The conserved DNA-binding protein WhiA is involved in cell division in *Bacillus subtilis*

Supplemental Material

Katarina Surdova, Pamela Gamba, Dennis Claessen, Tjalling Siersma, Martijs J.

Jonker, Jeff Errington, Leendert W. Hamoen

Content:

- Table S1: Bacterial strains and plasmids
- Table S2: Oligonucleotides
- Table S3: Sporulation efficiency
- Fig. S1: Sequence alignment of WhiA-like proteins
- Fig. S2: Growth rates of *yvcL* mutants
- Fig. S3: GFP-YvcL expression levels and localization
- Fig. S4: FtsZ levels in ∆yvcL and YvcL overproduction strains
- Fig. S5: Localization of Noc-YFP in yvcL mutant cells
- References

B. subtilis	Relevant genotype	Source & comment
168	<i>trp</i> C2 (0168 ED)	wild-type for this study
1283	trpC2 \noc::spc	(1)
1356	trnC2 AzanA-vshB: tet	(2)
1801	trpC2 chr.: n.ISIZDnble (PftsZ ble)	(3)
2020	$trpC2 amVE^{(P)} = afpmut1-fts7 spc)$	L Sievers (unnublished)
3309	trpC2 minCD: kan	Laboratory stock
4701	trpC2 myE::Pnoc_vfnmut1	(A)
4701 DEA2962	$trpC2 any L.F_{xy}$ -noc-yipinuti	(4)
BFA2003	$IPC2 \Delta Seprery(piviuint4 finir)$	(3) 100usha DNA 1250
KSO	trpC2 \(\Delta zapA-ysnB::tet	168::cnr. DNA 1356
KS44	trpC2 ∆ezrA::cat	D. Claessen, unpublished
KS50	<i>trpC2 ∆lacA::cat ∆zapA-yshB::tet</i> pLOSS-zapA	This work
KS162	<i>trpC2 ∆zapA-yshB∷tet</i> P _{spac} -ftsZ ble	KS6::chr. DNA 1801
KS207	<i>trpC2</i> ∆ <i>yvcL</i> ::pMutin4YvcL(<i>ery</i>)	This work
KS267	$trpC2 \Delta yvcL::TnYLB-1(kan)$	This work, transposon disruption
KS268	trpC2 P _{spac} -ftsZ ble	168::chr. DNA 1801
KS338	trpC2 ∧minCD [·] ·kan	168::chr. DNA 3309
KS341	trpC2 Avvcl .: TnYl B-1(kan) AsenE: env	KS267"chr DNA BEA2863
KS344	trpC2 Ayvol::TnVLB 1(kan) AozrA::cot	KS267chr. DNA KS44
K0344	trpC2 Apocuana	1601202
K3343	$IPC2 \Delta IOCspc$	1001203
KS354	trpC2 ΔyvcL:: TnYLB-1(kan) Δnoc::spc	KS267::Chr. DNA KS345
KS356	trpC2 ∆yvcL::ery ∆minCD::kan	KS207::chr. DNA KS338
KS396	trpC2 amyE::P _{xyl} -yvcL spc	This work; 168:: pSG1729YvcL∆GFP
KS400	trpC2 ∆yvcL::kan	This work
KS438	trpC2 yvcL::P _{spac} -yvcL ery	This work
KS696	trpC2 vvcL	This work
KS742	trpC2 AlacAcat AzapA-vshBtet Avvcl	This work: $\Delta vvcl$ originated from
	nl OSS-Yvcl	KS696
KS748	trpC2 vvcl PftsZble	KS696chr DNA 1801
K\$754	trpC2 yvcl "P _vvcl en AzanAvshB" tet	This work the P -afa-ftsZ fusion
10754	a_{spac}	originates from 2020
K 6950	$anny E \cdot F_{xy} - gip - nsz(spc) pivi A - sp(aci, kan)$	KS901obr DNA KS6
K3039	trpC2 yvcL::P _{spac} -yvcL ery \(\alpha\)zapA-ysnB::tet	K3091CIII. DINA K30
1/0001	apre::laci spc	
