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Morphologies of Planar Epithelial Cells
Derivation of the Effective Energy. For an hexagonal prism,
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or, if the volume is constant ðV =V0Þ,

Choosing V 1=3
0 as the unit length and A

V 2=3
0

as the unit energy,

we obtain a dimensionless energy with only three effective pa-
rameters. Using nondimensional variables that we rename as

r
ð4=3Þ1=6V 1=3

0

→ r and ,

And from the rescaling in the main text,

Force Balance on a Cell. We first write the force balance in the
vertical direction (Fig. S1), on the apical surface. The com-
pressibility of the cell creates a pressure KðV −V0Þ, so

2A
h3

− αlPap +KðV −V0ÞAapical = 0; [S5]

which is equivalent to .

We now write the force balance in the radial direction, on
a lateral face of the prism:
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which again is equivalent to .

Orders of Magnitude.Ref. 1 studies the confinement of actin fibers
of physiological concentrations in emulsion droplets of radii
varying between 5 μm and 50 μm. Because actin filaments have
a persistence length of around 15 μm, confinement effects occur
around these length scales and are monitored through micro-
rheological measurements of the Plateau modulus G0. This
Plateau modulus is thus roughly constant for large sizes, before
increasing drastically with confinement. The average value at the

onset of confinement is of order G0 = 0:2 Pa, which fixes an
energy scale, for a cell of volume V0 ≈ 10−15m3 (2), of G0V0 =
2:10−16   J. This corresponds to a force of 1 nN exerted on a
length scale of 200 nm, not far from the values forces exerted by
cytoskeletal filament bundles in a cell.
Because the energy scale in our model is A

V 2=3
0

, we make a rough

estimation A≈ 10−24   J ·m2 in the main text.
Ref. 3 studies the rheology of Xenopus egg cytoplasmic ex-

tracts, which contain actin, microtubules, and intermediate fila-
ments. Moreover, the extracts remains metabolically active, with
reserves of ATP, and thus quite close to physiological conditions.
The extract is shown to behave like a viscoelastic solid over
timescales of several hours. The moduli measured are in the
range 2− 10 Pa, always higher than that of the loss modulus, and
therefore one order of magnitude larger than the moduli of actin
filaments alone. Therefore, we estimated in the main text
A≈ 10−24 − 10−23   J ·m2.
Obviously, the mammalian epithelial cell is a more complex

material. In particular, filaments can be bundled and aligned
actively in vivo, which would decrease the energy necessary for
confinement. In our model, this would translate to a homothetic
increase of our parameters γb, αl, and Λa. One could imagine
a biochemical feedback of the nucleus compression on the values
of the tensions, which could be hinted by experiments such as ref.
4, showing that a mechanical compression of the nucleus in en-
dothelial cells caused a compaction of chromatin.
All these remarks reinforce the pertinence of drawing phase

diagrams of cellular morphology: Although biological tissues can
take not trivial paths on these phase diagrams, they are still bound
to them, and the qualitative results we describe apply.

Critical Point. A critical point, defined as
(where two spinodals meet), separates regions of continuous and
discontinuous morphological transitions. It is possible to get
analytical limits for the coordinates of the critical point. If
αl � −1, then the lateral tension is enough to stabilize cells
to a nonzero base length, and the term 1

r2 in the energy becomes
negligible. The condition can then be written as

2γbr+
αl
r2
+Λa + 4r3 = 0 [S7]

2γb −
2αl
r3

+ 12 r2 = 0: [S8]

As long as γb < 0 and jγbj � 1, there are two clear limits to

Eq. S8: r=
ffiffiffiffiffiffi
−γb
6

q
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, which, respectively, yield in the

ðαl;ΛaÞ plane Λa = 4
3
ffiffi
6

p ð−γbÞ3=2 and αl =
Λ3
a

27γ2b
. One can check that

this is indeed is a good approximation of the numerical solution
(Fig. S4).
Moreover, the condition , under this approximation,

leads to r=
�
4
αl

�1=5
, and at the critical point, αlc = 1

25
ffiffiffiffi
10

p ð−γbÞ5=2 and
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ffiffi
2
5

q
ð−γbÞ3=2 .

