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1. Proofs of technical lemmas. We first prove the lemmas that are
needed for the proofs of Theorems 4.1, 4.2 and 4.3.

1.1. Proof of Lemma 7.1. This result follows by direct calculation:

l̇β(β, ζ(·, β);Z)

= − X

{
∆ġ(ϵ0 −X ′(β − β0))

−
∫ b

a
1(ϵ0 ≥ t) exp{g(t−X ′(β − β0))}ġ(t−X ′(β − β0)) dt

}
,

l̇ζ(β, ζ(·, β);Z)[h(·, β)] =
∂

∂η
l(β, (ζ + ηh)(·, β);Z)|η=0

= ∆w(ϵ0 −X ′(β − β0))

−
∫ b

a
1(ϵ0 ≥ t) exp{g(t−X ′(β − β0))}w(t−X ′(β − β0)) dt,

l̈ββ(β, ζ(·, β);Z)

= XX ′
{
∆g̈(ϵ0 −X ′(β − β0))−

∫ b

a
1(ϵ0 ≥ t) exp{g(t−X ′(β − β0))}

·
[
g̈(t−X ′(β − β0)) + ġ2(t−X ′(β − β0))

]
dt

}
,
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l̈βζ(β, ζ(·, β);Z)[h(·, β)] = l̈′ζβ(β, ζ(·, β);Z)[h(·, β)]

= −X
{
∆ẇ(ϵ0 −X ′(β − β0))−

∫ b

a
1(ϵ0 ≥ t) exp{g(t−X ′(β − β0))}

·
[
ẇ(t−X ′(β − β0)) + ġ(t−X ′(β − β0))w(t−X ′(β − β0))

]
dt

}
,

l̈ζζ(β, ζ(·, β);Z)[h1(·, β), h2(·, β)]

= −
∫ b

a
1(ϵ0 ≥ t) exp{g(t−X ′(β − β0))}

· w1(t−X ′(β − β0))w2(t−X ′(β − β0)) dt,

where h ∈ H = {h : h(·, β) =
∂ζη(·,β)

∂η |η=0 = w(ψ(·, β)), ζη ∈ Hp}. All the
above derivatives are continuous and bounded by Conditions (C.1)-(C.3)
and (C.6).

1.2. Proof of Lemma 7.2. This is a direct result of Corollary 6.21 in [2],
that is, there exists a g0,n ∈ Gp

n such that ζ0,n(t, x, β0) = g0,n(t) and

∥ζ0,n(·, β0)− ζ0(·, β0)∥∞ = ∥g0,n − g0∥∞ = O(q−p
n ) = O(n−pν).

1.3. Proof of Lemma 7.3. By the calculation in [3] on page 597, denote
the ceiling of x by ⌈x⌉, then for any ε > 0, there exists a set of brackets
{[gLi , gUi ] : i = 1, 2, · · · , ⌈(1/ε)c1qn⌉} such that for any g ∈ Gp

n, gLi (t) ≤ g(t) ≤
gUi (t) for some 1 ≤ i ≤ ⌈(1/ε)c1qn⌉ and all t ∈ [a, b], where ∥gUi − gLi ∥∞ ≤ ε.
Since B ⊆ Rd is compact, B can be covered by ⌈c2(1/ε)d⌉ balls with radius ε;
that is, for any β ∈ B, there exist βs, 1 ≤ s ≤ ⌈c2(1/ε)d⌉, such that |β−βs| ≤
ε, i.e., |(β−β0)−(βs−β0)| ≤ ε, and hence |x′(β−β0)−x′(βs−β0)| ≤ Cε for
any x ∈ X because of Condition (C.2)(a), where C > 0 is a constant. This
indicates that t−x′(β−β0) ∈ [t−x′(βs−β0)−Cε, t−x′(βs−β0)+Cε] for
any x and t. Assume gLi (t−x′(βs−β0)+ c

i,t
1 ε) and g

U
i (t−x′(βs−β0)+ c

i,t
2 ε)

are the minimum and maximum values of gLi and gUi within the interval

[t−x′(βs−β0)−Cε, t−x′(βs−β0)+Cε], where ci,t1 and ci,t2 are two constants

that only depend on gLi , g
U
i and t with |ci,t1 |, |ci,t2 | ≤ C. So we have

gLi (t− x′(βs − β0) + ci,t1 ε) ≤ gLi (t− x′(β − β0))

≤ g(t− x′(β − β0)) ≤ gUi (t− x′(β − β0))

≤ gUi (t− x′(βs − β0) + ci,t2 ε).

