## **Supporting Information**

## Patrick et al. 10.1073/pnas.1319000111



**Fig. S1.** Plasmid maps for the vectors used in this study. (A) Doxycycline-inducible luciferase–E2A–Oatp1. (B) Doxycycline-inducible mStrawberry–E2A–Oatp1. (C) Lentiviral-packaging plasmid pBOBI with constitutive PGK (phosphoglycerate kinase) promoter and mStrawberry–E2A–Oatp1 coding sequence.



Fig. S2. Viability was not reduced by Oatp1 expression. (A) Clonal HEK 293T and (B) HCT 116 cells carrying the luciferase–E2A–Oatp1 transgene, regulated by a TRE3G doxycycline-inducible promoter, were induced at the indicated time (vertical dotted line) with the indicated concentration of doxycycline. Growth was assessed by measuring the degree of confluence on the plate (Incucyte, Essen Bioscience), with three replicate wells read per condition and nine fields of view per well. Error bars show SEM.



**Fig. S3.** Gadolinium-ethoxybenzyl-diethylenetriamine pentaacetic acid (Gd-EOB-DTPA) uptake and washout in MCF-7 cells transfected to express Oatp1. Measurements of uptake (A) and washout (B) in untransfected MCF-7 cells, in MCF-7 cells stably transfected with the empty vector (EF6) and in MCF-7 cells stably transfected with a vector expressing Oatp1a1. For uptake measurements, cells were incubated with 5 mM Gd-EOB-DTPA for the indicated times in transport buffer at 37 °C. For the efflux measurements, cells were preloaded by incubation with 5 mM Gd-EOB-DTPA for 120 min. They were then washed twice with ice-cold transport buffer and incubated in this buffer at 37 °C. The Gd<sup>3+</sup>-chelate concentration was measured in cell lysates using an inversion recovery  $T_1$  measurement and assuming a molar relaxivity for the chelate of 5.7 mM<sup>-1</sup>·s<sup>-1</sup>. The intracellular concentration was calculated by assuming that 120 mg of protein corresponds to 0.64 mL intracellular water (1). The points represent the average of three independent experiments (with each sample measured in triplicate) for uptake and two independent experiments for washout.

1. Reitzer LJ, Wice BM, Kennell D (1979) Evidence that glutamine, not sugar, is the major energy source for cultured HeLa cells. J Biol Chem 254(8):2669-2676.



**Fig. S4.** Gd-EOB-DTPA uptake in HEK 293T cells expressing Oatp1. Relaxation rates ( $R_1 = 1/T_1$ ) were measured by  $T_1$  imaging of washed pellets of HEK 293T cells that had been incubated for 90 min with 0.0, 0.25 or 0.5 mM Gd-EOB-DTPA. Both cell lines (control and Oatp1) expressed luciferase–YFP. The Oatp1 cells also expressed mStrawberry–Oatp1.  $R_1$  was significantly increased in cells expressing Oatp1 compared with control cells (\*\*P < 0.01, two-tailed unpaired t test, n = 3). Error bars show SEM.



Fig. S5. HEK 293T xenograft histology. Xenografts from a representative mouse were excised 80 h after Gd-EOB-DTPA administration (Fig. 4), fixed for 24 h in paraformaldehyde, paraffin-embedded, and sectioned. Hematoxylin/eosin (H&E) staining showed minimal necrosis in both xenografts. Immunohistochemical staining for the red fluorescent protein (RFP) mStrawberry confirmed expression of the mStrawberry–Oatp1 transgene.