K5891	trpC2 yvcL::P _{spac} -yvcL ery aprE::lacl spc	KS438::pAPNC213
KS902	<i>trpC2 gtaB</i> :: TnYLB-1 <i>kan ∆yvcL</i> :: <i>ery</i>	This work
KS903	<i>trpC2 pgcA</i> :: TnYLB-1 <i>kan</i> ∆ <i>yvcL</i> :: <i>ery</i>	This work
KS1015	<i>trpC2</i> ∆ <i>yvcL</i> :: <i>ery</i> ∆ <i>ugtP</i> ::neo	KS207::chr. DNA PG237, this work
PG8	trpC2 amyE::P _{xvl} -ftsZ cat	168::chr. DNA YK059
PG237	trpC2 ∆ugtP::neo	Pamela Gamba, unpublished
PG725	trpC2 amvE::P _{vu} -noc-vfpmut1	168::4701
PG727	trpC2 amvF::Pnoc-vfpmut1 Avvcl ::kan	KS400::4701
PG732	trpC2 amyE::P.,mgfpmut1-vvcl_spc	168. nSG1729Yvcl (mGEP) this work
PG735	trpC2 amyE::P _ftsZ cat A zanA-vshB::tet	PG8"chr DNA KS6
PG736	$trpC2 Avvcl:: kan amvE:: Pmafnmut1_vvcl$	KS400chr. DNA PG732
10/30		10400CIII: DIA 1 0732
PC737	spo trpC2 amvE:: D fteZ cat Avvel::kap	DCS. ohr DNA KS400
PG737	trpC2 arriyEF _{xyl} -fisz cat A zon wah Butat	PG0CIII. DINA KG400
PG730	trpCz amyEP _{xyl} -tisz cat Δzap -yshBtet	PG/35CHL DNA K5400
BC700	ΔyvcL::kan	K60K024F
PG739	trpC2 \(\Delta zapA-yshB::tet \(\Delta noc::spc)\)	K50::K5345
PG740	trpC2 ∆zapA-yshB::tet ∆minCD::kan	KS6::KS338
YK059	CRK6000 amyE::P _{xyr} ftsZ cat	(6)
E. coli		
XL1Blue	recA1 endA1 gyrA96 thi1 hsdR17 supE44 relA1	Stratagene
	lac [F´ proA+B+laclqZ∆M15 Tn10 (TetR)]	-
KS432	XL1Blue::pQE60EYvcL	This work
	•	
Plasmid	Relevant genotype/comment	Source & comment
pAPNC213	bla aprE5' spc lacl P _{spac} -mcs aprE3'	(7)
pBEST501	bearing the kanamycin cassette	(8)
pQE60E	derived from pQE60 (Qiagen), expression	L. Hamoen, unpublished
	vector for C-terminal His-6 fusions	
pQE60EYvcL	pQE60E containing yvcL-his6	This work
pLOSS*	bla spc P _{spac} -mcs P _{div/VA} -lacZ lacI rep _{pLS20}	(9)
	(GA→CC)	
pLOSS-zapA	pLOSS* containing zapA-yshB	This work
pLOSS-YvcL	pLOSS* containing yvcL	This work
pMAP65	pUB110 Ppen-lacl	(10)
pMarB	<i>bla erm</i> P _{ctc} Himar1 <i>kan</i> (TnYLB-1)	(11)

Table S1. Bacterial strains and plasmids used in this study.

lutin4	bla erm lacZ lacl	(12)
lutin4YvcL	integrates into yvcL gene	This work
lutin4YvcLKO	pMutin4 containing 3' fragment of <i>yvcK</i> and 5' fragment of <i>yvcL</i>	This work
lut4YKO	pMutin4YvcLKO introducing a stop codon and <i>Eco</i> RI site into <i>yvcL</i>	This work.
lutiYvcL	used for construction of an <i>yvcL-crh-yvcN</i> conditional mutant	This work
G1729	bla amyE3' spc P _{xvr} gfpmut1' amyE5'	(13)
G1729YvcL	bla amyE3' spc P _{xvr} gfpmut1-yvcL amyE5'	This work
G1729YvcL(mGFP)	bla amyE3' spc P _{xyr} mgfpmut1-yvcL amyE5'	This work
G1729YvcLAGFP	bla amyE3' spc P _{xvr} yvcL amyE5'	This work