Hence we can construct a set of brackets{
[mL

i,s(Z),m
U
i,s(Z)] : i = 1, · · · , ⌈(1/ε)c1qn⌉; s = 1, · · · , ⌈c2(1/ε)d⌉

}
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such that for any m(θ;Z) ∈ Fn, there exists a pair (i, s) such that for any
sample point Z, m(θ;Z) ∈ [mL

i,s(Z),m
U
i,s(Z)], where

mL
i,s(Z) =

{
∆gLi (ϵ0 −X ′(βs − β0) + ci,ϵ01 ε)

−
∫ b

a
1(ϵ0 ≥ t) exp{gUi (t− x′(βs − β0) + ci,t2 ε)} dt

}
− l(θ0,n;Z),

and

mU
i,s(Z) =

{
∆gUi (ϵ0 −X ′(βs − β0) + ci,ϵ02 ε)

−
∫ b

a
1(ϵ0 ≥ t) exp{gLi (t− x′(βs − β0) + ci,t1 ε)} dt

}
− l(θ0,n;Z).

It then follows that

|mU
i,s(Z)−mL

i,s(Z)|

≤ |gUi (ϵ0 −X ′(βs − β0) + ci,ϵ02 ε)− gLi (ϵ0 −X ′(βs − β0) + ci,ϵ01 ε)|

+

∫ b

a
| exp{gUi (t−X ′(βs − β0) + ci,t2 ε)}

− exp{gLi (t− x′(βs − β0) + ci,t1 ε)}| dt
= A1 +A2.

For A1, by subtracting and adding the terms g(ϵ0 − X ′(βs − β0) + ci,ϵ02 ε)

and g(ϵ0 −X ′(βs − β0) + ci,ϵ01 ε) and applying the Taylor expansion to g at

ϵ0 −X ′(βs − β0) + ci,ϵ01 ε, we have

A1 ≤ |gUi (ϵ0 −X ′(βs − β0) + ci,ϵ02 ε)− g(ϵ0 −X ′(βs − β0) + ci,ϵ02 ε)|
+ |g(ϵ0 −X ′(βs − β0) + ci,ϵ02 ε)− g(ϵ0 −X ′(βs − β0) + ci,ϵ01 ε)|
+ |g(ϵ0 −X ′(βs − β0) + ci,ϵ01 ε)− gLi (ϵ0 −X ′(βs − β0) + ci,ϵ01 ε)|

≤ ∥gUi − g∥∞ + |ġ(ϵ0 −X ′(βs − β0) + c̃ε)(ci,ϵ02 − ci,ϵ01 )ε|+ ∥g − gLi ∥∞
≤ ∥gUi − gLi ∥∞ + C1|(ci,ϵ02 − ci,ϵ01 )|ε+ ∥gUi − gLi ∥∞
≤ 2ε+ 2C1C2ε . ε,

where the third inequality holds because ∥gUi −g∥∞, ∥g−gLi ∥∞ ≤ ∥gUi −gLi ∥∞
and ġ is bounded by C1. The Constant C1 may be proportional to cn that
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is allowed to grow with n slowly enough, but it does not affect the later
calculations on convergence rate (see [3], page 591, for their constant ln),
thus we drop cn for simplicity. For A2, by using the similar arguments as for
A1 and denote t−X ′(βs − β0) = ts for notational simplicity, we have

A2 ≤
∫ b

a

{
| exp{gUi (ts + ci,t2 ε)} − exp{g(ts + ci,t2 ε)}|

+ | exp{g(ts + ci,t2 ε)} − exp{g(ts + ci,t1 ε)}|
+ | exp{g(ts + ci,t1 ε)} − exp{gLi (ts + ci,t1 ε)}|

}
dt

=

∫ b

a

{
| exp{g̃Ui (ts + ci,t2 ε)}(g

U
i − g)(ts + ci,t2 ε)|

+ | exp{g(ts + c̃ε)}(ci,t2 − ci,t1 )ε|
+ | exp{g̃Li (ts + ci,t1 ε)}(g

L
i − g)(ts + ci,t1 ε)|

}
dt

. ∥gUi − g∥∞ + |(ci,t2 − ci,t1 )ε|+ ∥g − gLi ∥∞ . ε.

