Supporting Information

Hams et al. 10.1073/pnas.1315854111

Fig. S1. Cellular infiltration into the lungs in response to *Schistosoma mansoni* egg challenge. Pulmonary granulomas were induced in WT, $ll25^{-/-}$ and $ll17br^{-/-}$ and *Mcpt8Cre* mice. Absolute numbers of CD4 cells (B220⁻CD4⁺) (A) and basophils (CD4⁻CD8⁻CD19⁻Fc₂R1⁺c-kit⁻IL-4⁺) (B) were quantified in the lung tissue of unchallenged mice and egg-challenged mice at day 7. (C) Total collagen in lung digests expressed per mg of lung protein for WT and basophil-depleted *Mcpt8Cre* mice. Data are representative of mean \pm SEM (n = 2-6) from two individual experimental replicates (*P < 0.05).

Fig. S2. Cytokine expression in the lungs and mediastinal lymph nodes (MLN) in response to *S. mansoni* egg challenge. Pulmonary granulomas were induced in WT *II25-*, and *II17br*-deficient mice. (*A*) The proportion of IL-4⁺CD4⁺ T cells in the lung and MLN was quantified at days 0, 7, 14, and 21. The percentage of IL-13⁺ILC2 (CD3⁻CD4⁻CD8⁻CD19⁻CD11b⁻CD11b⁻CD11c⁻Gr-1⁻FccR1⁻F4/80⁻IL-7Ra⁺Sca-1⁺) and IL-13⁺CD4⁺ T cells in the lung (*B*) and MLN (*C*) of WT *II25^{-/-}* and *II17br^{-/-}* were quantified at days 0, 7, 14, and 21 postegg challenge. Data are representative of mean \pm SEM (n = 2-3) from two individual experimental replicates (ns, not significant; *P < 0.05).

Fig. S3. Expression of IL-25, IL-33, and thymic stromal lymphopoietin (TSLP) in response to egg-induced pulmonary fibrosis. (*A*) Expression of IL-25, IL-33, and TSLP determined in the lungs of WT mice in response to egg-induced fibrosis assessed by ELISA and expressed as picogram (pg) per mg of protein. (*B*) Pulmonary granulomas were induced in WT-, IL-17BR (*II17br^{-/-}*)-, T1/ST2 (*T1/st2^{-/-}*)-, and TSLPR (*Ts/pr^{-/-}*)-deficient mice and total collagen in lung digests expressed per mg of lung protein. Data are representative of mean \pm SEM (n = 3-4) from two individual experimental replicates (*P < 0.05, **P < 0.01).

Fig. S4. IL-25–deficient mice have decreased pulmonary collagen deposition in bleomycin-induced pulmonary fibrosis Pulmonary fibrosis was induced in groups of WT, *II25^{-/-}* and *II17br^{-/-}* by intratracheal injection of 0.15 U bleomycin. (*A*) Collagen was assayed in the lungs by histology, using Masson's Trichrome (scale, 50 μ M) and by (*B*) quantitative analysis. (*C*) Levels of IL-4, IL-13, TGF β , and IL-17A in the lung were expressed per mg of lung protein. Data are representative of mean \pm SEM (n = 6–8) from three individual experimental replicates (*P < 0.05, **P < 0.01).

Fig. S5. Mice deficient in the transcription factor ROR α show impairment in the generation of ILC2 and pulmonary collagen deposition. (*A*) Frequency of ILC2 (CD3⁻CD4⁻CD8⁻CD19⁻CD11b⁻CD11c⁻Gr-1⁻Fc α 1⁻F4/80⁻IL-7R α +Sca-1⁺) in the lung of unchallenged WT and *Rora*^{sg/sg} mice. ILC2 expansion in the lungs (*B*) and pulmonary collagen deposition (*C*) in WT and *Rora*^{sg/sg} mice after egg challenge. Bone marrow chimeras were generated using donor cells from WT and *Rora*^{sg/sg} mice and after egg challenge the pulmonary collagen analyzed by histology (scale, 50 μ M) and by quantitative analysis (*C*). Data are representative of mean \pm SEM (*n* = 2–4) from three individual experimental replicates (**P* < 0.05, ***P* < 0.01).

Fig. S6. Cytokine expression in the bronchalveolar lavage (BAL). BAL fluid and lung tissue of idiopathic pulmonary fibrosis (IPF) patients. BAL fluid was collected from patients with IPF at diagnosis and at a 1-y follow-up (IPF + 1 y) and patients diagnosed with erythema nodosum (EN; nonprogressive patients). (A) Cytokines in BAL fluid were quantified by ELISA and expressed as fold-increase relative to EN patients. (*B*) Correlation between BAL fluid levels of cytokines and periostin was plotted and Pearson's correlation calculated and displayed on the graph. Data are representative of mean \pm SEM (n = 3, EN; n = 14, IPF and IPF + 1 y) (*P < 0.05, **P < 0.01).

Table S1.	Characteristics and pulmonary function of IPF subjects
at baseline	e and 12-mo follow-up

Demographic	IPF subjects	
No.	14	
Sex, M/F, %	64/36	
Median age, year range	66 (50–75)	
Smoker, ever/never, %	73/27	
Physiological, baseline		
FEV1, % predicted	98.7 (74.2–113)	
FVC1, % predicted	92.1 (70.7–115)	
FEV1/FVC1 ratio	81.8 (73.9–86.9)	
T _{CO} , % predicted	51.4 (30.9–67.9)	
Disease progression, 12 mo		
FEV1 slope	-0.07 (-19.4-5.9)	
FVC1 slope	3.10 (-19.4–8.0)	
T _{CO} slope	-4.10 (-22.4-10.6)	

Values are presented as median (range). Slope values represent the % change at 12 mo from baseline values. FEV1, forced expiratory volume in 1 s; FVC1, forced vital capacity; T_{CO} , transfer factor–absorption of CO in one breath.

PNAS PNAS