#### **Supplemental Figures and Tables:**

**Supplemental Fig. 1** DKFZ-EP1NS form tumors *in vivo* in a niche-dependent manner **a** Subcutaneously injected DKFZ-EP1NS cells form tumors with a histology (right panel) reminiscent of the histology of the subcutaneous metastasis of the patient (left panel), recapitulating the tumor in a niche-dependent manner (original magnification: 100x). Of note, the subcutaneous tumors in mice display a clear cell-phenotype, as did the patient 's subcutaneous metastasis. **b** Intraperitoneally injected DKFZ-EP1NS cells in matrigel form tumors with compact small round cells, with no morphological correlate in the patient (original magnification: 100x).

**Supplemental Fig. 2** Immunohistochemical staining for epithelial membrane antigen (EMA), smooth muscle actin (SMA) and vimentin. EMA, SMA and vimentin stain positive and xenografts stain comparable to the patient 's tumor. Black and white arrows indicate the typical granular staining pattern for EMA, insets show enlarged areas of the original image. Note the pattern for SMA, where an increase in positivity from patient 's primary tumor to second recurrence can be seen, with the staining intensity of the mouse 1° and 2° xenografts most closely resembling the second recurrence (original magnification : EMA: 400x, SMA and vimentin: 200x). rec: recurrence; 1°: mouse primary xenograft; 2°: mouse secondary xenograft; met: metastasis; s.c.: subcutaneous.

**Supplemental Fig. 3** Immunohistochemical staining for CD99, cytokeratin, S100 and synaptophysin. Both the patient's tumor, recurrences and metastasis as well as the mouse 1°, 2° orthotopic and subcutaneous xenograft stain negative for CD99, cytokeratin, S100 and synaptophysin (original magnification : 200x). All stainings were tested on positive controls. rec: recurrence; 1°: mouse primary xenograft; 2°: mouse secondary xenograft; met: metastasis; s.c.: subcutaneous.

**Supplemental Fig. 4** DKFZ-EP1NS cells retain typical aberrations and belong to cytogenetic group 3 and molecular subgroup C

**a** Exemplary data of FISH analysis of late passage (passage 30) DKFZ-EP1NS cells cultured *in vitro*. The left panel depicts changes at chromosome 1p, as shown by loss of one signal for 1p telomere (1pTEL, green) and for 1p36 (red), while retaining the normal two signals for 1q (1q25, aqua). The right panel depicts the monosomy of chromosome 9 (9p11-q11, green, one signal only) and homozygous loss of 9p21 (orange, no signal), the locus of *CDKN2A*. P30: passage 30.

**b** Assessment of gene expression in DKFZ-EP1NS at different passages (P14-P23) indicative of molecular subgroup identity, as measured by quantitative real-time RT-PCR, relative to normal total brain control. Only genes from subgroup C are all consistently overexpressed, grouping DKFZ-EP1NS cells into subgroup C.

**Supplemental Fig. 5** A high common proportion of upregulated genes reveals similarity of NSC and DKFZ-EP1NS cells.

**a** Correspondence at the top (CAT)-plots reveal a high degree of common proportion of upregulated clones in neural stem cells (NSC) and DKFZ-EP1NS (EP1NS), and to a lesser degree of downregulated genes in NSC and EP1NS. **b** CAT-plots show a high common proportion of up- and downregulated clones in orthotopic and subcutaneous models, and lesser common proportion in xenografts and EP1NS. sc: subcutaneous; ot: orthotopic; primary: primary tumors.

**Supplemental Table 1** Characteristics of patients included in the gene expression profiling. PFS: progression free survival; OS: overall survival.

Supplemental Table 2 Antibodies used in this study

Supplemental Table 3 Primers used in this study. F: forward primer; R: reverse primer.

**Supplemental Table 4** Calculation of half maximal effective concentration (EC50), published maximal peak plasma concentrations (max PPC), calculation of EC50/max PPC ratios; HDACi: histone deacetylase inhibitor; VPA: valproic acid; VCR: vincristine; CDDP: cisplatin; TMZ: temozolomide.

