# A SIEVE M-THEOREM FOR BUNDLED PARAMETERS IN SEMIPARAMETRIC MODELS, WITH APPLICATION TO THE EFFICIENT ESTIMATION IN A LINEAR MODEL FOR CENSORED DATA

## (Supplementary Material)

By Ying Ding \* and Bin Nan \*,<sup>†</sup>

University of Michigan

**1. Proofs of technical lemmas.** We first prove the lemmas that are needed for the proofs of Theorems 4.1, 4.2 and 4.3.

1.1. Proof of Lemma 7.1. This result follows by direct calculation:

$$\begin{split} \dot{l}_{\beta}(\beta,\zeta(\cdot,\beta);Z) &= -X\bigg\{\Delta \dot{g}(\epsilon_{0}-X'(\beta-\beta_{0})) \\ &- \int_{a}^{b} 1(\epsilon_{0} \geq t) \exp\{g(t-X'(\beta-\beta_{0}))\}\dot{g}(t-X'(\beta-\beta_{0}))\,dt\bigg\}, \\ \dot{l}_{\zeta}(\beta,\zeta(\cdot,\beta);Z)[h(\cdot,\beta)] &= \frac{\partial}{\partial\eta}l(\beta,(\zeta+\eta h)(\cdot,\beta);Z)|_{\eta=0} \\ &= \Delta w(\epsilon_{0}-X'(\beta-\beta_{0})) \\ &- \int_{a}^{b} 1(\epsilon_{0} \geq t) \exp\{g(t-X'(\beta-\beta_{0}))\}w(t-X'(\beta-\beta_{0}))\,dt, \\ \ddot{l}_{\beta\beta}(\beta,\zeta(\cdot,\beta);Z) \\ &= XX'\bigg\{\Delta \ddot{g}(\epsilon_{0}-X'(\beta-\beta_{0})) - \int_{a}^{b} 1(\epsilon_{0} \geq t) \exp\{g(t-X'(\beta-\beta_{0}))\} \\ &\cdot \left[\ddot{g}(t-X'(\beta-\beta_{0})) + \dot{g}^{2}(t-X'(\beta-\beta_{0}))\right]dt\bigg\}, \end{split}$$

\*Supported in part by NSF Grant DMS-07-06700.

<sup>†</sup>Supported in part by NSF grant DMS-10-07590 and NIH grant R01-AG036802. AMS 2000 subject classifications: Primary 62E20, 62N01; secondary 62D05

Keywords and phrases: Accelerated failure time model; B-spline; bundled parameters; efficient score function; semiparametric efficiency; sieve maximum likelihood estimation.



$$\begin{split} l_{\beta\zeta}(\beta,\zeta(\cdot,\beta);Z)[h(\cdot,\beta)] &= l'_{\zeta\beta}(\beta,\zeta(\cdot,\beta);Z)[h(\cdot,\beta)] \\ &= -X\bigg\{\Delta\dot{w}(\epsilon_0 - X'(\beta - \beta_0)) - \int_a^b 1(\epsilon_0 \ge t) \exp\{g(t - X'(\beta - \beta_0))\} \\ &\quad \cdot \left[\dot{w}(t - X'(\beta - \beta_0)) + \dot{g}(t - X'(\beta - \beta_0))w(t - X'(\beta - \beta_0))\right] dt\bigg\}, \\ \ddot{l}_{\zeta\zeta}(\beta,\zeta(\cdot,\beta);Z)[h_1(\cdot,\beta),h_2(\cdot,\beta)] \\ &= -\int_a^b 1(\epsilon_0 \ge t) \exp\{g(t - X'(\beta - \beta_0))\} \\ &\quad \cdot w_1(t - X'(\beta - \beta_0))w_2(t - X'(\beta - \beta_0)) dt, \end{split}$$

where  $h \in \mathbb{H} = \{h : h(\cdot, \beta) = \frac{\partial \zeta_{\eta}(\cdot, \beta)}{\partial \eta}|_{\eta=0} = w(\psi(\cdot, \beta)), \zeta_{\eta} \in \mathcal{H}^p\}$ . All the above derivatives are continuous and bounded by Conditions (C.1)-(C.3) and (C.6).

1.2. Proof of Lemma 7.2. This is a direct result of Corollary 6.21 in [2], that is, there exists a  $g_{0,n} \in \mathcal{G}_n^p$  such that  $\zeta_{0,n}(t, x, \beta_0) = g_{0,n}(t)$  and

$$\|\zeta_{0,n}(\cdot,\beta_0) - \zeta_0(\cdot,\beta_0)\|_{\infty} = \|g_{0,n} - g_0\|_{\infty} = O(q_n^{-p}) = O(n^{-p\nu}).$$

1.3. Proof of Lemma 7.3. By the calculation in [3] on page 597, denote the ceiling of x by  $\lceil x \rceil$ , then for any  $\varepsilon > 0$ , there exists a set of brackets  $\{[g_i^L, g_i^U] : i = 1, 2, \cdots, \lceil (1/\varepsilon)^{c_1q_n} \rceil\}$  such that for any  $g \in \mathcal{G}_n^p, g_i^L(t) \leq g(t) \leq g_i^U(t)$  for some  $1 \leq i \leq \lceil (1/\varepsilon)^{c_1q_n} \rceil$  and all  $t \in [a, b]$ , where  $||g_i^U - g_i^L||_{\infty} \leq \varepsilon$ . Since  $\mathcal{B} \subseteq \mathbb{R}^d$  is compact,  $\mathcal{B}$  can be covered by  $\lceil c_2(1/\varepsilon)^d \rceil$  balls with radius  $\varepsilon$ ; that is, for any  $\beta \in \mathcal{B}$ , there exist  $\beta_s, 1 \leq s \leq \lceil c_2(1/\varepsilon)^d \rceil$ , such that  $|\beta - \beta_s| \leq \varepsilon$ , i.e.,  $|(\beta - \beta_0) - (\beta_s - \beta_0)| \leq \varepsilon$ , and hence  $|x'(\beta - \beta_0) - x'(\beta_s - \beta_0)| \leq C\varepsilon$  for any  $x \in \mathcal{X}$  because of Condition (C.2)(a), where C > 0 is a constant. This indicates that  $t - x'(\beta - \beta_0) \in [t - x'(\beta_s - \beta_0) - C\varepsilon, t - x'(\beta_s - \beta_0) + c_2^{i,t}\varepsilon)$  are the minimum and maximum values of  $g_i^L$  and  $g_i^U$  within the interval  $[t - x'(\beta_s - \beta_0) - C\varepsilon, t - x'(\beta_s - \beta_0) + c_2^{i,t}\varepsilon)$  are the minimum and maximum values of  $g_i^L$  and  $g_i^U$  within the interval  $[t - x'(\beta_s - \beta_0) - C\varepsilon, t - x'(\beta_s - \beta_0) + C\varepsilon]$ , where  $c_1^{i,t}$  and  $c_2^{i,t}$  are two constants that only depend on  $g_i^L$ ,  $g_i^U$  and t with  $|c_1^{i,t}|, |c_2^{i,t}| \leq C$ . So we have