Cell Confinement and Phase Separation. We come back to the
question of a tissue confined on a rigid substrate, with no division
or apoptosis, for which no buckling is allowed. Considering N
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identical cells and a total area A0, there are no degrees of
freedom: r2 = A0

N = r20. The total energy of the layer is then

Nevertheless, we have seen that our mechanical equations lead
to two possible cell aspect ratios. Therefore, the cells can mini-
mize their total energy by phase separating into Nc columnar cells
of area r2c and Ns squamous cells of area rs, such that N =Ns +Nc

and A0 =Nsr2s +Ncr2c . We define ns = Ns
N and nc = Nc

N as the frac-
tions of squamous and columnar cells and a0 = A0

N as the average
area accessible per cell.
The total energy is then

We minimize the energy from Eq. S10 with respect to the two
independent parameters rs and ns while varying the single rele-
vant control parameter, a0. In this problem, γb drops out of the
total energy, because the basal area is constant. On the other
hand, Λa and αl control the onset of phase separation of the cells.
As analyzed previously, high values of either Λa or αl favor
a bistable equilibrium. When squamous cells are more and more
confined, their area uniformly decreases until a phase separation
threshold, after which a mixture of columnar and squamous cells
coexists Fig. S9A). Additional confinement does not change the
morphology of either type of cell. Instead, the sheet accom-
modates the decreased area by converting squamous cells into
columnar cells (a numerical calculation is given in Fig. S9B). For
very high confinements, only columnar cells remain and are
progressively squeezed additionally toward more and more co-
lumnar aspect ratios. For low values of Λa or αl, no phase sep-
aration occurs, and the morphological transition is instead
smooth (Fig. S9C). We numerically compute a phase diagram
showing the region of phase separation (Fig. S9D).

Epithelial Sheet Bending
Derivation of the Energy for Tubes and Spheres. In the case of a cell
curved in two directions (forming a sphere), we define the height
h of a cell (we consider a cell as a section of a shell, so that the
distance between apical and basal sides is h everywhere; Fig. S5),
the side length of the apical surface r1, and the side length of the
basal surface r2. To calculate the confinement energy of a co-
lumnar curved cell, we parameterize the characteristic radius of
a cell at a height z as rðzÞ= r1 + r2 − r1

h z. We integrate the con-
finement energy of slices of thickness dz:

The confinement energy for the curved cell is thus approximately
. Moreover, the lateral area is then h r1 + r2

2 , the

volume is h r21 + r22 + r1r2
3 , and the total energy for a cell is

If the cell volume is constant,

For a cell curved in one direction (forming a tube), the pe-
rimeter of the apical side is r+ r2

2 , the basal area is r1r, the lateral
area is h

�
r
2+

r1 + r2
4

�
, and the volume is hr r1 + r2

2 . The same calcu-
lation for the confinement energy yields a contribution 1

r1r2
in the

curved direction and 1
r2 in the uncurved direction. The total en-

ergy is then

In the case of an apical belt tension, and in the limit Λa � αl,
the energies of the spherical and cylindrical morphologies Fs and
Fc are

Fs ≈
2
r1r2

+
r41
9
+Λar2 [S15]
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r1r2
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1
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+
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2

4
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2

: [S16]

Minimizing each energy with respect to r1; r2 or r1; r2; r, the
scaling of the spherical energy at equilibrium is Fs∝Λ4=9

a , whereas
that of the cylindrical energy is Fc∝Λ2=3

a , in agreement with
numerical integrations (Fig. S8A).

Finite Elasticity of the Substrate. In the previous sections, we an-
alyzed two limiting cases of infinitely rigid substrate (planar
sheets) and infinitely soft substrate (bended sheets). In general,
however, the underlying substrate has a finite elasticity. In many
events of epithelial sheet bending, the sheet rests on a thin placode
(5). We model the substrate with a bending modulus Kp. This
adds a new contribution to the energy (6), proportional to the
basal area of a cell r21:

Fbend =
�
Kp

2
C2
�
r21 : [S17]

The two limiting cases studied in the main text are Kp →∞ and
Kp → 0.
Of course, increasing the bendingmodulus of the stroma always

decreases the spontaneous curvature of the epithelium. Fig. S6B
displays a numerical integration for the same set of parameters
as before: γb = 0, αl = 4:5, and Λa = 10. Defining an effective
bending modulus Keff resisting the apical constriction, we find
that Keff is the sum of the effective modulus of the sheet de-
scribed previously and the bending modulus of the stroma, as
expected by putting two sheets in parallel: Keff =Kp +Ksheet,
where , given in Eq. 6 of the main text. Therefore,
Keff →Kp, when Kp →∞, as expected, and Keff converges to the
same constant Ksheet as before when Kp → 0. When exploring the
full parameter space ðγb ≠ 0Þ, we find additional complex be-
haviors (Fig. S6C).