**Fig. 57.** Autoradiography showed a correlation between <sup>111</sup>In-EOB-DTPA uptake and tissue viability in Oatp1-expressing xenografts. (A) Representative autoradiograms and the corresponding H&E-stained sections from HEK 293T xenografts. The H&E-stained sections showed the viable (V) and necrotic (N) regions of the xenografts. Control xenografts accumulated <sup>111</sup>In-EOB-DTPA in necrotic regions at 1 h after injection, which had cleared by 5 h. Xenografts expressing Oatp1 accumulated <sup>111</sup>In-EOB-DTPA in viable tissue, and to a lesser extent in necrotic regions at 1 h after injection, but this had cleared from the necrotic regions by 5 h, leaving signals largely in the viable regions of the xenografts. (*B*) The ratio of background-corrected activity in viable regions of xenografts expressing Oatp1 versus viable regions of control xenografts (n = 3). Viable and necrotic regions were determined from the corresponding H&E-stained sections. The error bars show the mean and SD.

| Gene reporter                        | Substrate                                                                              | Contrast type                                    | Fold contrast                                                                                       | Promoter                                    | Vector                                              | Tissue type                           | Refs.        |
|--------------------------------------|----------------------------------------------------------------------------------------|--------------------------------------------------|-----------------------------------------------------------------------------------------------------|---------------------------------------------|-----------------------------------------------------|---------------------------------------|--------------|
| Creatine kinase                      | Phosphocreatine (endogenous<br>and supplemented)                                       | <sup>31</sup> P NMR                              | Twenty-threefold increase<br>in phosphocreatine/ATP ratio                                           | Transthyretin (liver<br>-specific promotor) | Plasmid used<br>to transfect pronuclei              | Liver                                 | (1)          |
|                                      | Phosphocreatine (endogenous                                                            | <sup>31</sup> P NMR                              | compared with control<br>Not stated                                                                 | CMV                                         | (transgenic mice)<br>Adenovirus via tail            | Liver                                 | (2)          |
| Tyrosinase                           | Endogenous iron                                                                        | T <sub>2</sub>                                   | 1.35-fold in vivo                                                                                   | CMV                                         | Plasmid                                             | Mouse fibroblasts,<br>нек разт        | (3)          |
|                                      | Endogenous iron                                                                        | T <sub>2</sub> /T <sub>1</sub>                   | T <sub>2</sub> - 36%, T <sub>1</sub> - 26%, enhancement<br>in vivo                                  | CMV                                         | Plasmid                                             | MCF-7 xenograft                       | (4)          |
| Transferrin receptor                 | Tf-MIONs<br>Tf-MIONs                                                                   | T <sub>2</sub><br>T <sub>2</sub> /T <sub>1</sub> | 5.3-fold decrease in signal in vivo 2.4-fold decrease in $T_2$ , 1.28-fold                          | hTR<br>Tet-off                              | Plasmid<br>Plasmid                                  | 9L gliosarcoma<br>9L gliosarcoma      | (2)          |
| LacZ                                 | EGadMe (LacZ cleavable Gd <sup>3+</sup>                                                | <i>T</i>                                         | enhancement of $T_1$ , in vivo $T_1$ 57% enhancement in vivo                                        | N/A                                         | mRNA                                                | Xenopus                               | E E          |
|                                      | -based contrast agent)<br>OFPNPG (2-Fluoro-4-nitrophenol<br>-heta-n-ralartonvranoside) | <sup>19</sup> F                                  | Not stated, only performed in vitro                                                                 | CMV                                         | Plasmid                                             | embryonic tissue<br>MCF-7, 9L glioma  | (8)          |