$$g_i^L(t - x'(\beta_s - \beta_0) + c_1^{i,t}\varepsilon) \leq g_i^L(t - x'(\beta - \beta_0))$$
  
$$\leq g(t - x'(\beta - \beta_0)) \leq g_i^U(t - x'(\beta - \beta_0))$$
  
$$\leq g_i^U(t - x'(\beta_s - \beta_0) + c_2^{i,t}\varepsilon).$$

Hence we can construct a set of brackets

$$\left\{\left[m_{i,s}^{L}(Z), m_{i,s}^{U}(Z)\right]: i = 1, \cdots, \left\lceil (1/\varepsilon)^{c_{1}q_{n}} \right\rceil; s = 1, \cdots, \left\lceil c_{2}(1/\varepsilon)^{d} \right\rceil\right\}$$

such that for any  $m(\theta; Z) \in \mathcal{F}_n$ , there exists a pair (i, s) such that for any sample point  $Z, m(\theta; Z) \in [m_{i,s}^L(Z), m_{i,s}^U(Z)]$ , where

$$m_{i,s}^{L}(Z) = \left\{ \Delta g_{i}^{L}(\epsilon_{0} - X'(\beta_{s} - \beta_{0}) + c_{1}^{i,\epsilon_{0}}\varepsilon) - \int_{a}^{b} \mathbb{1}(\epsilon_{0} \ge t) \exp\{g_{i}^{U}(t - x'(\beta_{s} - \beta_{0}) + c_{2}^{i,t}\varepsilon)\} dt \right\}$$
$$- l(\theta_{0,n}; Z),$$

and

$$m_{i,s}^{U}(Z) = \left\{ \Delta g_i^U(\epsilon_0 - X'(\beta_s - \beta_0) + c_2^{i,\epsilon_0}\varepsilon) - \int_a^b \mathbb{1}(\epsilon_0 \ge t) \exp\{g_i^L(t - x'(\beta_s - \beta_0) + c_1^{i,t}\varepsilon)\} dt \right\} - l(\theta_{0,n}; Z).$$

It then follows that

$$\begin{aligned} |m_{i,s}^{U}(Z) - m_{i,s}^{L}(Z)| \\ &\leq |g_{i}^{U}(\epsilon_{0} - X'(\beta_{s} - \beta_{0}) + c_{2}^{i,\epsilon_{0}}\varepsilon) - g_{i}^{L}(\epsilon_{0} - X'(\beta_{s} - \beta_{0}) + c_{1}^{i,\epsilon_{0}}\varepsilon)| \\ &+ \int_{a}^{b} |\exp\{g_{i}^{U}(t - X'(\beta_{s} - \beta_{0}) + c_{2}^{i,t}\varepsilon)\} \\ &- \exp\{g_{i}^{L}(t - x'(\beta_{s} - \beta_{0}) + c_{1}^{i,t}\varepsilon)\}| dt \\ &= A_{1} + A_{2}. \end{aligned}$$

For  $A_1$ , by subtracting and adding the terms  $g(\epsilon_0 - X'(\beta_s - \beta_0) + c_2^{i,\epsilon_0}\varepsilon)$ and  $g(\epsilon_0 - X'(\beta_s - \beta_0) + c_1^{i,\epsilon_0}\varepsilon)$  and applying the Taylor expansion to g at  $\epsilon_0 - X'(\beta_s - \beta_0) + c_1^{i,\epsilon_0}\varepsilon$ , we have

$$\begin{aligned}
A_{1} &\leq |g_{i}^{U}(\epsilon_{0} - X'(\beta_{s} - \beta_{0}) + c_{2}^{i,\epsilon_{0}}\varepsilon) - g(\epsilon_{0} - X'(\beta_{s} - \beta_{0}) + c_{2}^{i,\epsilon_{0}}\varepsilon)| \\
&+ |g(\epsilon_{0} - X'(\beta_{s} - \beta_{0}) + c_{2}^{i,\epsilon_{0}}\varepsilon) - g(\epsilon_{0} - X'(\beta_{s} - \beta_{0}) + c_{1}^{i,\epsilon_{0}}\varepsilon)| \\
&+ |g(\epsilon_{0} - X'(\beta_{s} - \beta_{0}) + c_{1}^{i,\epsilon_{0}}\varepsilon) - g_{i}^{L}(\epsilon_{0} - X'(\beta_{s} - \beta_{0}) + c_{1}^{i,\epsilon_{0}}\varepsilon)| \\
&\leq ||g_{i}^{U} - g||_{\infty} + |\dot{g}(\epsilon_{0} - X'(\beta_{s} - \beta_{0}) + \tilde{c}\varepsilon)(c_{2}^{i,\epsilon_{0}} - c_{1}^{i,\epsilon_{0}})\varepsilon| + ||g - g_{i}^{L}||_{\infty} \\
&\leq ||g_{i}^{U} - g_{i}^{L}||_{\infty} + C_{1}|(c_{2}^{i,\epsilon_{0}} - c_{1}^{i,\epsilon_{0}})|\varepsilon + ||g_{i}^{U} - g_{i}^{L}||_{\infty} \\
&\leq 2\varepsilon + 2C_{1}C_{2}\varepsilon \lesssim \varepsilon,
\end{aligned}$$

where the third inequality holds because  $\|g_i^U - g\|_{\infty}, \|g - g_i^L\|_{\infty} \le \|g_i^U - g_i^L\|_{\infty}$ and  $\dot{g}$  is bounded by  $C_1$ . The Constant  $C_1$  may be proportional to  $c_n$  that