The above equality is from Taylor expansion, where g̃Ui = g + ξ(gUi − g) for
some 0 < ξ < 1 and thus |g̃Ui (·)| ≤ |g(·)| + ε, which is bounded in [a, b];
similarly |g̃Li | is also bounded in [a, b]. Hence ∥mU

i − mL
i ∥∞ . ε and the

ε-bracketing number associated with ∥ · ∥∞ norm for the class Fn follows

N[ ](ε,Fn, ∥ · ∥∞) ≤ (1/ε)c1qnc2(1/ε)
d . (1/ε)c1qn+d.

1.4. Proof of Lemma 7.4. In the proof of Theorem 4.2 in the main text
of the paper we show that such defined (h∗1, . . . , h

∗
d) determines the least

favorable submodel for β. Now, by Conditions (C.4)-(C.5), the following
conditional density of ϵ0 given X

fϵ0|X(t|X = x) = f(t)ḠC|X(t+ x′β0|X = x) + gC|X(t+ x′β0|X = x)F̄ (t)

is uniformly bounded for all x ∈ X , and its derivative with respect to t

ḟε0|X(t|X = x)

= ḟ(t)ḠC|X(t+ x′β0|X = x)− f(t)gC|X(t+ x′β0|X = x)

+ ġC|X(t+ x′β0|X = x)F̄ (t)− gC|X(t+ x′β0|X = x)f(t)

is also uniformly bounded. Hence the density of ϵ0

fϵ0(t) =

∫
X
fϵ0|X(t|X = x)fX(x) dx
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and its derivative

ḟϵ0(t) =

∫
X
ḟϵ0|X(t|X = x)fX(x) dx

are bounded. Thus the first and second derivatives of P (ϵ0 ≥ t), i.e., −fϵ0(t)
and −ḟϵ0(t), are both bounded. In addition, under Condition (C.2)(a), the
first and second derivatives of P [X1(ϵ0 ≥ t)] with respect to t

dP [X1(ϵ0 ≥ t)]

dt
= −

∫
X
xfX(x)fϵ0|X(t|X = x) dx

and
d2P [X1(ϵ0 ≥ t)]

dt2
= −

∫
X
xfX(x)ḟϵ0|X(t|X = x) dx

are also bounded. Therefore, P [X|ϵ0 ≥ t] = P [X1(ϵ0 ≥ t)]/P (ϵ0 ≥ t) has a
bounded second derivative with respect to t for t ≤ τ , where τ is the trun-
cation time defined in Condition (C.3). Thus P [X|ϵ0 ≥ t] ∈ G2. Moreover,
since g0 ∈ Gp for p ≥ 3, we have ġ0 ∈ Gp−1 with p− 1 ≥ 2. Thus according

to Corollary 6.21 of [2], there exists an h∗j,n ∈ Hmin(p−1,2)
n = H2

n such that
h∗j,n(t, x, β0) = w∗

j,n(ψ(t, x, β0)) = w∗
j,n(t) and ∥h∗j,n(·, β0) − h∗j (·, β0)∥∞ =

∥w∗
j,n − w∗

j∥∞ = O(q−2
n ) = O(n−2ν).

1.5. Proof of Lemma 7.5. The proof is similar to the bracketing number
calculation in Lemma 7.3, thus omitted. We refer all the details to [1].

1.6. Proof of Lemma 7.6. The proof is also similar to the bracketing
number calculation in Lemma 7.3, thus omitted. We again refer all the details
to [1].