|                                      | OFPNPG                                                                                 | 19F                                              | Signal-to-noise ratio of 20–30 in <sup>19</sup> F<br>spectra (after direct injection<br>into tumor) | CMV                                         | Plasmid                                             | PC3 prostate tumor                    | (6)          |
|                                      | S-Gal, and <sup>19</sup> F S-gal                                                       | <sup>19</sup> F/T <sub>2</sub>                   | 36%, increase, R <sub>2</sub> , (intratumoral injection) <sup>19</sup> F did not work in vivo       | CMV                                         | Plasmid                                             | PC3 prostate tumor                    | (10)         |
|                                      | S-Gal                                                                                  | $T_2$                                            | 3.5-fold decrease in signal<br>compared with control after<br>injection (intratumoral)              | CMV                                         | Plasmid                                             | MCF-7                                 | (11)         |
| Arginine kinase                      | Endogenous arginine                                                                    | <sup>31</sup> P NMR                              | Phosphoarginine concentration<br>comparable to that<br>of phosphocreatine                           | CMV                                         | Adenovirus                                          | Skeletal muscle                       | (12)         |
| Ferritin                             | Endogenous iron<br>Endogenous iron                                                     | $T_2$<br>$T_2$                                   | 12% increase in $R_2$ in vivo<br>2.5-fold increase in $R_2$ in vitro, not<br>stated for in vivo     | Tet-off<br>CMV                              | Plasmid<br>Adenovirus                               | C6 glioma<br>Mouse brain              | (13)<br>(14) |
| Ferritin and<br>transferrin receptor | Supplementary iron                                                                     | $T_2$                                            | 21% $R_2^*$ enhancement ex vivo                                                                     | Sv40                                        | Electroporation with<br>pZeoSV2 plasmid             | C17 glioma                            | (15)         |
| BAP-TM                               | Bis-5-HT-DTPA(Gd)/streptavidin-<br>MNP/streptavidin-Alexa 680                          | T <sub>1</sub> /T <sub>2</sub>                   | twofold increase in $R_{2}$ , 3.3-fold increase in $R_1$ $(n = 1)$                                  | CMV                                         | Lentivirus                                          | BHK12                                 | (16)         |
| VTC/VMA 2                            | Endogenous                                                                             | <sup>31</sup> P NMR                              | Not stated                                                                                          | Gal1                                        | Plasmid                                             | Saccharomyces<br>cerevisiae           | (17)         |
| Lysine-rich protein                  | N/A                                                                                    | CEST                                             | 8.2% enhancement vs. 3.5% for<br>control                                                            | CMV                                         | pIRES2-EGFP, stable<br>transfection<br>with plasmid | 9L glioma                             | (18)         |
| MagA                                 | Iron supplement                                                                        | $T_2$                                            | Three- to fourfold change in $R_2$ in vitro, not stated for in vivo                                 | CMV/Tet CMV                                 | Lentivirus                                          | 293FT                                 | (19)         |
| Carboxypeptidase G2                  | Hyperpolarized 3,5-DFBGlu                                                              | <sup>13</sup> C NMR                              | Not stated                                                                                          | N/A                                         | N/A                                                 | N/A (experiments<br>done in solution) | (20)         |
| Aminoacylase                         | Hyperpolarized [1- <sup>13</sup> C]N-acetyl-<br><sub>L</sub> -methionine               | <sup>13</sup> C NMR                              | Not stated for in vitro, signal-<br>to-noise ratio of 17 in solution                                | CMV                                         | pcDNA 3.1                                           | HEK 293T in vitro                     | (21)         |