#### Y. DING AND B. NAN

is allowed to grow with n slowly enough, but it does not affect the later calculations on convergence rate (see [3], page 591, for their constant  $l_n$ ), thus we drop  $c_n$  for simplicity. For  $A_2$ , by using the similar arguments as for  $A_1$  and denote  $t - X'(\beta_s - \beta_0) = t_s$  for notational simplicity, we have

$$\begin{split} A_{2} &\leq \int_{a}^{b} \left\{ |\exp\{g_{i}^{U}(t_{s}+c_{2}^{i,t}\varepsilon)\} - \exp\{g(t_{s}+c_{2}^{i,t}\varepsilon)\}| \\ &+ |\exp\{g(t_{s}+c_{2}^{i,t}\varepsilon)\} - \exp\{g(t_{s}+c_{1}^{i,t}\varepsilon)\}| \\ &+ |\exp\{g(t_{s}+c_{1}^{i,t}\varepsilon)\} - \exp\{g_{i}^{L}(t_{s}+c_{1}^{i,t}\varepsilon)\}| \right\} dt \\ &= \int_{a}^{b} \left\{ |\exp\{\tilde{g}_{i}^{U}(t_{s}+c_{2}^{i,t}\varepsilon)\}(g_{i}^{U}-g)(t_{s}+c_{2}^{i,t}\varepsilon)| \\ &+ |\exp\{g(t_{s}+\tilde{c}\varepsilon)\}(c_{2}^{i,t}-c_{1}^{i,t})\varepsilon| \\ &+ |\exp\{g(t_{s}+\tilde{c}\varepsilon)\}(g_{i}^{L}-g)(t_{s}+c_{1}^{i,t}\varepsilon)| \right\} dt \\ &\lesssim \|g_{i}^{U}-g\|_{\infty} + |(c_{2}^{i,t}-c_{1}^{i,t})\varepsilon| + \|g-g_{i}^{L}\|_{\infty} \lesssim \varepsilon. \end{split}$$

The above equality is from Taylor expansion, where  $\tilde{g}_i^U = g + \xi(g_i^U - g)$  for some  $0 < \xi < 1$  and thus  $|\tilde{g}_i^U(\cdot)| \leq |g(\cdot)| + \varepsilon$ , which is bounded in [a,b]; similarly  $|\tilde{g}_i^L|$  is also bounded in [a,b]. Hence  $||m_i^U - m_i^L||_{\infty} \lesssim \varepsilon$  and the  $\varepsilon$ -bracketing number associated with  $|| \cdot ||_{\infty}$  norm for the class  $\mathcal{F}_n$  follows

$$N_{[]}(\varepsilon, \mathcal{F}_n, \|\cdot\|_{\infty}) \le (1/\varepsilon)^{c_1 q_n} c_2 (1/\varepsilon)^d \lesssim (1/\varepsilon)^{c_1 q_n + d}.$$

1.4. Proof of Lemma 7.4. In the proof of Theorem 4.2 in the main text of the paper we show that such defined  $(h_1^*, \ldots, h_d^*)$  determines the least favorable submodel for  $\beta$ . Now, by Conditions (C.4)-(C.5), the following conditional density of  $\epsilon_0$  given X

$$f_{\epsilon_0|X}(t|X=x) = f(t)\bar{G}_{C|X}(t+x'\beta_0|X=x) + g_{C|X}(t+x'\beta_0|X=x)\bar{F}(t)$$

is uniformly bounded for all  $x \in \mathcal{X}$ , and its derivative with respect to t

$$\begin{split} \dot{f}_{\varepsilon_0|X}(t|X=x) \\ &= \dot{f}(t)\bar{G}_{C|X}(t+x'\beta_0|X=x) - f(t)g_{C|X}(t+x'\beta_0|X=x) \\ &+ \dot{g}_{C|X}(t+x'\beta_0|X=x)\bar{F}(t) - g_{C|X}(t+x'\beta_0|X=x)f(t) \end{split}$$

is also uniformly bounded. Hence the density of  $\epsilon_0$ 

$$f_{\epsilon_0}(t) = \int_{\mathcal{X}} f_{\epsilon_0|X}(t|X=x) f_X(x) \ dx$$

and its derivative

$$\dot{f}_{\epsilon_0}(t) = \int_{\mathcal{X}} \dot{f}_{\epsilon_0|X}(t|X=x) f_X(x) \ dx$$

are bounded. Thus the first and second derivatives of  $P(\epsilon_0 \ge t)$ , i.e.,  $-f_{\epsilon_0}(t)$ and  $-\dot{f}_{\epsilon_0}(t)$ , are both bounded. In addition, under Condition (C.2)(a), the first and second derivatives of  $P[X1(\epsilon_0 \ge t)]$  with respect to t

$$\frac{dP[X1(\epsilon_0 \ge t)]}{dt} = -\int_{\mathcal{X}} x f_X(x) f_{\epsilon_0|X}(t|X=x) \ dx$$

and

$$\frac{d^2 P[X1(\epsilon_0 \ge t)]}{dt^2} = -\int_{\mathcal{X}} x f_X(x) \dot{f}_{\epsilon_0|X}(t|X=x) \ dx$$

are also bounded. Therefore,  $P[X|\epsilon_0 \ge t] = P[X1(\epsilon_0 \ge t)]/P(\epsilon_0 \ge t)$  has a bounded second derivative with respect to t for  $t \le \tau$ , where  $\tau$  is the truncation time defined in Condition (C.3). Thus  $P[X|\epsilon_0 \ge t] \in \mathcal{G}^2$ . Moreover, since  $g_0 \in \mathcal{G}^p$  for  $p \ge 3$ , we have  $\dot{g}_0 \in \mathcal{G}^{p-1}$  with  $p-1 \ge 2$ . Thus according to Corollary 6.21 of [2], there exists an  $h_{j,n}^* \in \mathcal{H}_n^{\min(p-1,2)} = \mathcal{H}_n^2$  such that  $h_{j,n}^*(t, x, \beta_0) = w_{j,n}^*(\psi(t, x, \beta_0)) = w_{j,n}^*(t)$  and  $\|h_{j,n}^*(\cdot, \beta_0) - h_j^*(\cdot, \beta_0)\|_{\infty} =$  $\|w_{j,n}^* - w_j^*\|_{\infty} = O(q_n^{-2}) = O(n^{-2\nu}).$ 

1.5. *Proof of Lemma 7.5.* The proof is similar to the bracketing number calculation in Lemma 7.3, thus omitted. We refer all the details to [1].

1.6. *Proof of Lemma 7.6.* The proof is also similar to the bracketing number calculation in Lemma 7.3, thus omitted. We again refer all the details to [1].