Name	Restriction site	Sequence (5'-3')	Reference/ used for
HS410		CCTGTCCACACAATCTAAACTTTCGAAAGATCC	A206K mutation in GFP coding
		С	sequence
HS411		GGGATCTTTCGAAAGTTTAGATTGTGTGGACAG	A206K mutation in GFP coding
		G	sequence
km3	<i>Bam</i> HI	GGGGGATCCAAGACGAAGAGGATGAAG	kan ^R amplification
km4	<i>Eco</i> RI	CCCGAATTCAGAGTATGGACAGTTGCG	kan ^R amplification
KS80	-	GTACAGGTCTTTCTGTATTG	KS400 construction
KS83	-	GGCGCTCTGACATGACCATC	KS400 construction
KS84	<i>Eco</i> RI	CGGACAGAATTCACCGTCACTTTAAAATAAC	KS400 construction
KS89	<i>Bam</i> HI	TGAGGTGGATCCATGTCATTTGCATCAGAAA	pQE60E construction
KS94	HindIII	GCTAAGCTTGCATTCTTCCCAATTTGCTC	pMutiYvcL construction
KS95	<i>Bam</i> HI	GATGGATCCCTCATTTCAAGGCTTCATTC	pMutiYvcL, KS400 construction
KS97	<i>Bam</i> HI	GATGGATCCTTACGGTTATTTTAAAGTG	pMutiCrh, pLOSS-YvcL construction
KS98	Xhol	GATCCTCGAGTAAAGTGACGGTTTGCCCTG	pSG1729YvcL∆GFP construction
KS99	Bqll	GATCAGATCTTAAAGTGACGGTTTGCCCTG	pQE60E construction
KS120	5	AATTCTGATAACTGGAAGTGAAGGACTG	pMut4YKO construction
KS121		CCAGTTATCAGAATTCTTTTTTTGTTTCTGATG	pMut4YKO construction
KS128	Nocl	ACTGAAAGCGGCCGCCCTTGAAATGAGGTGGC	pLOSS-YvcL construction
KS185		AATGGAGACTGGATTGCTGTAG	xynD gPCR
KS186		TTACCGTCTGCACTGTCGAG	xynD gPCR
KS187		ATACGCGCAGCATCTTAACG	vnfF gPRC
KS188		GTATTTCTTGCGGCGTCCAC	vnfF gPCR
KS198		TCTGAGCCAGAACCTGATCC	spoVID gPCR
KS199		AGTCTCCGCTGGAGAGTCTG	spoVID gPCR
KS200		GATACTAAATCCGCCGGAAAC	acoC gPCR
KS201		TCAAATGTCAGGCTGAGTGG	acoC gPCR
OIPCR1		GCTTGTAAATTCTATCATAATTG	(11)
OIPCR2		AGGGAATCATTTGAAGGTTGG	(11)
OIPCR3		GCATTTAATACTAGCGACGCC	(11)
STG101		ATACCGCGGAGATACACGAG	scpB Fw qPCR
STG102		TTTGACGGCACTTCAATCAG	scpB Rw gPCR
STG410		TTGACGACAAGCGTGAAAAG	rplC Fw gPCR
STG411		TTcatACGcatCcatTTCCA	rplC Rw gPCR
yshA-F	Nocl	GATGCGGCCGCCACTTTTCGCTGTATATACC	pLOSS-ZapA construction
vshB-R	<i>Bam</i> HI	GATGGATCCGACGTTCACATATGTTTCCATC	pLOSS-ZapA construction
yvcL-C5	Kpnl	GCCTTGGGTACCGGTGGCTATATGTCATTTG	pSG1729YvcL∆GFP construction
vvcL-F1	HindIII	GCTAAGCTTAAACCGCCATCTCGTACTC	pMutin4YvcL construction
vvcL-R1	BamHI	GATGGATCCAATTGACGAGGCGGTTGACC	pMutin4YvcL construction
yvcL-N5	HindIII	GCCTTGAAGCTTGGTGGCTATATGTCATTTG	pSG1729YvcL construction
yvcL-N3	<i>Eco</i> RI	GAACTTGAATTCTCTGTTGAACCATAAGATC	pSG1729YvcL construction

Table S2. Oligonucleotides used in this study.