## Table S1. Magnetic resonance gene reporters described previously

PNAS PNAS

| Table S1. Cont.                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                 |                                                                                                                                                                                                                      |                                                                                                |                                                                      |                                           |           |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|-------------------------------------------|-----------|
| Gene reporter                                                                                                                                                   | Substrate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Contrast type                                                                                                                                                                                   | Fold contrast                                                                                                                                                                                                        | Promoter                                                                                       | Vector                                                               | Tissue type                               | Refs.     |
| mbGlucBiotin                                                                                                                                                    | <sup>111</sup> In-DTPA-biotin, coelenterazine,<br>magnetic nanoparticles                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | T <sub>2</sub> , PET,<br>bioluminescence                                                                                                                                                        | Twofold increase in $R_2$ in vivo                                                                                                                                                                                    | CMV                                                                                            | Lentivirus (polyclonal<br>cells)                                     | Gli36 glioma cells                        | (22)      |
| DMT1                                                                                                                                                            | Manganese chloride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Т,                                                                                                                                                                                              | 1.6 to 1.8-fold R1 enhancement<br>in vivo                                                                                                                                                                            | CAG                                                                                            | Plasmid/lentiviral                                                   | HEK, B16, GL26,<br>neonate mouse<br>brain | (23)      |
| HSV-TK                                                                                                                                                          | 5-methyl-5,6-dihydrothymidine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | CEST                                                                                                                                                                                            | Change of 2% in signal                                                                                                                                                                                               | CMV                                                                                            | Lentivirus                                                           | 9L glioma                                 | (24)      |
| CAG, cytomegalo<br>N/A, not applicable;<br>*Measurement of a                                                                                                    | virus-β-actin-β-globin; CEST, chemical excha<br>PET, positron emission tomography.<br>specific type of relaxation that differs from                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ange saturation transfe<br>n R2.                                                                                                                                                                | er; DMT1, divalent metal ion transport                                                                                                                                                                               | er; MIONs, monocrystalli                                                                       | ie iron oxide nanoparticles; l                                       | MNPs, magnetic nanop.                     | articles; |
| 1. Koretsky AP, Brosna<br>2. Auricino A, Zhou R,<br>3. Weissleder R, et al. (<br>4. Alfke H, et al. (2003<br>5. Weissleder R, et al. (<br>6. Moore A, Josephson | ın MJ, Chen LH, Chen JD, Van Dyke T (1990) NMR (<br>Wilson JM, Glickson JD, (2001) In vivo detection o<br>(1997) MR imaging and scintigraphy of gene expre-<br>) In vitro MR imaging of regulated gene expression<br>(2000) In vivo magnetic resonance imaging of tran-<br>L, Bhorade RM, Basilion JP, Weissleder R (2001) H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | detection of creatine kina<br>of gene expression in liver<br>ession through melanin in<br>yn. <i>Radiology</i> 228(2):488-41<br>isgene expression. <i>Nat Met</i><br>Juman transferrin receptor | se expressed in liver of transgenic mice: Dete<br>by <sup>31</sup> P nuclear magnetic resonance spectrosc<br>duction. <i>Radiology</i> 204(2):425-429.<br>92.<br>• Gene as a marker gene for MR imaging. <i>R</i> ac | rmination of free ADP levels<br>ppy employing creatine kina:<br><i>liology</i> 221(1):244–250. | Proc Nati Acad Sci USA 87(8):311<br>e as a marker gene. Proc Nati Ac | 2-3116.<br>ad Sci USA 98(9):5205-5210     | ·         |
| 7. Louie AY, et al. (200<br>8. Kodibagkar VD, Yu J<br>950, 967                                                                                                  | 00) In vivo visualization of gene expression using n<br>I, Liu L, Hetherington HP, Mason RP (2006) Imaging                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | magnetic resonance imagir<br>3 beta-galactosidase activit;                                                                                                                                      | ng. <i>Nat Biotechnol</i> 18(3):321–325.<br>y using 19F chemical shift imaging of LacZ ger                                                                                                                           | ie-reporter molecule 2-fluoro                                                                  | 4-nitrophenol-beta-D-galactopyra                                     | anoside. <i>Magn Reson Imagi</i>          | ng 24(7): |