2. Proof of Theorem 4.1. We shall apply Theorem 1 of [3] to derive the convergence rate. We proceed by verifying their conditions C1-C3. Since  $Pl(\beta, \zeta(\cdot, \beta); Z)$  is maximized at  $(\beta_0, \zeta_0(\cdot, \beta_0))$ , its first derivatives at  $(\beta_0, \zeta_0(\cdot, \beta_0))$  are equal to 0. By Lemma 7.1 that all the second derivatives of  $l(\beta, \zeta(\cdot, \beta); Z)$  are continuous and bounded, the Taylor expansion yields

$$(2.1) \quad Pl(\beta, \zeta(\cdot, \beta); Z) - Pl(\beta_0, \zeta_0(\cdot, \beta_0); Z) \\ = \frac{1}{2} P\{(\beta - \beta_0)' \ddot{l}_{\beta\beta}(\beta_0, \zeta_0(\cdot, \beta_0); Z)(\beta - \beta_0) \\ + 2(\beta - \beta_0)' \ddot{l}_{\beta\zeta}(\beta_0, \zeta_0(\cdot, \beta_0); Z)[\zeta(\cdot, \beta) - \zeta_0(\cdot, \beta_0)] \\ + \ddot{l}_{\zeta\zeta}(\beta_0, \zeta_0(\cdot, \beta_0); Z)[\zeta(\cdot, \beta) - \zeta_0(\cdot, \beta_0), \zeta(\cdot, \beta) - \zeta_0(\cdot, \beta_0)]\} \\ + o(d^2(\theta, \theta_0)) \\ = A + o(d^2(\theta, \theta_0)),$$

## Y. DING AND B. NAN

where  $\theta = (\beta, \zeta(\cdot, \beta)) \in \Theta_n^p$ . By the model assumption, we have that the conditional expectation  $P\{\dot{l}_{\zeta}(\beta_0, \zeta_0(\cdot, \beta_0); Z)[h(\cdot, \beta_0)]|X\} = 0$  for all  $h \in \mathbb{H}$ . Taking h to be  $\ddot{g}_0$  and  $\dot{g}(\psi(\cdot, \beta)) - \dot{g}_0(\psi(\cdot, \beta_0))$  respectively, we have

$$P\left\{\Delta \ddot{g}_0(\epsilon_0) - \int_a^b \mathbb{1}(\epsilon_0 \ge t) \exp\{g_0(t)\}\ddot{g}_0(t)\,dt \,\middle| X\right\} = 0$$

and

$$P\left\{\Delta[\dot{g}(\epsilon_0 - X'(\beta - \beta_0)) - \dot{g}_0(\epsilon_0)] - \int_a^b 1(\epsilon_0 \ge t) \exp\{g_0(t)\}[\dot{g}(t - X'(\beta - \beta_0)) - \dot{g}_0(t)] dt \middle| X\right\} = 0.$$

Then it follows

$$A = P\left\{\frac{1}{2}\int_{a}^{b} 1(\epsilon_{0} \geq t) \exp\{g_{0}(t)\}\left\{-[\dot{g}_{0}(t)X'(\beta-\beta_{0})]^{2} + 2\dot{g}_{0}(t)X'(\beta-\beta_{0})[g(t-X'(\beta-\beta_{0}))-g_{0}(t)] - [g(t-X'(\beta-\beta_{0}))-g_{0}(t)]^{2}\right\}dt\right\}$$

$$(2.2) = -\frac{1}{2}\int_{a}^{b} \exp\{g_{0}(t)\}P\{1(\epsilon_{0} \geq t)[\dot{g}_{0}(t)X'(\beta-\beta_{0}) - (g(t_{\beta})-g_{0}(t))]^{2}\}dt,$$

where  $t_{\beta} = t - X'(\beta - \beta_0)$ . The integrand is from a to  $\tau = b$  because of Condition (C.3) and (C.6). Denote  $s_0(t) = -\dot{g}_0(t), s_1(t;\epsilon_0,X) = 1(\epsilon_0 \geq t)X'(\beta - \beta_0)$ , and  $s_2(t;\epsilon_0,X) = 1(\epsilon_0 \geq t)[g(t_{\beta}) - g_0(t)]$ , then

$$P\left\{1(\epsilon_{0} \geq t)[\dot{g}_{0}(t)X'(\beta - \beta_{0}) - (g(t_{\beta}) - g_{0}(t))]^{2}\right\}$$

$$= P\left\{[s_{0}(t)s_{1}(t;\epsilon_{0},X) + s_{2}(t;\epsilon_{0},X)]^{2}\right\}$$

$$\geq s_{0}^{2}(t)P[s_{1}^{2}(t;\epsilon_{0},X)] + P[s_{2}^{2}(t;\epsilon_{0},X)]$$

$$- 2|s_{0}(t)P[s_{1}(t;\epsilon_{0},X)s_{2}(t;\epsilon_{0},X)]|$$

$$\geq s_{0}^{2}(t)P[s_{1}^{2}(t;\epsilon_{0},X)] + P[s_{2}^{2}(t;\epsilon_{0},X)]$$

$$- (1 - \eta)^{\frac{1}{2}} \cdot 2|s_{0}(t)[P(s_{1}^{2}(t;\epsilon_{0},X))]^{\frac{1}{2}}| \cdot |[P(s_{2}^{2}(t;\epsilon_{0},X))]^{\frac{1}{2}}|$$

$$\geq \{1 - (1 - \eta)^{\frac{1}{2}}\}\{s_{0}^{2}(t)P(s_{1}^{2}(t;\epsilon_{0},X)) + P(s_{2}^{2}(t;\epsilon_{0},X))\}$$

$$\gtrsim \dot{g}_{0}^{2}(t)(\beta - \beta_{0})'P[1(\epsilon_{0} \geq t)XX'](\beta - \beta_{0})$$

$$+ P[1(\epsilon_{0} \geq t)(g(t_{\beta}) - g_{0}(t))^{2}],$$

6

where (2.3) is obtained by using the same argument in [4] on page 2126, which is, under Condition (C.7),  $[P(s_1s_2)]^2 \leq (1-\eta)P(s_1^2)P(s_2^2)$  for some  $\eta \in (0,1)$ . Hence from (2.2) we have

$$A \lesssim -\left\{ (\beta - \beta_0)' \left[ \int_a^b \exp\{g_0(t)\} \dot{g}_0^2(t) P[1(\epsilon_0 \ge t) X X'] dt \right] (\beta - \beta_0) \right. \\ \left. + \int_a^b \exp\{g_0(t)\} P[1(\epsilon_0 \ge t) (g(t_\beta) - g_0(t))^2] dt \right\} \\ = -(A_1 + A_2).$$

For  $A_1$ , Condition (C.3) implies that

$$P[1(\epsilon_0 \ge t)XX'] = P[XX'P(\epsilon_0 \ge t|X)] \ge P[XX'P(\epsilon_0 \ge \tau|X)] \ge \delta P(XX').$$