Table S3. Sporulation efficiency.

Strain	Genotype	Total cell count	# Phase bright spores	% Sporulation
168	wild type	2997	1988	66.3
KS207	∆yvcL::ery	2536	1233	48.6
KS696	∆yvcL	1933	808	41.8

The sporulation efficiencies are calculated from the number of phase bright spores relative to the total number of cells. Cultures were grown in DSM medium for 24 hours at 37°C (two biological and two technical replicates). Spore and cell numbers were determined by light microscopy.

Bacsu/1-316 Staac/1-314 Strp2/1-303 Strco/1-328 Myctu/1-325 Thema/1-295	1 M <mark>SFASETK KEL</mark> TNLEVKDCCI - NAELSALIRMNGALSFTNRHLVLDVQTENAAIARRTYTLLK 1 MSFASEMKNELTRIDVDEMNA - KAELSALIRMNGALSLSNQQFVINVQTENATTARRTYSLIK 1 MSFTVAVKEEILG QHHLS - WHELSAIIKMSGSIGLSTSGLTLSVVTENAKLARHLYESFL 1 MTAAVKSEISQLPVTRTCCRKAEVSAVLFFAGGLHLVSGRIVIEAELDTGNAARRTKRDIL 1 MTADVKDELSRLVVKSVSARRAEVTSLLRFAGGLHIVGGRVVVEAELDLGSIARRLKRDIL 1 MVSLLRR <mark>TFSEEIKEELVNV</mark> PFGSREEVISELLGFIKARGDLDVKSRHIVFSLHSFAAS <mark>RRL</mark> NLMK (52 59 51 51 67
Bacsu/1-316	63 KOYDVSVEL LVRKKMRLKKNNVYIVRFSENAKAILEDLKILGENFVFERSISKELVK-KRCCKRSYMRG	130
Staac/1-314	63 RVFNVEVELLVRKKMKLKKNNIYICRTKMKAKEILDELGILKD-GIFTHEIDHSMIO-DDEMRRSYLRG	129
Strp2/1-303	60 HFYEIKSEIRHHORSNLRKNRVYTVFTDEKVODLLSDLHLADSFFGLETGIDEAILS-DEEAGRAYLCG	127
Strco/1-328	62 EIFGHSSELIVMAPGGLRGSRFVVRVVAGDDA.AROTGLVDGRGRPIRGLPPQVVGGATCDAEAAWRG	130
Myctu/1-325	62 ELYGYTAVVHVLSASGIRKSTRYVLRVANDGEALAROTGLLDMRGRPVRGLPAQVVGGSIDDAEAAWRG	130
Thema/1-295	68 YLSKPVSEIIVEKSHNIKKRYIKITAEYSESFMVIEPFFDVALFVSFLR	117
Bacsu/1-316	131 AFLAGSSVNNFETSSYHLEIFSLYKEHNDSLCDLLNEFOLNSKTLERKKGYITYLKEAEK TEFLNVIG	199
Staac/1-314	130 AFLAGSSVNNFETSSYHLEIFSONESHAEGLTKLMNSYELNAKHLERKKGSITYLKEAEK SDFLSLIG	198
Strp2/1-303	128 AFLANSSIRDFESGKYQLEISSVYLDHAQGIASLLQOFLLDAKVLERKKGAVTYLQRAED MDFLIVIG	196
Strco/1-328	131 AFLAHSSLTEFGRS - SSLEVTCPGPEAALALVGAARRLSIPAKAREVRGADRVVVRDDA GALLTRKG	198
Myctu/1-325	131 AFLAHSSLTEFGRS - SALEVSCPGPEAALALVGAARRLGVGAKAREVRGADRVVVRDGA GALLTRMG	198
Thema/1-295	118 LFLSGSSMTNFRYHYHLEINLFEEETLALTRKSLKDFFNINAGIIELRNTRKLYIKSIKDIVVFLEAIG	186
Bacsu/1-316	200 AHNSLLRFEDVRIVEDMRNSVNRLVNCETANLNKTIGASLROVENIKYIDERIGLEALFEKLREIAOLR	268
Staac/1-314	199 GYQALLKFEDVRIVEDMRNSVNRLVNCETANLNKTVSAAMKQVESIKLIDKEIGIENLPDRLREIARIR	267
Strp2/1-303	197 AMQARDDFERVKILRETRNDLNRANNAETANIARTVSASMKTINNISKIKDIMGLENLPVDLQEVAOLR	265
Strco/1-328	199 AHDSVLAWEERRLREVRATANRLANFDDANLRRSARAAVAAGARVQRALEILADD-VPEHLAAAGRLR	266
Myctu/1-325	199 AQDTRLVWEERRLREVRATANRLANFDDANLRRSARAAVAAGARVQRALEILADD-VPEHLAAAGRLR	266
Thema/1-295	187 VQRKLEEIDRIVTERKVIGDVNRTVNFIEANAIRTANSTARQIRALELIKENMGLENLPEDLRRVALVR	255
Bacsu/1-316 Staac/1-314 Strp2/1-303 Strco/1-328 Myctu/1-325 Thema/1-295	269 IDYQEVTLKELGEMVASGKISKSGINHRLRKLDEIAEQLRTGQTVTLK	316 314 303 328 325 295