2. Proof of Theorem 4.1. We shall apply Theorem 1 of [3] to de-
rive the convergence rate. We proceed by verifying their conditions C1-C3.
Since Pl(β, ζ(·, β);Z) is maximized at (β0, ζ0(·, β0)), its first derivatives at
(β0, ζ0(·, β0)) are equal to 0. By Lemma 7.1 that all the second derivatives
of l(β, ζ(·, β);Z) are continuous and bounded, the Taylor expansion yields

Pl(β, ζ(·, β);Z)− Pl(β0, ζ0(·, β0);Z)(2.1)

=
1

2
P
{
(β − β0)

′ l̈ββ(β0, ζ0(·, β0);Z)(β − β0)

+ 2(β − β0)
′ l̈βζ(β0, ζ0(·, β0);Z)[ζ(·, β)− ζ0(·, β0)]

+ l̈ζζ(β0, ζ0(·, β0);Z)[ζ(·, β)− ζ0(·, β0), ζ(·, β)− ζ0(·, β0)]
}

+ o(d2(θ, θ0))

= A+ o(d2(θ, θ0)),
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where θ = (β, ζ(·, β)) ∈ Θp
n. By the model assumption, we have that the

conditional expectation P{l̇ζ(β0, ζ0(·, β0);Z)[h(·, β0)]|X} = 0 for all h ∈ H.
Taking h to be g̈0 and ġ(ψ(·, β))− ġ0(ψ(·, β0)) respectively, we have

P

{
∆g̈0(ϵ0)−

∫ b

a
1(ϵ0 ≥ t) exp{g0(t)}g̈0(t) dt

∣∣∣∣X}
= 0

and

P

{
∆[ġ(ϵ0 −X ′(β − β0))− ġ0(ϵ0)]

−
∫ b

a
1(ϵ0 ≥ t) exp{g0(t)}[ġ(t−X ′(β − β0))− ġ0(t)] dt

∣∣∣∣X}
= 0.

Then it follows

A = P

{
1

2

∫ b

a
1(ϵ0 ≥ t) exp{g0(t)}

{
−[ġ0(t)X

′(β − β0)]
2

+ 2ġ0(t)X
′(β − β0)[g(t−X ′(β − β0))− g0(t)]

− [g(t−X ′(β − β0))− g0(t)]
2
}
dt

}
= − 1

2

∫ b

a
exp{g0(t)}P

{
1(ϵ0 ≥ t)

[
ġ0(t)X

′(β − β0)(2.2)

− (g(tβ)− g0(t))
]2}

dt,

where tβ = t − X ′(β − β0). The integrand is from a to τ = b because of
Condition (C.3) and (C.6). Denote s0(t) = −ġ0(t), s1(t; ϵ0, X) = 1(ϵ0 ≥
t)X ′(β − β0), and s2(t; ϵ0, X) = 1(ϵ0 ≥ t)[g(tβ)− g0(t)], then

P
{
1(ϵ0 ≥ t)[ġ0(t)X

′(β − β0)− (g(tβ)− g0(t))]
2
}

= P
{
[s0(t)s1(t; ϵ0, X) + s2(t; ϵ0, X)]2

}
≥ s20(t)P [s

2
1(t; ϵ0, X)] + P [s22(t; ϵ0, X)]

− 2|s0(t)P [s1(t; ϵ0, X)s2(t; ϵ0, X)]|
≥ s20(t)P [s

2
1(t; ϵ0, X)] + P [s22(t; ϵ0, X)](2.3)

− (1− η)
1
2 · 2|s0(t)[P (s21(t; ϵ0, X))]

1
2 | · |[P (s22(t; ϵ0, X))]

1
2 |

≥ {1− (1− η)
1
2 }{s20(t)P (s21(t; ϵ0, X)) + P (s22(t; ϵ0, X))}

& ġ20(t)(β − β0)
′P [1(ϵ0 ≥ t)XX ′](β − β0)

+ P [1(ϵ0 ≥ t)(g(tβ)− g0(t))
2],
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where (2.3) is obtained by using the same argument in [4] on page 2126,
which is, under Condition (C.7), [P (s1s2)]

2 ≤ (1 − η)P (s21)P (s
2
2) for some

η ∈ (0, 1). Hence from (2.2) we have

A . −
{
(β − β0)

′
[∫ b

a
exp{g0(t)}ġ20(t)P [1(ϵ0 ≥ t)XX ′] dt

]
(β − β0)

+

∫ b

a
exp{g0(t)}P [1(ϵ0 ≥ t)(g(tβ)− g0(t))

2] dt

}
= −(A1 +A2).

For A1, Condition (C.3) implies that

P [1(ϵ0 ≥ t)XX ′] = P [XX ′P (ϵ0 ≥ t|X)] ≥ P [XX ′P (ϵ0 ≥ τ |X)] ≥ δP (XX ′).