Then Condition (C.2)(b) yields that P(XX') is positive definite and thus its smallest eigenvalue  $\lambda_1 > 0$ . In addition,  $\int_a^b \exp\{g_0(t)\}\dot{g}_0^2(t)dt$  is bounded away from zero since  $\exp\{g_0(t)\}, \dot{g}_0^2(t) \ge 0$  but not a constant zero on  $t \in [a, b]$ . Hence it follows that

$$A_1 \gtrsim (\beta - \beta_0)' P(XX')(\beta - \beta_0) \ge \lambda_1 |\beta - \beta_0|^2 \gtrsim |\beta - \beta_0|^2.$$

For  $A_2$ , Condition (C.3) yields

$$A_2 \geq P(\epsilon_0 \geq b) \int_a^b P(g(t - X'(\beta - \beta_0)) - g_0(t))^2 d\Lambda_0(t)$$
  
$$\gtrsim \|\zeta(\cdot, \beta) - \zeta_0(\cdot, \beta_0)\|_2^2.$$

Therefore

$$A \lesssim -\{|\beta - \beta_0|^2 + \|\zeta(\cdot, \beta) - \zeta_0(\cdot, \beta_0)\|_2^2\} = -d^2(\theta, \theta_0),$$

and thus from (2.1),

$$Pl(\beta, \zeta(\cdot, \beta); Z) - Pl(\beta_0, \zeta_0(\cdot, \beta_0); Z) \lesssim -d^2(\theta, \theta_0) + o(d^2(\theta, \theta_0)) \lesssim -d^2(\theta, \theta_0),$$
  
i.e.  $P(l(\theta_0; Z) - l(\theta; Z)) \gtrsim d^2(\theta, \theta_0)$  for all  $\theta \in \Theta_n^p$ , which implies that

e. 
$$F(i(\theta_0; Z) - i(\theta; Z)) \gtrsim a(\theta, \theta_0)$$
 for an  $\theta \in \Theta_n$ , which implies the

$$\inf_{\{d(\theta,\theta_0) \ge \varepsilon, \theta \in \Theta_n^p\}} P(l(\theta_0; Z) - l(\theta; Z)) \gtrsim \varepsilon^2.$$

Hence condition C1 of [3] on page 583 holds with the constant  $\alpha = 1$  in their notation.

Next we verify condition C2 of [3]. Denote  $\epsilon_{\beta} = Y - X'\beta$ . It follows that

$$\begin{split} &[l(\theta; Z) - l(\theta_0; Z)]^2 \\ &= \left\{ \Delta g(\epsilon_\beta) - \int_a^b 1(\epsilon_0 \ge t) e^{g(t_\beta)} \, dt - \Delta g_0(\epsilon_0) + \int_a^b 1(\epsilon_0 \ge t) e^{g_0(t)} \, dt \right\}^2 \\ &\lesssim \Delta [g(\epsilon_\beta) - g_0(\epsilon_0)]^2 + \left\{ \int_a^b 1(\epsilon_0 \ge t) [e^{g(t_\beta)} - e^{g_0(t)}] \, dt \right\}^2 \\ &\lesssim \Delta [g(\epsilon_\beta) - g_0(\epsilon_0)]^2 + \int_a^b [e^{g(t_\beta)} - e^{g_0(t)}]^2 \, dt \\ &\lesssim \Delta [g(\epsilon_\beta) - g(\epsilon_0)]^2 + \Delta [g(\epsilon_0) - g_0(\epsilon_0)]^2 \\ &+ \int_a^b [e^{g(t_\beta)} - e^{g(t)}]^2 \, dt + \int_a^b [e^{g(t)} - e^{g_0(t)}]^2 \, dt \\ &= I_1 + I_2 + I_3 + I_4, \end{split}$$

where the second inequality holds because of the Cauchy-Schwartz inequality

$$\begin{split} \left\{ \int_{a}^{b} 1(\epsilon_{0} \geq t) [e^{g(t_{\beta})} - e^{g_{0}(t)}] dt \right\}^{2} \\ &\leq \left\{ \int_{a}^{b} 1(\epsilon_{0} \geq t) dt \right\} \left\{ \int_{a}^{b} [e^{g(t_{\beta})} - e^{g_{0}(t)}]^{2} dt \right\} \\ &\leq (b-a) \int_{a}^{b} [e^{g(t_{\beta})} - e^{g_{0}(t)}]^{2} dt, \end{split}$$

and the third inequality holds by subtracting and adding the terms  $g(\epsilon_0)$ and  $e^{g(t)}$ . For  $I_1$ , since  $\dot{g} \in \mathcal{G}_n^{p-1}$  is bounded, applying the Taylor expansion for g at  $\epsilon_0$  we obtain

$$PI_{1} = P\{\Delta[g(\epsilon_{0} - X'(\beta - \beta_{0})) - g(\epsilon_{0})]^{2}\}$$
  

$$\leq P[\dot{g}(\epsilon_{0} - X'(\tilde{\beta} - \beta_{0}))X'(\beta - \beta_{0})]^{2}$$
  

$$\lesssim P[X'(\beta - \beta_{0})]^{2} = (\beta - \beta_{0})'P(XX')(\beta - \beta_{0})$$
  

$$\leq \lambda_{d}|\beta - \beta_{0}|^{2} \lesssim |\beta - \beta_{0}|^{2},$$

where  $\lambda_d$  is the largest eigenvalue of P(XX'). For  $I_2$ , since the density function for  $(Y, \Delta = 1, X)$  is

$$f_{Y,\Delta,X}(y,1,x) = \lambda_0 (y - x'\beta_0) e^{-\Lambda_0 (y - x'\beta_0)} \bar{G}_{C|X}(y|X=x) f_X(x),$$

it follows that

$$PI_{2} = P[\Delta(g - g_{0})^{2}(\epsilon_{0})]$$

$$= \int_{\mathcal{X}} \left\{ \int_{a}^{b} (g(t) - g_{0}(t))^{2} \lambda_{0}(t) e^{-\Lambda_{0}(t)} \bar{G}_{C|X}(t + x'\beta_{0}|X = x) dt \right\}$$

$$f_{X}(x) dx$$

$$\leq \int_{\mathcal{X}} \left\{ \int_{a}^{b} (g(t) - g_{0}(t))^{2} d\Lambda_{0}(t) \right\} f_{X}(x) dx$$

$$= \|\zeta(\cdot, \beta_{0}) - \zeta_{0}(\cdot, \beta_{0})\|_{2}^{2}.$$

Then for  $I_3$ , since  $g \in \mathcal{G}_n^p$  is bounded, it follows that

$$PI_{3} = P \int_{a}^{b} [e^{g(t-X'(\beta-\beta_{0}))} - e^{g(t)}]^{2} dt$$
  
$$= P \int_{a}^{b} e^{2g(t-X'(\tilde{\beta}-\beta_{0}))} [X'(\beta-\beta_{0})]^{2} dt$$
  
$$\lesssim \int_{a}^{b} P[X'(\beta-\beta_{0})]^{2} dt$$
  
$$\lesssim (\beta-\beta_{0})' P[XX'](\beta-\beta_{0}) \lesssim |\beta-\beta_{0}|^{2}.$$