Influence of the Cell–Substrate Tension γb on the Phase Diagram. We
now consider the alternative case of an invagination driven by
basal spreading (γb ≠ 0 and Λa ≈ 0). The topology of the phase
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diagram (Fig. S7B) is different. Basal adhesion favors curved
morphologies, lowering the effective bending stiffness of the
sheet. As before, we derive scaling laws for large values of the basal
adhesion (γb < 0 and jγbj � αl): r1∝

ffiffiffiffiffiffiffiffi−γb
p , r2∝− γ−1b , and

C∝ ð−γbÞ5=2: [S18]

We now consider both apical belt tension and basal spreading.
In the main text, we produce a phase diagram of 3D epithelial
sheet morphology (Fig. S7).
For γb = 0 (Fig. S7 A and B), there is a zone of stability of

quasi-flat sheets, around Λa = 0. These are sheets of squamous
cells if αl � 1 and sheets of columnar cells if αl � 1 with a
continuous transition between the two. When Λa increases, the
spontaneous curvature of the epithelial sheet increases either
continuously ðαl � 1Þ or discontinuously ðαl � 1Þ, as we discuss
in the main text.
When γb increases, this destabilizes flat sheets and causes the

regions of stability of curved epithelial tissues to invade the
phase diagram. A complex phase transition occurs: Two critical
points first merge, and a region with three stable morphologies
appears, when the third critical point merges with the other
spinodals.

Sign of the Epithelial Curvature. In our model, the sign of the ep-
ithelial curvature can be either positive or negative. This depends
on the relative values of the apical belt tension Λa and the basal
tension γb.
To quantify this effect, we perform a numerical integration

of the phase diagram of 3D architecture in the Λa; γb plane
(Fig. S5A). We plot both the spinodal lines deliminating bi-
stable equilibria regions and the line separating positive and
negative curvatures. This separation is defined by the conditions

.
As we show in Fig. S5B, the separation depends on the cell–cell

lateral adhesion αl. As αl increases, the region of stability of
negative curvatures shrinks.
For Λa and γb both positive, the confinement term 1

h2 is not
needed to stabilize the shapes. Neglecting it, we can calculate
analytically the separation line between positive and negative
curvatures, which satisfies the equation

αl = 8
γb
Λa

−
Λ3

a

2γ2b
≤ : [S19]

This shows that indeed the solution αl decreases monotonously
with increasing Λa and increases monotonously with increasing
γb. Moreover, on the zero-curvature line, r1 = r2 = Λa

2γb
.

We also show a numerical solution for the basal and apical
lengths for increasing apical belt tension Λa, for a given set
a parameters (Fig. S5C).
Interestingly, studies on gastrulation in Drosophila (7) have

shown that the transition from a concave to a convex epithelium
is mediated by a relocalization of myosins from the basal side of
the mesoderm to the apical side. In our formalism, this would
mean that Λa increases as γb decreases.
Alternatively, if we consider an apical surface tension γa in-

stead of an apical belt tension Λa, then our model is rigorously
up–down symmetric, i.e., upon the substitution (r1 → r2, γb → γa).
Then, the criterion for positive curvature is simply γa > γb and for
negative curvature is γa < γb.

Stability of Cellular Ellipsoid.We write, in analogy with the previous
sections, the energy of a cell pictured in Fig. S8B, i.e., curved
in two directions with two different curvatures and

. The volume of such a cell is V = h 2r1r3 + r2r3 + r1r4 + 2r2r4
6 ,

and the energy is

If the cell volume is constant,

We confirm the stability analysis of cellular spheres vs. cellular
tubes. Themain difference is that the transition is no longer sharp,
with a pitchfork supercritical bifurcation between a sphere (where
the two curvatures are equal) and an elongated ellipsoid that
approaches a tube (Fig. S8C). Nevertheless, infinite tubes are
never stable in this model, because there is always a small cur-
vature in the longitudinal direction.

