Supporting Information

Bedel et al. 10.1073/pnas.1320777110

Fig S1. Invariant NK T cells (iNKT) cells in 2A3-D Tg mice depends on CD1d for thymic development. (*A*) Purified lymphocytes from the thymus, spleen, liver, and peripheral lymph nodes (pLN) of C57BL/6 or 2A3-D Tg mice were stained for indicated markers to assess reactivity of iNKT cells to self-CD1d and PBS57-CD1d (data representative of n = 3). (*B*) Purified lymphocytes from the thymus, spleen, liver, and pLN of 2A3-D Tg CD1d1d2^{-/-} mice were stained for indicated markers to confirm that iNKT cell positive selection is still restricted to CD1d (data representative of n = 2). (C) Purified lymphocytes from the thymus, spleen, liver, and pLN of J α 18^{-/-} mice were stained for indicated markers to confirm the specificity of iNKT cell staining (data representative of n = 2).

Fig S2. Ly108 expression levels are similar on C57BL6 and 2A3-D Tg thymocytes. Purified lymphocytes from the thymus of C57BL/6 or 2A3-D Tg mice were stained for indicated markers to assess Ly108 expression level. The gating strategy to obtain total thymocytes is depicted and Ly108 gMFI (geometric mean flouorescent intensity) is indicated as a representative value of n = 3.

Fig S3. 2A3-D Tg NKT cells do not express more Annexin V compared with wild-type control. Total thymocytes were stained for CD24 and CD44 to define the different developmental stages. Here, the stages are defined as follows: stage 0 (CD24^{ligh}CD44^{low}), stage 1 (CD24^{low}CD44^{low}), stage 2/3 (CD24^{low}CD44^{ligh}). Total thymocytes were stained for Annexin V and 7-ADD to assess apoptosis and necrosis respectively (data representative of n = 2). ns, not significant.

-																_															
C	C57BL/6 2A														2A3	2A3-D															
								J	α18			G	erml	ine										J	α18			G	erml	ine	
TG	T GT	Val4	TZ G GGG	A GAI	' AGA	GGT	TCA	GCC	TTA	GGG	AGG	CTG	CAT	TTT	nb of sequences	TGT	V GTG	al4 GTG	TA	GAT G	AGA	GGT	TCA	GCC	TTA	GGG	AGG	CTG	CAT	TTT	nb of sequences
TG' TG' TG' TG'	r GT r GT r GT r GT r GT	G GT G GT G GT G GT G GT	G GGG G GG G GG G GG G GG G GG	GAT GAT GAT GAT GAT	AGA AGA AGA AGA AGA	GGT GGT GGT GGT	TCA TCA TCA TCA TCA	GCC GCC GCC GCC GCC	TTA TTA TTA TTA TTA	GGG GGG GGG GGG GGG	AGG AGG AGG AGG AGG	CTG CTG CTG CTG CTG	CAT CAT CAT CAT CAT	TTT TTT TTT TTT TTT	2339 874 634 178 67	TGT TGT TGT TGT TGT TGT TGT TGT TGT	GTG GTG GTG GTG GTG GTG GTG GTG GTG	GTG GTG GTG GTG GTG GTG GTG GTG GTG	GGC GGC GGC GGC GGC GGC GGC GGC GGC	GCG GCA GCT GCG GCC GCG GCG GCG GCA GCT GCC	AGA AGA CGA AGA AGG CGG CGA CGA CGA	GGT GGT GGT GGT GGT GGT GGT GGT	TCA TCA TCA TCA TCA TCA TCA TCA TCA	GCC GCC GCC GCC GCC GCC GCC GCC GCC GCC	TTA TTA TTA TTA TTA TTA TTA TTA TTA	GGG GGG GGG GGG GGG GGG GGG GGG GGG	AGG AGG AGG AGG AGG AGG AGG AGG AGG	CTG CTG CTG CTG CTG CTG CTG CTG CTG CTG	CAT CAT CAT CAT CAT CAT CAT CAT CAT	TTT TTT TTT TTT TTT TTT TTT TTT TTT	3431 695 316 294 182 85 58 47 40 20
C 90	V 91	V 92	G 93	D 94	R 95	G 96	S 97	A 98	L 99	G 100	R 101	L 102	H 103	F 104		C 90	V 91	V 92	G 93	A 94	R 95	G 96	S 97	A 98	L 99	G 100	R 101	L 102	H 103	F 104	
Usage	100- 75- 50- 25- 0-	²⁰ Liver (22552 sequences) 75- 50- 25- 0 60556576554525099874699476994769													51413	100 75- 50- 25- 9 9 9 9 9 9 12 13							14	CVVGHRGSALGRLHF CVVGCRGSALGRLHF CVVGCRGSALGRLHF CVVGERGSALGRLHF CVVGRRGSALGRLHF CVVGARGSALGRLHF							
%	100- 75-	Ly	mph	No	des	(31	727	sec	que	nces	s)										%	75-	19 19								
	50- 25-																					50- 25-					cv	VG <mark>/</mark>	RG	SAL	GRLHF
	0-	60595	57565	545352	515049	484746	451413	342414	03888	73655	433323	313029	282726	252423	22212019181716	51413	21110	987	654	321		0-	12	13	14	15	16	17	7 18	3	
											IKA	٩J													CD	K3 :	size	(aa	1)		