Fig. S1. Sequence alignment of WhiA-like proteins. The protein sequences were aligned using ClustalW and the alignment was coloured using JalView programme (14). WhiA-like proteins from the following organisms were aligned: (*Bacsu*) *Bacillus subtilis,* (*Staac*) *Staphylococcus aureus,* (*Strp2*) *Streptococcus pneumoniae;* (*Strco*) *Streptomyces coelicolor;* (*Myctu*) *Mycobacterium tuberculosis,* and (*Thema*) *Thermotoga maritima.* Conserved residues are coloured, with the least variable conserved residues in red background.

Fig. S2. Growth rates of *yvcL* mutants. Cells of strains: 168 (wild type), KS400 ($\Delta yvcL$), PG8 (P_{xyl} -ftsZ), PG735 (P_{xyl} -ftsZ $\Delta zapA$), PG737 (P_{xyl} -ftsZ $\Delta yvcL$), and PG738 (P_{xyl} -ftsZ $\Delta zapA \Delta yvcL$) were initially grown in LB medium with 0.05% xylose, then diluted and grown in LB medium supplemented with increasing concentrations of xylose at 37°C in a plate reader. The doubling times and standard deviations were calculated from three independent experiments.

Fig. S3. GFP-YvcL expression levels and localization. (A) Western blot analysis using YvcL antibodies to determine cellular YvcL and GFP-YvcL levels. Strains 168 (wild type), $\Delta yvcL$, and PG736 (P_{xyl} -mgfp-yvcL) were grown in LB medium at 30°C. In case of PG736, different concentrations of xylose were added (0% up to 0.05%). FtsZ immunodetection was used as internal control. (B) Band intensities (arbitrary units) of the Western blot in (A). (C) Fluorescence microscopy image of strain PG736 grown in LB medium supplemented with 0.05% xylose at 30°C. Scale bar 5 µm.

8

Fig. S4. FtsZ levels in Δ yvcL and YvcL-overproduction strains. Western blots indicating FtsZ, YvcL and Noc levels in wild type, *yvcL* mutant strain, and a strain overexpressing YvcL are shown. Samples were diluted (1 to 4 fold) before loading onto the protein gel to facilitate quantification. Graphs presenting the intensities (arbitrary units) of the protein bands are shown below. Strains 168 (wild type), KS400 (Δ *yvcL*), and KS396 (P_{xyl} -*yvcL*) were grown to OD₆₀₀~0.4 in LB medium at 37°C. Protein concentrations of cell extracts were measured by Bradford protein assay, and immunodetection of Noc was used as internal control.