Finally for  $I_4$ , by the Taylor expansion for  $e^{g(t)}$  at  $g_0$ , we have

$$PI_{4} = \int_{a}^{b} [e^{g(t)} - e^{g_{0}(t)}]^{2} dt$$
  

$$\leq \int_{a}^{b} e^{2\tilde{g}(t)} (g(t) - g_{0}(t))^{2} dt$$
  

$$= \int_{a}^{b} e^{2\tilde{g}(t) - g_{0}(t)} (g(t) - g_{0}(t))^{2} d\Lambda_{0}(t)$$
  

$$\lesssim \int_{a}^{b} (g(t) - g_{0}(t))^{2} d\Lambda_{0}(t) = \|\zeta(\cdot, \beta_{0}) - \zeta_{0}(\cdot, \beta_{0})\|_{2}^{2},$$

where  $\tilde{g}(t) = g_0(t) + \xi(g - g_0)(t)$  for some  $0 < \xi < 1$  and hence is bounded. Since  $\|\zeta(\cdot, \beta_0) - \zeta_0(\cdot, \beta_0)\|_2 \le |\zeta(\cdot, \beta) - \zeta(\cdot, \beta_0)\|_2 + \|\zeta(\cdot, \beta) - \zeta_0(\cdot, \beta_0)\|_2 \le |\beta - \beta_0| + \|\zeta(\cdot, \beta) - \zeta_0(\cdot, \beta_0)\|_2$ , we have

$$P(l(\theta; Z) - l(\theta_0; Z))^2 \lesssim |\beta - \beta_0|^2 + \|\zeta(\cdot, \beta) - \zeta_0(\cdot, \beta_0)\|_2^2 = d^2(\theta, \theta_0)$$

for any  $\theta \in \Theta_n^p$ , which implies that

$$\sup_{\{d(\theta,\theta_0) \le \varepsilon, \theta \in \Theta_n^p\}} \operatorname{Var}(l(\theta_0; Z) - l(\theta; Z))$$
$$\leq \sup_{\{d(\theta,\theta_0) \le \varepsilon, \theta \in \Theta_n^p\}} P(l(\theta_0; Z) - l(\theta; Z))^2 \lesssim \varepsilon^2$$

#### Y. DING AND B. NAN

So condition C2 of [3] on page 583 holds with the constant  $\beta = 1$  in their notation.

Finally, we verify condition C3 of [3]. By lemma 7.3, for  $\mathcal{F}_n = \{l(\theta; Z) - l(\theta_{0,n}; Z) : \theta \in \Theta_n^p\}$ , we have  $N_{[]}(\varepsilon, \mathcal{F}_n, \|\cdot\|_{\infty}) \lesssim (1/\varepsilon)^{cq_n+d}$ . Then by the fact that the covering number is bounded by the bracketing number, it follows that

$$H(\varepsilon, \mathcal{F}_n, \|\cdot\|_{\infty}) = \log N(\varepsilon, \mathcal{F}_n, \|\cdot\|_{\infty}) \lesssim (cq_n + d) \log(1/\varepsilon) \lesssim n^{\nu} \log(1/\varepsilon).$$

So condition C3 of [3] on page 583 holds with the constants  $2r_0 = \nu$  and  $r = 0^+$  in their notation.

Therefore, the constant  $\tau$  in Theorem 1 of [3] on page 584 is  $\frac{1-\nu}{2} - \frac{\log \log n}{2 \log n}$ . Since  $\frac{\log \log n}{2 \log n} \to 0$  as  $n \to 0$ , we can pick a  $\tilde{\nu}$  slightly greater than  $\nu$  such that  $\frac{1-\tilde{\nu}}{2} \leq \frac{1-\nu}{2} - \frac{\log \log n}{2 \log n}$  for n large. We still denote  $\tilde{\nu}$  by  $\nu$  and then  $\tau = \frac{1-\nu}{2}$ . Since  $\hat{\theta}_n$  maximizes the empirical log-likelihood  $\mathbb{P}_n l(\theta; Z)$  over the sieve space  $\Theta_n^p$ , we have that  $\hat{\theta}_n$  satisfies inequality (1.1) in [3] with  $\eta_n = 0$ . By Lemma 7.2, there exists an  $\zeta_{0,n}(\cdot,\beta_0) \in \mathcal{H}_n^p$  such that  $\|\zeta_{0,n}(\cdot,\beta_0) - \zeta_0(\cdot,\beta_0)\|_{\infty} = O(n^{-p\nu})$ . Moreover, by the Taylor expansion for  $P[l(\beta_0,\zeta_0(\cdot,\beta_0);Z) - l(\beta,\zeta(\cdot,\beta);Z)]$  in (2.1) and plugging in  $\theta = \theta_{0,n} = (\beta_0,\zeta_{0,n}(\cdot,\beta_0))$ , the Kullback-Leibler distance between  $\theta_{0,n} = (\beta_0,\zeta_{0,n}(\cdot,\beta_0))$  and  $\theta_0 = (\beta_0,\zeta_0(\cdot,\beta_0))$  is given as

$$\begin{split} & K(\theta_{0,n},\theta_{0}) \\ &= P[l(\theta_{0};Z) - l(\theta_{0,n};Z)] \\ &= -P\{\ddot{l}_{\zeta\zeta}(\beta_{0},\zeta_{0}(\cdot,\beta_{0});Z)[\zeta_{0,n}(\cdot,\beta_{0}) - \zeta_{0}(\cdot,\beta_{0}),\zeta_{0,n}(\cdot,\beta_{0}) - \zeta_{0}(\cdot,\beta_{0})]\} \\ &+ o(\|\zeta_{0,n}(\cdot,\beta_{0}) - \zeta_{0}(\cdot,\beta_{0})\|_{2}^{2}) \\ &= P\{\int_{a}^{b} 1(\epsilon_{0} \geq t) \exp\{g_{0}(t)\}(g_{0,n}(t) - g_{0}(t))^{2} dt\} \\ &+ o(\|\zeta_{0,n}(\cdot,\beta_{0}) - \zeta_{0}(\cdot,\beta_{0})\|_{2}^{2}) \\ &\leq \int_{a}^{b} (g_{0,n}(t) - g_{0}(t))^{2} d\Lambda_{0}(t) + o(\|\zeta_{0,n}(\cdot,\beta_{0}) - \zeta_{0}(\cdot,\beta_{0})\|_{2}^{2}) \\ &= \|\zeta_{0,n}(\cdot,\beta_{0}) - \zeta_{0}(\cdot,\beta_{0})\|_{2}^{2} + o(\|\zeta_{0,n}(\cdot,\beta_{0}) - \zeta_{0}(\cdot,\beta_{0})\|_{2}^{2}) = O(n^{-2p\nu}), \end{split}$$