Fig 54. Complementary data for Fig. 5. (A) PBS57-CD1d tetramer-positive T-cell receptor $(TCR)-\beta^+$ cells were sorted from the spleen and peripheral lymph nodes of 2A3-D Tg mice. mRNA was extracted and transformed into cDNA. cDNAs were amplified by PCR with V α -specific forward primers and a C α -specific reverse primer. (*B*) Sequences of the V α 14-J α 18 rearrangements found in iNKT cells from the spleen of C57BL/6 and 2A3-D Tg mice. For each observed rearrangement, the number of sequences, contribution of the V α 14 and J α 18 chain and existence of p-addition (blue) or n-addiction is depicted (data representative of n = 2). (C) PCR analysis was performed to evaluate the use frequency of TCR- α joining (TRAJ) genes encoding productive, in-frame rearrangements with the TRAV11 family in iNKT cells from the liver or the pLN or C57BL/6 or 2A-D Tg mice. (*D*) Amino acid composition and size of the CDR3 of the α -chain in C57BL/6 or 2A3-D Tg in iNKT cells from the liver and pLN.

Fig S5. Specific loss of self-reactivity in V α 14 natural variants paired with 2A3-D Tg V β . (A) 5KC Hybridoma expressing 2A3-D Tg V β were transduced with indicated V α 14 natural variants and tested for reactivity with self-CD1d and PBS57-CD1d tetramers (data representative of n = 4). (B) For each 5KC hybridoma expressing a V α 14 natural variant, the gMFI of the PBS57-CD1d or self-CD1d tetramer staining was evaluated for a narrow slice of TCR expression. Relative percentage of this gMFI compared with the gMFI of the D94 variant with PBS57-CD1d and self-CD1d is shown (n = 3).

Fig S6. Hybridomas expressing the D94A V α 14 natural variant paired with 2A3-D Tg V β do not induce Egr-2 upon autoreactive response to CD1d-transfected A20 cells. The TCR⁻ 5KC hybridoma was transduced with the 2A3-D β -chain paired either with the D94 wild-type V α 14 iNKT chain or the A94 variant α -chain. Hybridoma were stimulated for 2 h with A20 lymphoma cells transfected or not with mouse CD1d in the presence or not of 200 ng/mL of the antigen PBS57. Following stimulation the levels of Egr-2 were measured by intracellular staining. The percentage of Egr-2⁺ cells in each condition is shown. Results are representative of two independent experiments.