# supplemental figure 1 Coupering and figure: SupplFig1\_rev.ppt





patient subcutaneous

mouse subcutaneous



mouse intraperitoneal

## supplemental figure 2 Clerk Ale to download figure: SupplFig2\_rev.ppt



# supplemental figure 3 Colução to tago do figure: SupplFig3\_rev.ppt



supplemental figure 4 Coupperto ad gaload figure: SupplFig4\_rev.ppt

а

DKFZ-EP1NS (P30)



1pTEL/1p36/1q25



9p21/9p11-q11



### supplemental figure 5 Couper to trageload figure: SupplFig5\_rev.ppt



list size

NSC vs. EP1NS NSC vs. sc NSC vs. ot NSC vs. primary

sc vs. ot EP1NS vs. sc EP1NS vs. ot ot vs. primary sc vs. primary EP1NS vs. primary Supplemental table 1 Click here to download table: Suppl Table 1.xls

## Supplemental Table 1

#### Characteristics of patients included in the gene expression profiling

Total number of patients = 7

| ID       | age (years) | gender | location       | WHO grade | recurrence | PFS (months) | death | OS (months) | metastases |
|----------|-------------|--------|----------------|-----------|------------|--------------|-------|-------------|------------|
| Primary1 | 12          | female | supratentorial | =         | yes        | 72           | yes   | 98          | no         |
| Primary2 | 4           | female | supratentorial | =         | yes        | 12           | yes   | 76          | yes        |
| Primary3 | 10          | male   | supratentorial | =         | yes        | 24           | yes   | 57          | yes        |
| Primary4 | 9           | male   | supratentorial | =         | yes        | 26           | yes   | 51          | yes        |
| Primary5 | 9           | male   | supratentorial | =         | yes        | 31           | yes   | 60          | yes        |
| Primary6 | 5           | female | supratentorial | =         | yes        | 8            | yes   | 53          | yes        |
| Primary7 | 20          | female | supratentorial | III       | yes        | 28           | yes   | 52          | yes        |

# Supplemental Table 2

# Antibodies used in this study

| antigen              | application    | company           | cat.no.     |
|----------------------|----------------|-------------------|-------------|
| CD15                 | flow cytometry | BD Pharmingen     | 551376      |
| CD44                 | flow cytometry | BD Pharmingen     | 555478      |
| CD133                | flow cytometry | Miltenyi Biotec   | 130-092-334 |
| CD271                | flow cytometry | Miltenyi Biotec   | 130-091-884 |
| CXCR4                | flow cytometry | RD Systems        | FAB173A     |
| Nestin               | flow cytometry | Millipore         | AB5922      |
| Ki67/MiB1            | IHC            | Thermo Scientific | RM-9106-S   |
| GFAP                 | IHC            | Dako              | Z0334       |
| Nestin               | IHC            | Millipore         | AB5326      |
| CD99                 | IHC            | Thermo Scientific | MS-294-P    |
| Cytokeratin AE       | IHC            | DCS               | CI702R06    |
| EMA                  | IHC            | Neo Markers       | MS-348-P    |
| S100                 | IHC            | Dako              | Z0311       |
| SMA                  | IHC            | Dako              | M0851       |
| Synaptophysin        | IHC            | Dako              | M0776       |
| Vimentin             | IHC            | Dako              | M0725       |
| acetylated Histone 4 | western blot   | Upstate           | 06-866      |
| beta-Actin           | western blot   | Sigma-Aldrich     | A5441       |
| GFAP                 | western blot   | Millipore         | MAB3402     |
| NEFM                 | western blot   | Upstate           | 05-744      |