Then Condition (C.2)(b) yields that P (XX ′) is positive definite and thus

its smallest eigenvalue λ1 > 0. In addition,
∫ b
a exp{g0(t)}ġ20(t)dt is bounded

away from zero since exp{g0(t)}, ġ20(t) ≥ 0 but not a constant zero on t ∈
[a, b]. Hence it follows that

A1 & (β − β0)
′P (XX ′)(β − β0) ≥ λ1|β − β0|2 & |β − β0|2.

For A2, Condition (C.3) yields

A2 ≥ P (ϵ0 ≥ b)

∫ b

a
P (g(t−X ′(β − β0))− g0(t))

2 dΛ0(t)

& ∥ζ(·, β)− ζ0(·, β0)∥22.

Therefore

A . −
{
|β − β0|2 + ∥ζ(·, β)− ζ0(·, β0)∥22

}
= −d2(θ, θ0),

and thus from (2.1),

Pl(β, ζ(·, β);Z)−Pl(β0, ζ0(·, β0);Z) . −d2(θ, θ0)+o(d2(θ, θ0)) . −d2(θ, θ0),

i.e. P (l(θ0;Z)− l(θ;Z)) & d2(θ, θ0) for all θ ∈ Θp
n, which implies that

inf
{d(θ,θ0)≥ε,θ∈Θp

n}
P (l(θ0;Z)− l(θ;Z)) & ε2.

Hence condition C1 of [3] on page 583 holds with the constant α = 1 in their
notation.
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Next we verify condition C2 of [3]. Denote ϵβ = Y −X ′β. It follows that

[l(θ;Z)− l(θ0;Z)]
2

=

{
∆g(ϵβ)−

∫ b

a
1(ϵ0 ≥ t)eg(tβ) dt−∆g0(ϵ0) +

∫ b

a
1(ϵ0 ≥ t)eg0(t) dt

}2

. ∆[g(ϵβ)− g0(ϵ0)]
2 +

{∫ b

a
1(ϵ0 ≥ t)[eg(tβ) − eg0(t)] dt

}2

. ∆[g(ϵβ)− g0(ϵ0)]
2 +

∫ b

a
[eg(tβ) − eg0(t)]2 dt

. ∆[g(ϵβ)− g(ϵ0)]
2 +∆[g(ϵ0)− g0(ϵ0)]

2

+

∫ b

a
[eg(tβ) − eg(t)]2 dt+

∫ b

a
[eg(t) − eg0(t)]2 dt

= I1 + I2 + I3 + I4,

where the second inequality holds because of the Cauchy-Schwartz inequality{∫ b

a
1(ϵ0 ≥ t)[eg(tβ) − eg0(t)] dt

}2

≤
{∫ b

a
1(ϵ0 ≥ t) dt

}{∫ b

a
[eg(tβ) − eg0(t)]2 dt

}
≤ (b− a)

∫ b

a
[eg(tβ) − eg0(t)]2 dt,

and the third inequality holds by subtracting and adding the terms g(ϵ0)
and eg(t). For I1, since ġ ∈ Gp−1

n is bounded, applying the Taylor expansion
for g at ϵ0 we obtain

PI1 = P
{
∆[g(ϵ0 −X ′(β − β0))− g(ϵ0)]

2
}

≤ P [ġ(ϵ0 −X ′(β̃ − β0))X
′(β − β0)]

2

. P [X ′(β − β0)]
2 = (β − β0)

′P (XX ′)(β − β0)

≤ λd|β − β0|2 . |β − β0|2,

where λd is the largest eigenvalue of P (XX ′). For I2, since the density
function for (Y,∆ = 1, X) is

fY,∆,X(y, 1, x) = λ0(y − x′β0)e
−Λ0(y−x′β0)ḠC|X(y|X = x)fX(x),
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it follows that

PI2 = P [∆(g − g0)
2(ϵ0)]

=

∫
X

{∫ b

a
(g(t)− g0(t))

2λ0(t)e
−Λ0(t)ḠC|X(t+ x′β0|X = x) dt

}
fX(x) dx

≤
∫
X

{∫ b

a
(g(t)− g0(t))

2dΛ0(t)

}
fX(x) dx

= ∥ζ(·, β0)− ζ0(·, β0)∥22.

