thus provides a correction of ϕ for the effect of Iref , as we

have analytically verified. However, in MKK a quantity proportional to the imaginary part of
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the susceptibility is retrieved by multiplying sin(ϕ) with
√
IC. This quantity is dependent on

the instrument response T (ω). In PCKK instead, the retrieved susceptibility is normalized

to the susceptibility of the reference medium, and is independent of T (ω). To illustrate

the differences we show in Fig. S1 the comparison of the retrieved imaginary part of the

susceptibility in a lipid droplet close to the CH2 band using PCKK without phase correction

(black line) and MKK (red line) normalized to the maximum of the PCKK result. The

results deviate according to the specific T (ω) of our instrument.

Phase retrieval of simulated spectra

To verify the validity of the phase retrieval methods IKK and PCKK and compare their per-

formance with the methods MKK and MEM reported in the literature, we first use simulated

spectra exactly adhering to the assumptions of the methods. We use the susceptibility

¯̃χ = 1 +
5∑

j=1

2αjσωj

ω2
j − ω2 + 2iσω

, (2)

and as example choose a linewidth σ/c = 10 cm−1, the resonance frequencies {ωj}/(2πc) =

{1700, 1850, 2850, 2870, 3050} cm−1, and the amplitudes {αj} = {0.25, 0.5, 1, 1, 2}. The sim-

ulated ω range covers −ωm to ωm with ωm/(2πc) = 4000 cm−1, and we use a step size of

0.2 cm−1 in the FFT.

The spectrum of the simulated ĪC = | ¯̃χ|2, is shown in Fig. S2a, together with the imag-

inary parts ℑ( ¯̃χ) retrieved with MKK,4 MEM,5 IKK, and PCKK. The MEM retrieval was

performed using the tool available .6 For the MKK method, which uses IC = ĪCT |χ̃ref |2| ¯̃χ|,

we assume a frequency-independent T and |χ̃ref |. The retrieval methods are applied to the

extended spectrum as described in the supplement, except for MEM where we use a single-

sided frequency range which resulted in a smaller error. The deviation ∆ of the retrieved

ℑ( ¯̃χ) from the exact ℑ( ¯̃χ) given by Eq.(2) is shown in Fig. S2c. Off resonance, a weakly

frequency dependent ∆ is found for all methods, which increases with wavenumber. The re-
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Figure S2: Phase retrieval of simulated CARS intensity data. a) ĪC according to Eq.(2). b)
ℑ( ¯̃χ) according to Eq.(2). c) Deviation ∆ of the retrieved ℑ( ¯̃χ) for the different methods as
labeled.

trieval of the amplitude of the resonances become less accurate as the CARS ratio increases.

The MKK and PCKK methods coincide since T is constant and the phase offset correction

is zero due to the inclusion of zero frequency. We have also studied the dependence of the

phase retrieval on the spectral range considered, as detailed in the SM Fig. S3 to Fig. S5.

In general, a smaller spectral range introduces larger deviations. However, the errors are in

the percent range which is typically below the noise in experimental spectra, and they are

thus not a major limitation. In essence, all methods lead to an acceptable result for this

simulation, with the MEM and PCKK showing the smallest errors. The fastest method is

PCKK since it uses only a double Fourier transform operation.
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Figure S3: Top: Imaginary part of simulated susceptibility ℑ( ¯̃χ), and the corresponding
IKK retrieved ℑ( ¯̃χ) using ĪC over restricted frequency ranges as indicated in cm−1. Bottom:
Deviation ∆ between the retrieved and simulated ℑ( ¯̃χ).

Phase retrieval versus width of measured spectral range

Phase retrieval is a spectrally nonlocal operation and thus depends on the spectral range over

which the CARS ratio ĪC is known. The different retrieval methods for the susceptibility

for a simulated spectrum were compared in the main manuscript for a frequency range of

0-4000 cm−1. In experiments, the measured frequency range is limited due to excitation and

detection constraints, as well as measurement duration limitations. It is therefore relevant

to discuss the influence of the measured frequency range on the retrieval fidelity for the

different methods, which is shown in Figs. S3-S5, using the procedures discussed in the main

manuscript. In general, all used retrieval methods produce an estimate of ℑ( ¯̃χ) with an error

increasing with decreasing wavevector range, in particular for resonances with large | ¯̃χv|/| ¯̃χe|.