where the last equality holds because  $\|\zeta_{0,n}(\cdot,\beta_0) - \zeta_0(\cdot,\beta_0)\|_2 \leq \|\zeta_{0,n}(\cdot,\beta_0) - \zeta_0(\cdot,\beta_0)\|_{\infty} = O(n^{-p\nu})$ . Therefore  $K^{1/2}(\theta_{0,n},\theta_0) = O(n^{-p\nu})$ . Thus by Theorem 1 of [3], we obtain the convergence rate for  $\hat{\theta}_n$  as follows

$$d(\hat{\theta}_n, \theta_0) = O_p\{\max(n^{-(1-\nu)/2}, n^{-p\nu}, n^{-p\nu})\} = O_p\{n^{-\min(p\nu, (1-\nu)/2)}\}.$$

10

**3. Proof of Theorem 4.3.** Define  $\mathbf{w}_n^*(t) = -\dot{\hat{g}}_n(t)\bar{X}(t;\hat{\beta}_n)$ . Then we have

$$l_{\hat{\beta}_n}^*(Y,\Delta,X) = \dot{l}_{\beta}(\hat{\theta}_n;Z) - \dot{l}_{\zeta}(\hat{\theta}_n;Z)[\mathbf{h}_n^*].$$

Define

$$\begin{split} I^{jk}(\beta_0) &= P\left[\left\{ \dot{l}_{\beta_j}(\theta_0; Z) - \dot{l}_{\zeta}(\theta_0; Z)[h_j^*] \right\} \\ &\times \left\{ \dot{l}_{\beta_k}(\theta_0; Z) - \dot{l}_{\zeta}(\theta_0; Z)[h_k^*] \right\} \right] \equiv PA^{jk}(\theta_0; Z), \\ \hat{I}_n^{jk}(\hat{\beta}_n) &= \mathbb{P}_n\left[\left\{ \dot{l}_{\beta_j}(\hat{\theta}_n; Z) - \dot{l}_{\zeta}(\hat{\theta}_n; Z)[h_{j,n}^*] \right\} \\ &\times \left\{ \dot{l}_{\beta_k}(\hat{\theta}_n; Z) - \dot{l}_{\zeta}(\hat{\theta}_n; Z)[h_{k,n}^*] \right\} \right] \equiv \mathbb{P}_n A_n^{jk}(\hat{\theta}_n; Z), \end{split}$$

where  $h_j^*$  is defined in Lemma 7.4, see also Equation (7.1) in the main text. We will prove  $\mathbb{P}_n A_n^{jk}(\hat{\theta}_n; Z) \to P A^{jk}(\theta_0; Z)$  in probability for all  $j, k = 1, \ldots, d$ . Let

$$\mathbb{P}_{n}A_{n}^{jk}(\hat{\theta}_{n};Z) - PA^{jk}(\theta_{0};Z) = (\mathbb{P}_{n} - P)A_{n}^{jk}(\hat{\theta}_{n};Z) + P\left\{A_{n}^{jk}(\hat{\theta}_{n};Z) - A^{jk}(\theta_{0};Z)\right\} = I_{1n} + I_{2n}.$$

For  $I_{1n}$ , we first define the class of functions

$$\mathcal{F}_{n,j}^{\beta,\zeta}(\eta) = \{ \dot{l}_{\beta_j}(\theta;z) - \dot{l}_{\zeta}(\theta;z)[h_j] : \theta \in \Theta_n^p, d(\theta,\theta_0) \le \eta, h_j \in \mathcal{H}_n^2, \\ \| \dot{g}(\psi(\cdot,\beta)) - \dot{g}_0(\psi(\cdot,\beta_0)) \|_2 \le \eta, \|h_j - h_j^*\|_{\infty} \le \eta \}.$$

Then by Lemmas 7.5 and 7.6 we have

$$N_{[]}(\varepsilon, \mathcal{F}_{n,j}^{\beta,\zeta}, \|\cdot\|_{\infty}) \lesssim (1/\varepsilon)^{cq_n+d}$$

for some constant c > 0. This is because for any function  $\dot{l}_{\beta_j}(\theta; z) - \dot{l}_{\zeta}(\theta; z)[h_j] \in \mathcal{F}_{n,j}^{\beta,\zeta}(\eta)$ , it can be written as

$$\begin{split} \dot{l}_{\beta_j}(\theta;z) &- \dot{l}_{\zeta}(\theta;z)[h_j] \\ &= \{\dot{l}_{\beta_j}(\theta;z) - \dot{l}_{\beta_j}(\theta_0;z)\} - \{\dot{l}_{\zeta}(\theta;z)[h_j^*] - \dot{l}_{\zeta}(\theta_0;z)[h_j^*]\} \\ &+ \{\dot{l}_{\zeta}(\theta;z)[h_j^*] - \dot{l}_{\zeta}(\theta;z)[h_j]\} + \{\dot{l}_{\beta_j}(\theta_0;z) - \dot{l}_{\zeta}(\theta_0;z)[h_j^*]\} \\ &= A_1 + A_2 + A_3 + A_4, \end{split}$$

where  $A_1 \in \mathcal{F}_{n,j}^{\beta}(\eta)$  and  $A_2 \in \mathcal{F}_{n,j}^{\zeta}(\eta)$  defined in Lemma 7.6,  $A_3 \in \mathcal{F}_n^j(\eta)$  defined in Lemma 7.5, and  $A_4$  is a fixed function (the efficient score function).

Assume  $A_m^L \leq A_m \leq A_m^U$  with  $||A_m^U - A_m^L||_{\infty} \lesssim \varepsilon$ , m = 1, 2, 3. Then  $A_m^L + A_{m'}^L \leq A_m + A_{m'} \leq A_m^U + A_{m'}^U$  with  $||(A_m^U + A_{m'}^U) - (A_m^L + A_{m'}^L)||_{\infty} \leq ||A_m^U - A_m^L||_{\infty} + ||A_{m'}^U - A_{m'}^L||_{\infty} \lesssim \varepsilon$ . Therefore the  $\varepsilon$ -bracketing number associated with  $||\cdot||_{\infty}$  for  $\mathcal{F}_{n,j}^{\beta,\zeta}(\eta)$  is also bounded by  $(\eta/\varepsilon)^{cq_n+\alpha}$ .