Then for I3, since g ∈ Gp
n is bounded, it follows that

PI3 = P

∫ b

a
[eg(t−X′(β−β0)) − eg(t)]2 dt

= P

∫ b

a
e2g(t−X′(β̃−β0))[X ′(β − β0)]

2 dt

.
∫ b

a
P [X ′(β − β0)]

2 dt

. (β − β0)
′P [XX ′](β − β0) . |β − β0|2.

Finally for I4, by the Taylor expansion for eg(t) at g0, we have

PI4 =

∫ b

a
[eg(t) − eg0(t)]2 dt

≤
∫ b

a
e2g̃(t)(g(t)− g0(t))

2 dt

=

∫ b

a
e2g̃(t)−g0(t)(g(t)− g0(t))

2 dΛ0(t)

.
∫ b

a
(g(t)− g0(t))

2 dΛ0(t) = ∥ζ(·, β0)− ζ0(·, β0)∥22,

where g̃(t) = g0(t) + ξ(g − g0)(t) for some 0 < ξ < 1 and hence is bounded.
Since ∥ζ(·, β0) − ζ0(·, β0)∥2 ≤ |ζ(·, β) − ζ(·, β0)∥2 + ∥ζ(·, β) − ζ0(·, β0)∥2 .
|β − β0|+ ∥ζ(·, β)− ζ0(·, β0)∥2, we have

P (l(θ;Z)− l(θ0;Z))
2 . |β − β0|2 + ∥ζ(·, β)− ζ0(·, β0)∥22 = d2(θ, θ0)

for any θ ∈ Θp
n, which implies that

sup
{d(θ,θ0)≤ε,θ∈Θp

n}
Var(l(θ0;Z)− l(θ;Z))

≤ sup
{d(θ,θ0)≤ε,θ∈Θp

n}
P (l(θ0;Z)− l(θ;Z))2 . ε2.
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So condition C2 of [3] on page 583 holds with the constant β = 1 in their
notation.

Finally, we verify condition C3 of [3]. By lemma 7.3, for Fn = {l(θ;Z)−
l(θ0,n;Z) : θ ∈ Θp

n}, we have N[ ](ε,Fn, ∥·∥∞) . (1/ε)cqn+d. Then by the fact
that the covering number is bounded by the bracketing number, it follows
that

H(ε,Fn, ∥ · ∥∞) = logN(ε,Fn, ∥ · ∥∞) . (cqn + d) log(1/ε) . nν log(1/ε).

So condition C3 of [3] on page 583 holds with the constants 2r0 = ν and
r = 0+ in their notation.

Therefore, the constant τ in Theorem 1 of [3] on page 584 is 1−ν
2 − log logn

2 logn .

Since log logn
2 logn → 0 as n → 0, we can pick a ν̃ slightly greater than ν

such that 1−ν̃
2 ≤ 1−ν

2 − log logn
2 logn for n large. We still denote ν̃ by ν and

then τ = 1−ν
2 . Since θ̂n maximizes the empirical log-likelihood Pnl(θ;Z)

over the sieve space Θp
n, we have that θ̂n satisfies inequality (1.1) in [3]

with ηn = 0. By Lemma 7.2, there exists an ζ0,n(·, β0) ∈ Hp
n such that

∥ζ0,n(·, β0)− ζ0(·, β0)∥∞ = O(n−pν). Moreover, by the Taylor expansion for
P [l(β0, ζ0(·, β0);Z) − l(β, ζ(·, β);Z)] in (2.1) and plugging in θ = θ0,n =
(β0, ζ0,n(·, β0)), the Kullback-Leibler distance between θ0,n = (β0, ζ0,n(·, β0))
and θ0 = (β0, ζ0(·, β0)) is given as

K(θ0,n, θ0)

= P [l(θ0;Z)− l(θ0,n;Z)]

= − P
{
l̈ζζ(β0, ζ0(·, β0);Z)[ζ0,n(·, β0)− ζ0(·, β0), ζ0,n(·, β0)− ζ0(·, β0)]

}
+ o(∥ζ0,n(·, β0)− ζ0(·, β0)∥22)