# Supplemental Table 3

## Primers used in this study

| Primer  | Gene for/rev/mix |     | company           | cat.no.    | sequence                |  |
|---------|------------------|-----|-------------------|------------|-------------------------|--|
| PGK1    | PGK1             | mix | Qiagen            | QT00013776 | n/a                     |  |
| SDHA    | SDHA             | mix | Qiagen            | QT01668919 | n/a                     |  |
| NES     | NES              | mix | Qiagen            | QT00235781 | n/a                     |  |
| MSI1    | MSI1             | mix | Qiagen            | QT00025389 | n/a                     |  |
| DCX     | DCX              | mix | Qiagen            | QT00008540 | n/a                     |  |
| NEFM    | NEFM             | mix | Qiagen            | QT00073885 | n/a                     |  |
| TUBB3_F | TUBB3            | for | Thermo Scientific | n/a        | AGCAAGAACAGCAGCTACTTCGT |  |
| TUBB3_R | TUBB3            | rev | Thermo Scientific | n/a        | GATGAAGGTGGAGGACATCTTGA |  |
| MAP2    | MAP2             | mix | Qiagen            | QT00057358 | n/a                     |  |
| GFAP    | GFAP             | mix | Qiagen            | QT00081151 | n/a                     |  |
| MOG     | MOG              | mix | Qiagen            | QT00023954 | n/a                     |  |
| WDR16_F | WDR16            | for | Thermo Scientific | n/a        | GCACCGATGGGACTTGTATC    |  |
| WDR16_R | WDR16            | rev | Thermo Scientific | n/a        | TATCGACCCAGACAGGGAAC    |  |
| FABP7   | FABP7            | mix | Qiagen            | QT00007322 | n/a                     |  |
| MEOX2   | MEOX2            | mix | Qiagen            | QT00236852 | n/a                     |  |
| KERA    | KERA             | mix | Qiagen            | QT00021280 | n/a                     |  |
| HMGA2   | HMGA2            | mix | Qiagen            | QT01157674 | n/a                     |  |
| ELANE   | ELANE            | mix | Qiagen            | QT00017010 | n/a                     |  |
| OXTR    | OXTR             | mix | Qiagen            | QT00001715 | n/a                     |  |
| RBM47   | RBM47            | mix | Qiagen            | QT00082670 | n/a                     |  |
| ANGPTL6 | ANGPTL6          | mix | Qiagen            | QT01027075 | n/a                     |  |
| ECEL1   | ECEL1            | mix | Qiagen            | QT01012830 | n/a                     |  |
| GUCY1B2 | GUCY1B2          | mix | Qiagen            | QT00063574 | n/a                     |  |
| CAMK2A  | CAMK2A           | mix | Qiagen            | QT00024010 | n/a                     |  |
| DBC1    | DBC1             | mix | Qiagen            | QT00093058 | n/a                     |  |
| KCNJ9   | KCNJ9            | mix | Qiagen            | QT00011935 | n/a                     |  |

Supplemental Table 4

Calculation of EC50, peak plasma concentrations and ratios

| Туре             | Drug         | EC50 (M) | 95% CI of EC50 (M)    | max PPC (M) | EC50/max PPC | reference for PPC                                           |
|------------------|--------------|----------|-----------------------|-------------|--------------|-------------------------------------------------------------|
| HDACi            | VPA          | 1.68E-03 | 0.888E-03 - 3.166E-03 | 3.41E-04    | 4.92         | Voso MT, Clin Cancer Res. (2009) Aug 1;15(15):5002-7        |
|                  | Entinostat   | 1.20E-06 | 9.663E-07 - 1.496E-06 | 3.90E-07    | 3.08         | Kummar S, Clin Cancer Res. (2007) Sep 15;13(18 Pt 1):5411-7 |
|                  | Vorinostat   | 7.76E-07 | 5.681E-07 - 1.060E-06 | 4.49E-06    | 0.17         | Fakih MG, Clin cancer Res (2010) 16: 3786-3794              |
|                  | Panobinostat | 2.90E-09 | 1.04E-09 - 8.09E-09   | 4.09E-08    | 0.07         | Rathkopf D, Cancer Chemother Pharmacol (2010) 66:181–189    |
| chemotherapeutic | VCR          | 6.23E-06 | 7.517E-07 - 5.155E-05 | 5.30E-08    | 117.51       | Corona G, Rapid Commun Mass Spectrom. (2008) 22(4):519-25   |
|                  | CDDP         | 9.38E-03 | 1.702E-03 - 51.75E-03 | 4.98E-05    | 188.43       | van Hennik MB, Cancer Res. (1987) Dec 1;47(23):6297-301     |
|                  | TMZ          | 7.67E-02 | n/d                   | 7.21E-05    | 1064.43      | Ostermann S, Clin Cancer Res (2004) 10: 3728–3736           |