Notably, IKK is most sensitive to the reduction in spectral range. PCKK and MEM show

a similar error, with the peculiar property that the retrieval is best for a somewhat limited
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Figure S4: As Fig. S3 but retrieved by MEM.
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Figure S5: As Fig. S3 but retrieved by PCKK.
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frequency range.

Unbiased noise reduction using SVD

The filtering of noise using SVD is based on the determination of the number of singular

vectors which contain significant information. Different protocols have been discussed in

literature,7 for example based on the observation of a significant change in the slope of the

diagonal elements of Σ, or considering a manual threshold in the first-order autocorrelation

function for the columns of U and V, or by determining the components which reconstruct

a matrix Dnf with random residuals of the difference D−Dnf . We propose here an unbiased

method to determine the maximum number imax of singular values with significant informa-

tion. To motivate the approach, we consider SVD of a S × P matrix of random numbers

with a Gaussian distribution with zero mean and unity standard deviation. Fig. S6a shows

the resulting singular values for different P and S = 500. The dependence on the index i is

approximately linear. We fit the singular values Σi,i with a linear function A−iB. The slope

B and the relative error of the fit ε = (Σ1,1 − A − B)/Σ1,1 is given in Fig. S6b as function

of the P and S. We find that ε ∼ 0.2(S/P )3/4 and B ∼ 1.8/
√
S. The linear fit is suited for

P ≫ S, which is satisfied by typical experimental conditions of S < 1000 and P ∼ 20000,

resulting in an error ε < 5%. We can use this finding on data which have a whitened noise

contribution which is therefore described by this simulation. Assuming that at least half of

the singular values are dominated by noise, we can estimate the noise contribution to all

singular values by a linear fit to the singular values with i > S/2 which are noise dominated.

Singular values which contain a signal contribution larger than the noise then have a value

larger than
√
2 times the noise value estimated by this fit. We therefore define imax as the

largest number for which the singular values up to imax are larger than
√
2 times the fit, i.e.

they contain a signal contribution larger than the estimated noise.
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Figure S6: a) Singular values of a 500 × P matrix of random numbers with a Gaussian
distribution of zero mean and unity standard deviation. b) relative error ε (full symbols)
and slope B (empty symbols) as function of P for different values of S as given. The dashed
line shows a 0.2× (250/P )3/4 dependence.

Phase retrieval of a measured lipid droplet spectrum

Fig. S7 shows the ĪC and retrieved ℑ( ¯̃χ) spectra of a large lipid droplet measured in a

3T3L1-derived adiptocyte. The corresponding area is indicated by the red circle in Fig. S9.

Similarly to the case of PS and GTO, the IKK, MKK and MEM methods retrieve a ℑ( ¯̃χ)

with a negative offset, which is corrected in the PCKK method. The different methods are

able to retrieve all the resonances visible in the Raman spectrum, and also the amplitude

ratios between the resonances are approximately reproduced. The stronger water resonance

around 3300 cm−1 from the surrounding medium visible in the Raman spectrum is attributed

to the weaker optical sectioning in the confocal Raman data.
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Figure S7: a): CARS intensity ratio measured in the lipid droplet and retrieved ℑ( ¯̃χ) (b)
with the Raman spectrum (dashed).

Determination of the absolute concentration of chemical

components using MCR

The MCR analysis used in Ref. 8 is an existing alternative to FSC3 to factorize hyperspec-

tral data in order to obtain quantitative information on the chemical composition of the

investigated sample. Fig. S8a shows the results of the MCR method on the hyperspectral

ℑ( ¯̃χ) images measured in the octanoic and α-linolenic acid mixture series of Fig. 2. In the

analysis we used the MCR-ALS Matlab toolbox 9 as in Ref. 8, where two components were

considered, constraints were set for non-negative spectrum and concentration values and for

sum of the concentrations to be equal to 1, and convergence to 0.01% was requested. The

dashed lines represent the spectra of the pure lipids, while the solid lines are the spectra

obtained by MCR using random spectra and concentrations given by a uniform distribution

between zero and one as initial guess. We found that the MCR results are dependent on

the initial spectra, and we therefore represent the spectra as averages with error bars given

by plus and minus their standard deviation over random initial spectra and concentrations.
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The error is specifically evident in the α-linolenic acid spectrum, corresponding to the sec-

ond MCR component, around the peak at 3020 cm−1. The resulting concentrations of the

components are shown in the inset versus the nominal concentration, again with the error

bars representing plus and minus their standard deviation over random initial spectra and

concentrations. The MCR concentrations deviate significantly from the nominal ones, with

errors in the 20% range. This is about an order of magnitude larger than for FSC3 (see