= P

{∫ b

a
1(ϵ0 ≥ t) exp{g0(t)}(g0,n(t)− g0(t))

2 dt

}
+ o(∥ζ0,n(·, β0)− ζ0(·, β0)∥22)

≤
∫ b

a
(g0,n(t)− g0(t))

2 dΛ0(t) + o(∥ζ0,n(·, β0)− ζ0(·, β0)∥22)

= ∥ζ0,n(·, β0)− ζ0(·, β0)∥22 + o(∥ζ0,n(·, β0)− ζ0(·, β0)∥22) = O(n−2pν),

where the last equality holds because ∥ζ0,n(·, β0)−ζ0(·, β0)∥2 ≤ ∥ζ0,n(·, β0)−
ζ0(·, β0)∥∞ = O(n−pν). Therefore K1/2(θ0,n, θ0) = O(n−pν). Thus by Theo-

rem 1 of [3], we obtain the convergence rate for θ̂n as follows

d(θ̂n, θ0) = Op{max(n−(1−ν)/2, n−pν , n−pν)} = Op{n−min(pν,(1−ν)/2)}.
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3. Proof of Theorem 4.3. Define w∗
n(t) = − ˙̂gn(t)X̄(t; β̂n). Then we

have
l∗
β̂n
(Y,∆, X) = l̇β(θ̂n;Z)− l̇ζ(θ̂n;Z)[h

∗
n].

Define

Ijk(β0) = P
[{
l̇βj

(θ0;Z)− l̇ζ(θ0;Z)[h
∗
j ]
}

×
{
l̇βk

(θ0;Z)− l̇ζ(θ0;Z)[h
∗
k]
}]

≡ PAjk(θ0;Z),

Îjkn (β̂n) = Pn

[{
l̇βj

(θ̂n;Z)− l̇ζ(θ̂n;Z)[h
∗
j,n]

}
×

{
l̇βk

(θ̂n;Z)− l̇ζ(θ̂n;Z)[h
∗
k,n]

}]
≡ PnA

jk
n (θ̂n;Z),

where h∗j is defined in Lemma 7.4, see also Equation (7.1) in the main text.

We will prove PnA
jk
n (θ̂n;Z) → PAjk(θ0;Z) in probability for all j, k =

1, . . . , d. Let

PnA
jk
n (θ̂n;Z)− PAjk(θ0;Z) = (Pn − P )Ajk

n (θ̂n;Z)

+ P
{
Ajk

n (θ̂n;Z)−Ajk(θ0;Z)
}

= I1n + I2n.

For I1n, we first define the class of functions

Fβ,ζ
n,j (η) = {l̇βj

(θ; z)− l̇ζ(θ; z)[hj ] : θ ∈ Θp
n, d(θ, θ0) ≤ η, hj ∈ H2

n,

∥ġ(ψ(·, β))− ġ0(ψ(·, β0))∥2 ≤ η, ∥hj − h∗j∥∞ ≤ η}.

Then by Lemmas 7.5 and 7.6 we have

N[ ](ε,F
β,ζ
n,j , ∥ · ∥∞) . (1/ε)cqn+d

for some constant c > 0. This is because for any function l̇βj
(θ; z)−l̇ζ(θ; z)[hj ] ∈

Fβ,ζ
n,j (η), it can be written as

l̇βj
(θ; z)− l̇ζ(θ; z)[hj ]

= {l̇βj
(θ; z)− l̇βj

(θ0; z)} − {l̇ζ(θ; z)[h∗j ]− l̇ζ(θ0; z)[h
∗
j ]}

+ {l̇ζ(θ; z)[h∗j ]− l̇ζ(θ; z)[hj ]}+ {l̇βj
(θ0; z)− l̇ζ(θ0; z)[h

∗
j ]}

= A1 +A2 +A3 +A4,

where A1 ∈ Fβ
n,j(η) and A2 ∈ Fζ

n,j(η) defined in Lemma 7.6, A3 ∈ F j
n(η)

defined in Lemma 7.5, and A4 is a fixed function (the efficient score function).
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Assume AL
m ≤ Am ≤ AU

m with ∥AU
m − AL

m∥∞ . ε, m = 1, 2, 3. Then AL
m +

AL
m′ ≤ Am + Am′ ≤ AU

m + AU
m′ with ∥(AU

m + AU
m′) − (AL

m + AL
m′)∥∞ ≤

∥AU
m − AL

m∥∞ + ∥AU
m′ − AL

m′∥∞ . ε. Therefore the ε-bracketing number

associated with ∥ · ∥∞ for Fβ,ζ
n,j (η) is also bounded by (η/ε)cqn+α.