Fig. S5. Localization of Noc-YFP in *yvcL* mutant cells. For fluorescence microscopy, strains PG725 (P_{xyl} -noc-yfp) and PG727 (P_{xyl} -noc-yfp $\Delta yvcL$) were grown in LB medium at 30°C, supplemented with 0.5% xylose to express Noc-YFP. Scale bar 5 µm.

REFERENCES

- Wu, L. J., and J. Errington. 2004. Coordination of cell division and chromosome segregation by a nucleoid occlusion protein in *Bacillus subtilis*. Cell 117:915-925.
- Feucht, A., and J. Errington. 2005. *ftsZ* mutations affecting cell division frequency, placement and morphology in *Bacillus subtilis*. Microbiology 151:2053-2064.
- Marston, A. L., H. B. Thomaides, D. H. Edwards, M. E. Sharpe, and J. Errington. 1998. Polar localization of the MinD protein of Bacillus subtilis and its role in selection of the mid-cell division site. Genes & development 12:3419-3430.
- Wu, L. J., S. Ishikawa, Y. Kawai, T. Oshima, N. Ogasawara, and J. Errington. 2009. Noc protein binds to specific DNA sequences to coordinate cell division with chromosome segregation. EMBO J 28:1940-1952.
- Hamoen, L. W., J. C. Meile, W. de Jong, P. Noirot, and J. Errington. 2006. SepF, a novel FtsZ-interacting protein required for a late step in cell division. Mol Microbiol 59:989-999.
- 6. Kawai, Y., and N. Ogasawara. 2006. *Bacillus subtilis* EzrA and FtsL synergistically regulate FtsZ ring dynamics during cell division. Microbiology **152**:1129-1141.
- Morimoto, T., P. C. Loh, T. Hirai, K. Asai, K. Kobayashi, S. Moriya, and N. Ogasawara. 2002. Six GTP-binding proteins of the Era/Obg family are essential for cell growth in *Bacillus subtilis*. Microbiology 148:3539-3552.
- 8. **Itaya, M., K. Kondo, and T. Tanaka.** 1989. A neomycin resistance gene cassette selectable in a single copy state in the *Bacillus subtilis* chromosome. Nucleic Acids Res **17:**4410.
- Claessen, D., R. Emmins, L. W. Hamoen, R. A. Daniel, J. Errington, and D. H. Edwards. 2008. Control of the cell elongation-division cycle by shuttling of PBP1 protein in *Bacillus subtilis*. Mol Microbiol 68:1029-1046.
- Petit, M. A., E. Dervyn, M. Rose, K. D. Entian, S. McGovern, S. D. Ehrlich, and C. Bruand. 1998. PcrA is an essential DNA helicase of *Bacillus subtilis* fulfilling functions both in repair and rolling-circle replication. Mol Microbiol 29:261-273.
- Le Breton, Y., N. P. Mohapatra, and W. G. Haldenwang. 2006. In vivo random mutagenesis of *Bacillus subtilis* by use of TnYLB-1, a mariner-based transposon. Appl Environ Microbiol **72**:327-333.
- 12. Vagner, V., E. Dervyn, and S. D. Ehrlich. 1998. A vector for systematic gene inactivation in *Bacillus subtilis*. Microbiology **144 (Pt 11):**3097-3104.
- 13. Lewis, P. J., and A. L. Marston. 1999. GFP vectors for controlled expression and dual labelling of protein fusions in *Bacillus subtilis*. Gene **227**:101-110.
- 14. Waterhouse, A. M., J. B. Procter, D. M. Martin, M. Clamp, and G. J. Barton. 2009. Jalview Version 2--a multiple sequence alignment editor and analysis workbench. Bioinformatics **25**:1189-1191.