Fig. 2), and the FSC3 method also does not show a significant dependence on the initial

spectra and concentrations, with a standard deviation of about 10−4 in the concentration

over random initial spectra and concentrations. Similar results are obtained using MCR

on Raman data as shown in Fig. S8b. In terms of computational effort MCR is about two

orders of magnitude slower than FSC3. A possible reason for the stronger fluctuations of the

MCR results is that it uses the concentration constrain explicitly in the minimization algo-

rithm. Any spatially dependent variation in the signal created for example by the refractive

index structure of the signal is disturbing the retrieved spectra. In the FSC3 method we

only rescale the concentrations and spectra globally to minimize the variation of the sum of

concentrations from 1 over the whole image, which is not having an explicit influence on the

retrieval of the spectra. We can therefore conclude that in typical experimental datasets the

spatial intensity variations are too strong to use the concentration constrain explicitly for

the spectra retrieval.

Instead of using random initial spectra, they can be obtained by using the evolving factor

analysis (EFA) algorithm available within the MCR toolbox. EFA provides estimates for the

concentration matrix which can be used to initialize the MCR analysis. However the EFA

algorithm is computationally even slower than MCR so that only a sub-ensemble of the data

can be analyzed within a reasonable time. The obtained estimation of the sub-ensemble

concentration matrix can be used to run the MCR analysis to find a set of spectra which

can be used than as initial guess for the MCR on the full dataset. The choice of the sub-

ensemble is important, as it has to be statistical relevant and unsupervised. We used 10%
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Figure S8: a) MCR ℑ( ¯̃χ) spectra s{k} (solid lines) of mixtures of octanoic and α-linolenic acid,
compared with the spectra of the pure compounds (dashed lines). Inset: FSC3 concentrations
c{k} versus nominal concentration (v/v). The error bars are given by the standard deviation
over random initial spectra. b) as a) for Raman spectra.

of the original data at randomly selected spatial points. The combined EFA-MCR method

is ∼ 200 times slower than the FSC3 method, and gives results similar to FSC3. Other

initialization methods such as non-negative SVD, selecting the most dissimilar spectra, etc.,

are described in literature, but require more computational effort. In Ref. 8 MCR was used

with the measured spectra of the known pure substances as initial estimate.
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Figure S9: As Fig. 4 but for ℑ( ¯̃χ) retrieved by IKK. The scale bar indicates 5µm.

SVD analysis on hyperspectral
√
IC and IKK-retrieved ℑ( ¯̃χ)

images

Images of the first five singular values of the SVD of ℑ( ¯̃χ), retrieved using the IKK method,

are shown in Fig. S9. The first three components are similar to the ones for PCKK (see

Fig. 4). The fourth component shows an inverted contrast compared to PCKK results, while

the fifth component is different, showing spatially localized maxima and minima. Analysis

of this behaviour showed that the iterative nature of the IKK can produce spurious parts

due to limited convergence, which can be above the noise of the data and thus visible in

the higher SVD components. This is specifically relevant at sharp spatial structures where

spectral artifacts can appear due to the sequential acquisition of the spectra.

In the SVD images of
√
IC shown in Fig. S10, the lipid droplets are surrounded by thin

layer of a different singular component. This is an result of the interference between χe and

χv in
√
IC. In the corresponding images of ℑ( ¯̃χ) (see Fig. S9 for IKK and Fig. 4 for PCKK

15
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Figure S10: As Fig. 4 but for
√
IC. The scale bar indicates 5µm.

retrieval), this artifact is removed and the lipid droplets are homogeneous in color indicating

a homogeneity in the chemical composition.

SVD basis rotation

The SVD spectra of ℑ( ¯̃χ) do not correspond to individual chemical components, but rather

to differences between chemical components fluctuating independently. The SVD analysis

and subsequent visualization helps to determine regions of the samples which present the

same color and that can be identified as a single substance. Once a substance is identified

one can project the first vector of the matrix U onto the defined spectrum and generate a

new set of vectors as new basis for the spectra. To do that we calculate an average spectrum

in a manually defined spatial region representing one substance. We rotate U to U′ = UR

with the rotation matrix R such that the rotated basis U′ has a first vector given by this

spectrum. The spatial distribution of the new basis vectors is then given by D′ = (U′)−1D.
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Figure S11: a),b) Reconstructed color images of ΣVT and left spectra of U after SVD on
ℑ( ¯̃χ) retrieved as in Fig. 4. c),d) after rotating to U’ align the first left vector with the average
spectrum in the rectangular region indicated in a). e),f) after rotating U’ to additionally
project the second left vector onto the lipid spectrum calculated as average spectrum in the
rectangular region shown in in c).