We next define the class of functions

Fβ,ζ
n,jk(η) = {(l̇βj

(θ; z)− l̇ζ(θ; z)[hj ])(l̇βk
(θ; z)− l̇ζ(θ; z)[hk]) : θ ∈ Θp

n,

hj , hk ∈ Hp−1
n , d(θ, θ0) ≤ η, ∥ġ(ψ(·, β))− ġ0(ψ(·, β0))∥2 ≤ η,

∥hj − h∗j∥∞ ≤ η, ∥hk − h∗k∥∞ ≤ η}.

Then if BL
j ≤ l̇βj

(θ; z)− l̇ζ(θ; z)[hj ] ≤ BU
j and BL

k ≤ l̇βj
(θ; z)− l̇ζ(θ; z)[hk] ≤

BU
k with ∥BU

j −BL
j ∥∞ ≤ ε and ∥BU

k −BL
k ∥∞ ≤ ε, we have B∗

jB
∗
k ≤ (l̇βj

(θ; z)−
l̇ζ(θ; z)[hj ])(l̇βk

(θ; z)− l̇ζ(θ; z)[hk]) ≤ B∗∗
j B

∗∗
k , where B∗

j , B
∗∗
j take values of

either BL
j or BU

j , and the same for B∗
k, B

∗∗
k . Thus

∥B∗∗
j B

∗∗
k −B∗

jB
∗
k∥∞ = ∥(B∗∗

j −B∗
j )B

∗∗
k + (B∗∗

k −B∗
k)B

∗
j ∥∞

= ∥B∗∗
j −B∗

j ∥∞∥B∗∗
k ∥∞ + ∥B∗∗

k −B∗
k∥∞∥B∗

j ∥∞
. ∥BU

j −BL
j ∥∞ + ∥BU

k −BL
k ∥∞

. ε,

which yields
N[ ](ε,F

β,ζ
n,jk, ∥ · ∥∞) . (1/ε)cqn+d

for some constant c > 0.
Finally, similar to the verification of Assumption (A4) in the proof of

Theorem 4.2 and together with the following fact:

∥h∗j (·, β0)− h∗j,n(·, β̂n)∥∞
= ∥ġ0(t)P (X|ϵ0 ≥ t)− ˙̂gn(tβ̂n

)X̄(tβ̂n
; β̂n)∥∞

≤ ∥ġ0(t)P (X|ϵ0 ≥ t)− ˙̂gn(t)X̄(t; β̂n)∥∞(3.1)

+ ∥ ˙̂gn(tβ̂n
)X̄(tβ̂n

; β̂n)− ˙̂gn(tβ̂n
)X̄(t; β̂n)∥∞

+ ∥ ˙̂gn(tβ̂n
)X̄(t; β̂n)− ˙̂gn(t)X̄(t; β̂n)∥∞,

where the first term on the right hand side of inequality (3.1) is

∥ġ0(t)P (X|ϵ0 ≥ t)− ˙̂gn(t)X̄(t; β̂n)∥∞
≤ ∥ġ0(t)− ˙̂gn(t)∥∞∥P (X|ϵ0 ≥ t)∥∞

+ ∥P (X|ϵ0 ≥ t)− X̄(t; β̂n)∥∞∥ ˙̂gn(t)∥∞
= Op(n

−2v) +Op(n
−1/2) = Op(n

−2v)
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by Lemma 7.4 and Corollary 6.21 in [2] for the first term and straightforward
argument using empirical process theory for Donsker classes for the second
term, together with the boundedness of ∥P (X|ϵ0 ≥ t)∥∞ and ∥ ˙̂gn(t)∥∞, and
it is straightforward to see that the remaining two terms on the right hand
side of inequality (3.1) is Op(n

−1/2). Thus we have I1n = op(1).
That I2n = op(1) can be argued directly by the dominated convergence

theorem. We now have proved the theorem.
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