| 9. Liu L, Kodibagkar VC<br>2019                                                                                                                                 | Ͻ, Yu JX, Mason RP (2007) <sup>19</sup> F-NMR detection of lac2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Z gene expression via the e                                                                                                                                                                     | nzymic hydrolysis of 2-fluoro-4-nitrophenyl b                                                                                                                                                                        | eta-D-galactopyranoside in viv                                                                 | o in PC3 prostate tumor xenograf                                     | ts in the mouse. FASEB J 211              | 9):2014–  |
| 10. Yu JX, Kodibagkar V<br>11. Cui W, Liu L, Kodiba                                                                                                             | VD, Hallac RR, Liu L, Mason RP (2012) Dual 19F/1H<br>39kar VD, Mason RP (2010) S-Gal, a novel <sup>1</sup> H MRI r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | IMR gene reporter molecu<br>reporter for beta-galactosi                                                                                                                                         | les for in vivo detection of $\beta$ -galactosidase. $\textit{E}$ dase. Magn Reson Med 64(1):65–71.                                                                                                                  | ioconjug Chem 23(3):596–60:                                                                    |                                                                      |                                           |           |
| 12. Walter G, Barton ER<br>13. Cohen B, Dafni H, N                                                                                                              | V, Sweeney HL (2000) Noninvasive measurement of<br>Meir G, Harmelin A, Neeman M (2005) Ferritin as ar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | f gene expression in skelet<br>in endogenous MRI reporte                                                                                                                                        | al muscle. Proc Natl Acad Sci USA 97(10):515<br>ar for noninvasive imaging of gene expressio                                                                                                                         | 1–5155.<br>n in C6 glioma tumors. <i>Neop</i>                                                  | lasia 7(2):109–117.                                                  |                                           |           |
| ו4. Genove ש' DeMarco<br>15. Deans AE, et al. (200<br>16 דממסטיב PA הלי מי לי                                                                                   | ט (ע א א שי א א א א א א א א א א א א א א א א                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | isgene reporter for in vivo<br>ferrin receptor and ferritin<br>for for in vivo imaging M                                                                                                        | magnetic resonance imaging. Nat Med 11(4)<br>1. Magn Reson Med 56(1):51–59.<br>14. Motthodr. 2/51:201-205                                                                                                            | 450454.                                                                                        |                                                                      |                                           |           |
| 17. Ki S, et al. (2006) A<br>18. Gilad AA. et al. (2007) A                                                                                                      | zooo) wetaboic biotinylation of cen surface fecep<br>novel magnetic resonance-based method to measi<br>[7] Artificial reporter gene providing MRI contrast                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ure gene expression in livi<br>ure gene expression in livi<br>based on proton exchange                                                                                                          | na mechados 250,250 econocidados<br>na cells. Nucleic Acids Res 34(6):e51.<br>e. Nat Biotechnol 25(2):217–219.                                                                                                       |                                                                                                |                                                                      |                                           |           |
| 19. Zurkiya O, Chan AM<br>20. Jamin Y, et al. (2009                                                                                                             | V, Hu X (2008) MagA is sufficient for producing ma<br>1) Humerpolarized (1310 mannetic reconance detect                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | agnetic nanoparticles in m<br>tion of carboxynenticlase C                                                                                                                                       | ammalian cells, making it an MRI reporter. A                                                                                                                                                                         | 1agn Reson Med 59(6):1225-                                                                     | 231.                                                                 |                                           |           |
| 21. Chen AP, Hurd RE, C<br>21. Niers IM, et al. (2013)                                                                                                          | <ol> <li>Alperipotence (13)C magnetic resonance accession of the providence of t</li></ol> | All reporter probe system (<br>imaging 1 Am Chem Soc                                                                                                                                            | using dynamic nuclear polarization. NMR Bio<br>134/11)-5149-5156                                                                                                                                                     | ned 24(5):514–520.                                                                             |                                                                      |                                           |           |
| 23. Bartelle BB, Szulc Kl<br>24. Bar-Shir A, et al. (20                                                                                                         | U, Suero-Abreu GA, Rodriguez JJ, Turnbull DH (201<br>13) Transforming thymidine into a magnetic resor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 13) Divalent metal transpo<br>nance imaging probe for n                                                                                                                                         | orter, DMT1: A novel MRI reporter protein. M<br>nonitoring gene expression. J Am Chem Soc                                                                                                                            | agn Reson Med 70(3):842–85<br>135(4):1617–1624.                                                | ö                                                                    |                                           |           |

PNAS PNAS

Patrick et al. www.pnas.org/cgi/content/short/1319000111



**Movie S1.** Three-dimensional gradient-echo pulse sequence taken 30–60 min (*Left*) and 23 h (*Right*) after injection of 0.664 mmoles/kg Gd-EOB-DTPA, from a representative mouse bearing Oatp1-expressing (right flank) and control (left flank) xenografts. Oatp1-expressing xenograft appears hyperintense. Enhancement is also visible in the liver.

Movie S1

AS PNAS