This rotation process of U’ can be repeated in the remaining subspace i.e. excluding the

already projected dimensions, until all left vectors of U′ are determined. We limit this

operation to the first imax components of U, i.e. the ones containing signal above noise.

We show an example in Fig. S11, where panel a) gives the color reconstructed ΣVT image

after SVD analysis of ℑ( ¯̃χ) with the corresponding singular spectra in b). Since the region

outside the cells is dominated by water, we project the first vector of U onto this spatial

region (indicated with solid lines in Fig. S11a), resulting in the D′ displayed in Fig. S11b.

In the resulting first vector of U′ (see Fig. S11d) the lipid band at 2850 cm−1 is suppressed.

We then project the second vector of U’ onto the spectrum measured on a lipid droplet (see
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Figure S12: Same as Fig. S10 for ℑ( ¯̃χ) hyperspectral images of 3t3l1-derived adipocytes in
the 1300-2200 cm−1 range retrieved using PCKK. The scale bar indicates 5µm.

solid line in c), reducing the inverse water band in the second vector of U’. The associated

color image of D’ (see Fig. S11e) shows an improved contrast between the substances (water,

lipid, and cytosol).

FSC3 analysis in the characteristic region

FSC3 analysis has been performed on hyperspectral images of adipocytes taken in the charac-

teristic region (1300-2200 cm−1). Fig. S12 shows the reconstructed images after SVD on ℑ( ¯̃χ)

retrieved by PCKK. The first component shows a distribution peaked at the lipid droplets,

while the water surrounding the cells appears bright in the second component. The third

component shows an inverted cell nucleous. The fourth component appears evenly dis-
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tributed in the sample and can be considered as noise. The associated SVD spectra, namely

the columns of U, and the diagonal elements of Σ are displayed in panel a) and b), are

consistent with the assignment by morphology. The SVD spectra of the first component

shows the typical peaks associated with triglycerids. The second SVD spectrum shows dips

in correspondence of the lipid resonances. The third spectrum shows a peak at 1370 cm−1.

Fig. S13 shows the results of the FSC3 analysis in the 1300 − 2200 cm−1 region into four

chemical components. The first and the third components have opposite contrast and can

be associated to water and lipid, respectively, with a volume fraction of 59% and 8%. The

second component shows a double peak around 1600 cm−1 and has a volume fraction of 30%

with a high concentration at the nucleoli and nucleus membrane. The fourth component

accounts for the remaining volume fraction of 3% and shows an imaginary part dominated

by spectral noise and shows the highest concentrations at the edge of the lipid droplets. It

is attributed to motion and/or light propagation artifacts.

Similarly to what was observed in the high frequency region, the maximum error of the

total concentration EC of about ±0.2 is localized at the lipid droplet edges and in the largest

lipid droplets. This is consistent with its origin being the optical aberration introduced by the

variation of refractive index between the droplets and the cellular matrix, reducing the signal

intensity and thus artificially increasing the concentration in the analysis. It is important

to note that in this spectral region the component of highest average concentration, water,

does not have any vibrational resonance, and can only bee seen due to the inclusion of χ̂e p

in the analysis. Indeed, using the NMF on ℑ( ¯̃χ) alone returns a large concentration error

EC ranging from -0.4 to 2.1, and a lacking contrast of the nucleoli.
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Figure S13: Results of the FSC3 with K = 4 on ℑ( ¯̃χ) of adipocytes as Fig. 5, but using
the 1300-2200 cm−1 range. Top: Spatial distribution of the concentration C. The grayscale
ranges from 0 to 1.14. The corresponding component spectra ℑ( ¯̃χ{k}) are displayed in a)
together with the spectrally averaged ℜ( ¯̃χ{k}) (dashed lines). Bottom: reconstructed color
images overlaying the C images using the third component as red, the first as green and the
fourth as blue. The images of the three channels have been independently normalized to
their maxima. EC indicates the concentration sum matrix, with grayscale ranging from -0.2
to 0.16. The spectral error ES spatial distribution is also shown with a grayscale ranging
from 0.04 to 0.95. The scale bare indicates 5µm.

