# **Supplemental Material for:**

# Cellulose as an architectural element in spatially structured *Escherichia coli* biofilms

#### Diego O. Serra, Anja R. Richter and Regine Hengge

Institut für Biologie - Mikrobiologie, Freie Universität Berlin, 14195 Berlin, Germany

#### **Contents:**

1. Supplementary Figures:

- Fig. S1: Construction of single copy *lacZ* reporter fusions to *yhiR*, *bcsQ* and *bcsA* and  $\beta$ -galactosidase activities in colonies of fusion-carrying strains
- Fig. S2: FLAG-tagging reveals the expression and temperature regulation of cellulose synthase (BcsA) in strain AR3110 but not in W3110
- Fig. S3: Cryosection through the outer growth zone of a 5-day-old macrocolony of strain AR3110 grown in the presence of thioflavine S.
- 2. Supplementary Table S1: Oligonucleotides
- 3. In addition available: Supplementary Movies:

Movie S1: Dissolution by shear forces of a cellulose- and curli-free macrocolony Movie S2: Dissolution by shear forces of a macrocolony producing curli only Movie S3: Dissolution by shear forces of a macrocolony producing curli and cellulose



Figure S1. Construction of single copy *lacZ* reporter fusions to *yhiR*, *bcsQ* and *bcsA* and  $\beta$ -galactosidase activities in colonies of fusion-carrying strains. A: The latter two fusions were constructed with TAG ('W' fusions) or TTC ('AR' fusions) in codon 6 of *bcsQ* (position indicated by a red asterisk). Lengths of genes and intergenic regions are not drawn to scale. B: Different  $\beta$ -galactosidase activities conferred by these *lacZ* fusions integrated into the chromosome of strain W3110 are shown qualitatively in colonies grown for 2 days on salt-free LB containing the indicator XG.



Figure S2. FLAG-tagging reveals the expression and temperature regulation of cellulose synthase (BcsA) in strain AR3110 but not in W3110. W3110 and AR3110 carrying FLAG-tagged *bcsA* in the chromosome were grown in LB or salt-free LB at 28°C or 37°C as indicated and FLAG-tagged proteins were detected in colonies growing for four days at 28 °C (40  $\mu$ g total protein per lane) by immunoblot analysis using an anti-FLAG serum. Note that as an overall hydrophobic membrane protein, BcsA runs as a diffuse band and more rapidly than expected for its actually molecular mass (99.8 kDa).



AR3110 (curli+/cellulose+)

Figure S3. Cryosection through the outer growth zone of a 5-day-old macrocolony of strain AR3110 grown in the presence of thioflavine S. A thin section (5  $\mu$ m) of a representative AR3110 macrocolony was visualized at low magnification by brightfield and fluorescence microscopy, the latter was false-colored green for TS and the two images were merged. Brightfield in the merged image appears on a dark grey background to better visualize the location of the fluorescence.

Table supplement 1. Oligonucleotides used in this study.

| Primer                   | Sequence                                                                                    |
|--------------------------|---------------------------------------------------------------------------------------------|
| <i>BcsQ</i> HP1<br>pKD54 | 5'-CTGCCTGATCCCGCGATAGGCTATATCTTCCAGAATGATATT<br>GTGGCGTT <b>TCAGA AGAACTCGTCAAGAAG</b> -3' |
| <i>bcsQ</i> HP2<br>pKD45 | 5'-TAGCGCAACCCAGCGTCACGCCAGTCCTGGCCATCCAGCA<br>TCGCTCTGGCC <b>GGA TATTATCGTGAGGATG</b> -3'  |
| <i>bcsQ</i> mut1 rev     | 5'-CTGGGAT <u>T</u> GCAGGGGG -3'                                                            |
| <i>bcsQ</i> mut2 fw      | 5'-CCCTGCA <u>A</u> TCCCAGTACG -3'                                                          |

# I. Primers for 2-step mutagenesis of *bcsQ* SNP<sup>1;2</sup>

<sup>1</sup>Cat/Kan cassette-specific sequences are shown in **boldface**.

<sup>2</sup>mutation introduced at the natural SNP position is <u>underlined</u>

# II. Primers for generating knockout mutations by one-step inactivation<sup>1</sup>

| $\Delta bcsQ::cat$ | 5'- TGGCCGTACTGGGATTGCAGGGGGGGGGGGGGGGGGGGG                                                                                                                                              |
|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ∆bcsEFG∷kan        | 5'- GATAAGTTTTAATTTCAATGGTAGGTTTATTTCTTAGCTTTC<br>GCTAG <b>GTGTAGGCTGGAGCTGCTTC</b> -3'<br>5'-TTACTGCGGGTAAGGCACCCAGTCGCCGCCGTTCAGGCGA<br>ACGTACGG <b>ATTCCGGGGATCCGTCGACC</b> -3'       |
| ∆yhjR∷cat          | 5'- ATGAATAACAATGAACCAGATACTCTGCCTGATCCCGCGATAG<br>GCTATAT <b>GTGTAGGCTGGAGCTGCTTC</b> -3'<br>5'- CTACTTTTGTTGCGCAAACTCTGCCAGCAACGGCCAGCGTTTT<br>AATGCCG <b>CATATGAATATCCTCCTTAG</b> -3' |

<sup>1</sup>Cat/Kan cassette-specific sequences are shown in **boldface**.

# III. Primers for generating *lacZ* reporter fusions<sup>3</sup>

| <i>yhjR</i> EcoRI    | 5'-GCTCAGGAATTCTGATTCGCCAGACTGATAGC -3' |  |
|----------------------|-----------------------------------------|--|
| <i>yhjR</i> HindIII  | 5'-GCAAGCTTGCAGAGTATCTGGTTCATT -3'      |  |
| <i>bcsQ</i> HindIII  | 5'-GCAAGCTTGATGGTTGTTGTCCCCACGCC -3'    |  |
| bcsA HindIII         | 5'-GCAAGCTTGGATAAGCAACCACCGGGTCAG -3'   |  |
| 30 4 4 4 1 1 1 1 1 1 |                                         |  |

<sup>3</sup>Restrictions sites are shown in **boldface**.

### IV. Primers used for C-terminally 3xFLAG-tagging of BcsA

| bcsA H1Flag | 5'-CGGCACAACCATCGGATCAGGCTTTGGCTCAACAA -3' |
|-------------|--------------------------------------------|
| bcsA H2Flag | 5'-AAATCCAGAATAGTTTTCTTTTCATCGCGTTATCA -3' |