We next define the class of functions

$$\begin{aligned} \mathcal{F}_{n,jk}^{\beta,\zeta}(\eta) \ &= \ \{ (\dot{l}_{\beta_j}(\theta;z) - \dot{l}_{\zeta}(\theta;z)[h_j]) (\dot{l}_{\beta_k}(\theta;z) - \dot{l}_{\zeta}(\theta;z)[h_k]) : \theta \in \Theta_n^p, \\ h_j, h_k \in \mathcal{H}_n^{p-1}, d(\theta,\theta_0) \le \eta, \|\dot{g}(\psi(\cdot,\beta)) - \dot{g}_0(\psi(\cdot,\beta_0))\|_2 \le \eta, \\ \|h_j - h_j^*\|_{\infty} \le \eta, \|h_k - h_k^*\|_{\infty} \le \eta \}. \end{aligned}$$

Then if  $B_j^L \leq \dot{l}_{\beta_j}(\theta; z) - \dot{l}_{\zeta}(\theta; z)[h_j] \leq B_j^U$  and  $B_k^L \leq \dot{l}_{\beta_j}(\theta; z) - \dot{l}_{\zeta}(\theta; z)[h_k] \leq B_k^U$  with  $||B_j^U - B_j^L||_{\infty} \leq \varepsilon$  and  $||B_k^U - B_k^L||_{\infty} \leq \varepsilon$ , we have  $B_j^* B_k^* \leq (\dot{l}_{\beta_j}(\theta; z) - \dot{l}_{\zeta}(\theta; z)[h_j])(\dot{l}_{\beta_k}(\theta; z) - \dot{l}_{\zeta}(\theta; z)[h_k]) \leq B_j^{**} B_k^{**}$ , where  $B_j^*$ ,  $B_j^{**}$  take values of either  $B_j^L$  or  $B_j^U$ , and the same for  $B_k^*$ ,  $B_k^{**}$ . Thus

$$\begin{split} \|B_{j}^{**}B_{k}^{**} - B_{j}^{*}B_{k}^{*}\|_{\infty} &= \|(B_{j}^{**} - B_{j}^{*})B_{k}^{**} + (B_{k}^{**} - B_{k}^{*})B_{j}^{*}\|_{\infty} \\ &= \|B_{j}^{**} - B_{j}^{*}\|_{\infty}\|B_{k}^{**}\|_{\infty} + \|B_{k}^{**} - B_{k}^{*}\|_{\infty}\|B_{j}^{*}\|_{\infty} \\ &\lesssim \|B_{j}^{U} - B_{j}^{L}\|_{\infty} + \|B_{k}^{U} - B_{k}^{L}\|_{\infty} \\ &\lesssim \varepsilon, \end{split}$$

which yields

$$N_{[]}(\varepsilon, \mathcal{F}_{n,jk}^{\beta,\zeta}, \|\cdot\|_{\infty}) \lesssim (1/\varepsilon)^{cq_n+d}$$

for some constant c > 0.

Finally, similar to the verification of Assumption (A4) in the proof of Theorem 4.2 and together with the following fact:

$$(3.1) \begin{aligned} \|h_{j}^{*}(\cdot,\beta_{0}) - h_{j,n}^{*}(\cdot,\hat{\beta}_{n})\|_{\infty} \\ &= \|\dot{g}_{0}(t)P(X|\epsilon_{0} \geq t) - \dot{\hat{g}}_{n}(t_{\hat{\beta}_{n}})\bar{X}(t_{\hat{\beta}_{n}};\hat{\beta}_{n})\|_{\infty} \\ &\leq \|\dot{g}_{0}(t)P(X|\epsilon_{0} \geq t) - \dot{\hat{g}}_{n}(t)\bar{X}(t;\hat{\beta}_{n})\|_{\infty} \\ &+ \|\dot{g}_{n}(t_{\hat{\beta}_{n}})\bar{X}(t_{\hat{\beta}_{n}};\hat{\beta}_{n}) - \dot{g}_{n}(t_{\hat{\beta}_{n}})\bar{X}(t;\hat{\beta}_{n})\|_{\infty} \\ &+ \|\dot{g}_{n}(t_{\hat{\beta}_{n}})\bar{X}(t;\hat{\beta}_{n}) - \dot{g}_{n}(t)\bar{X}(t;\hat{\beta}_{n})\|_{\infty}, \end{aligned}$$

where the first term on the right hand side of inequality (3.1) is

$$\begin{aligned} \|\dot{g}_{0}(t)P(X|\epsilon_{0} \geq t) - \dot{\hat{g}}_{n}(t)\bar{X}(t;\hat{\beta}_{n})\|_{\infty} \\ &\leq \|\dot{g}_{0}(t) - \dot{\hat{g}}_{n}(t)\|_{\infty}\|P(X|\epsilon_{0} \geq t)\|_{\infty} \\ &+ \|P(X|\epsilon_{0} \geq t) - \bar{X}(t;\hat{\beta}_{n})\|_{\infty}\|\dot{\hat{g}}_{n}(t)\|_{\infty} \\ &= O_{p}(n^{-2v}) + O_{p}(n^{-1/2}) = O_{p}(n^{-2v}) \end{aligned}$$

12

by Lemma 7.4 and Corollary 6.21 in [2] for the first term and straightforward argument using empirical process theory for Donsker classes for the second term, together with the boundedness of  $||P(X|\epsilon_0 \ge t)||_{\infty}$  and  $||\dot{\hat{g}}_n(t)||_{\infty}$ , and it is straightforward to see that the remaining two terms on the right hand side of inequality (3.1) is  $O_p(n^{-1/2})$ . Thus we have  $I_{1n} = o_p(1)$ .

That  $I_{2n} = o_p(1)$  can be argued directly by the dominated convergence theorem. We now have proved the theorem.

## References.

- DING, Y. (2010). Some New Insights about the Accelerated Failure Time Model. Ph.D. Thesis, Biostatistics, University of Michigan.
- [2] SCHUMAKER, L. (1981). Spline Functions: Basic Theory. Wiley, New York.
- [3] SHEN, X. and WONG, W. H. (1994). Convergence Rate of Sieve Estimates. The Annals of Statistics 22 580–615.
- [4] WELLNER, J. A. and ZHANG, Y. (2007). Two Likelihood-based Semiparametric Estimation Methods for Panel Count Data with Covariates. *The Annals of Statistics* 35 2106–2142.

Department of Biostatistics University of Michigan 1420 Washington Heights Ann Arbor, MI 48109-2029 E-mail: yingding@umich.edu bnan@umich.edu