SVD analysis of ℑ( ¯̃χ) of differentiated mouse embryonic

stem cells

We show in Fig. S14 the SVD analysis of ℑ( ¯̃χ) from mouse embryonic stem cells which

were exposed to the differentiation protocol but not exhibiting the morphology of mature

adipocytes, for comparison with the FSC3 results shown in Fig. S15. The reconstructed

ΣVT images show clear differences in the spatial distribution of the SVD spectra Us,i. For
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Figure S14: Same as Fig. S10 for ℑ( ¯̃χ) hyperspectral images of a group of differentiated mES
cells measured in the 2400-3600 cm−1region. The scale bar indicates 10µm.

example, the first singular value shows a distribution which is homogenous in the image, and

can be associated to water background. The second component, instead, is localized in in the

cell cytosol. The third and fourth component are maxima in the water and minima at the

cells, while the fifth shows a strong intensity at the small droplets structures. Encoding the

ΣVT
i,p with different colors help in the visualization of the contrast between water, droplets

and cell cytosol. Similarly to what found for adipocytes, we are able to observe internal

structure of the cytosol in spite of the smaller signal to noise ratio of the measured CARS

intensity.
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Figure S15: Results of FSC3 on ℑ( ¯̃χ) retrieved by PCKK for a group of differentiated mES
cells. The grayscale for the concentration images ranges from 0 to 1. The scale bar indicates
10µm.

FSC3 on differentiated mouse embryonic stem cells

The phase retrieval and FSC3 analysis is also suited for samples with a weak resonant

susceptibility, such as the cells of Fig. S15. The result of FSC3 with K = 3 is given in

Fig. S15. The identified components are separated into bulk water mostly outside the cells

(1), a cytosolic component (2), and a third component similar to 2 but with a slightly

different peak shape of both protein/nucleic acid and water resonances, and a significantly

stronger non-resonant susceptibility. This component is spatially localized into micrometric

structures/droplets. To interpret these results further other complementary biochemical

techniques could be used.
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Table of relevant symbols used

Symbol Definition

χ̃ CARS susceptibility in frequency domain

IC CARS intensity

R Instrument response

T Transduction coefficient

Rs Spectral broadening instrument response

χ̃e Non-resonant electronic contribution of the susceptibility in frequency domain

χ̃v Resonant vibrational contribution of the susceptibility in frequency domain

χ̃ref CARS susceptibility of a non-resonant medium in frequency domain

Iref CARS intensity of a non-resonant medium

ĪC CARS ratio, i.e. CARS intensity normalized to a non-resonant medium

χ̄ CARS susceptibility in time domain normalized to a non-resonant medium

¯̃χ CARS susceptibility in frequency domain normalized to a non-resonant medium

¯̃χe Non-resonant electronic contribution of the normalized susceptibility

¯̃χv Resonant vibrational contribution of the normalized susceptibility

References

(1) McCreery, R. L. In Handbook of Vibrational Spectroscopy ; Chalmers, J. M., Grif-

fiths, P. R., Eds.; John Wiley & Sons Ltd, Chichester, 2002.

(2) Bierbaum, P.; Maclean-Hunter, S.; Ehlert, F.; Moroy, T.; Müller, R. Cell Growth Diff

1994, 5, 37–46.

(3) Dani, C.; Smith, A.; Dessolin, S.; Leroy, P.; Staccini, L.; Villageois, P.; Darimont, C.;

Ailhaud, G. J Cell Sci 1997, 110, 1279–1285.

(4) Liu, Y.; Lee, Y. J.; Cicerone, M. T. Opt. Lett. 2009, 34, 1363.

23



(5) Vartiainen, E. M.; Rinia, H. A.; Müller, M.; Bonn, M. Opt. Express 2006, 14, 3622–3630.

(6) A tool for MEM calculations is available at http://memcars.amolf.nl/.

(7) Lee, Y. J.; Moon, D.; Migler, K. B.; Cicerone, M. T. Anal. Chem. 2011, 83, 2733–2739.

(8) Zhang, D.; Wang, P.; Slipchenko, M. N.; Ben-Amotz, D.; Weiner, A. M.; Cheng, J.-X.

Anal. Chem. 2013, 85, 98–106.

(9) Jaumot, J.; Gargallo, R.; de Juan, A.; Tauler, R. Chemom. Intell. Lab. Syst. 2005, 76,

101 – 110.

24