Buckling Induced by Cell Shape Changes. As indicated in the main
text, we parameterize the out-of-plane deformation of a buckled
cell sheet by lðzÞ= ucosðqzÞ, and the amplitude and wavelength
u and q are such as to accommodate cells to their equilibrium
height h0 and average base length

r0 = r
�
1+

u2q2

2

�
[S22]

in the regime of small curvatures uq � 1.
Nevertheless, in the buckled state, each cell is forced to adopt

a spontaneous curvature, which is on average and has
an energetic cost.
Therefore, one should compare the energetic cost of buckling

and the energetic cost of cells not adopting their preferred height.
We define δr such that the elongated base length of a cell is

r0 + δr and the shortened base length of a cell is r0 − δr. The
spontaneous curvature of a cell is and has to be equal
to the mean curvature of a sheet .
Combined with Eq. S22, this yields a relationship between the

confinement Δr= r0 − r and the cell deformation δr:

δr=

ffiffiffiffiffiffiffiffiffiffi
α3l Δr
32

s
q: [S23]

The energetic cost in the buckled configuration can then be
deduced from Eq. S14, with r1 = r0 + δr and r2 = r0 − δr:

Scaling Laws for a Generic Hard-Core Repulsion.We consider a more
generic stabilizing energy of cytoskeleton confinement (or mem-
brane confinement), , to show that our
qualitative results are unaffected by the assumption n= 2 we made
in the main text.
We start by cells on rigid substrates. If cell–cell adhesion and

actin belt contractility are small ðαl;Λa� jγbjÞ, cells are squamous

[S20]

[S21]

[S24]
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and spread to a base length r≈
�−γb

n

�1=ð2n−2Þ� 1. If cell–cell ad-
hesion is dominant (αl � 1; jγbj and Λa ≈ 0), cells are columnar and

the stable base length is r≈
�
2n
αl

�1=ðn−1Þ� 1. If the apical belt is
dominant (Λa � 1 and αl ≈ 0), cells are columnar and the stable

base length is r≈
�
2n
Λa

�1=ðn+1Þ� 1.
We plot in Fig. S2A the phase diagram of epithelial mor-

phologies on flat substrates for various values of n, which we
have chosen to correspond to various assumptions on the nature
of confined polymers, to show that it still has the same topology.
In three dimensions, the scaling laws for the spontaneous

curvature in the low Λa, high αl regimes are not affected. Indeed,
for any n, the scaling law for the spontaneous curvature is

C∝ Λa

α4l − 4nα
2n+2
2n−1
l

; [S25]

and for any n> 1, in the limit αl � 1, α4l � α
2n+2
2n−1
l . For the same

reason, the scaling law for a small apical constriction is not
affected. On the other hand, for an apical belt tension, in the
high Λa regime,

C ∝ Λ
8

2n+5
a ; [S26]

and for an apical surface tension, in the high γa regime,

C ∝ γ
4

n+5
a : [S27]

Again, we show the phase diagram of curved epithelia for
a different value of n, to demonstrate that the main features
remain unchanged. For n= 4 (Fig. S2B), there are still three
spinodal tongues in the phase diagram for γb = 0, which merge
for increasing values of γb.
We also plot for n= 4 the phase diagram of the stability of tubes

vs. spheres, which again is not changed qualitatively (Fig. S2C).
Finally, even for these high-constriction regimes, there are

some scaling laws that are completely generic. Notably, in both
cases of belt tension and surface tension, the scaling law

r1 ∝ r−1=52 [S28]

holds for any n, which is again a strong prediction that could be
tested experimentally.

Discussion of Different Hypotheses for the Stabilization of Cell Shape.
In themain text, we proposed that the confinement of cytoplasmic
components could be a mechanical cue that determines the
morphology of epithelial cells, in concert with the active surface
tensions from the apical, lateral, and basal sides. Obviously, al-
ternative mechanisms of stabilization would be imaginable, for
instance the active regulation of tensions to approach a target
cellular shape, as discussed in ref. 8.

On flat substrates, we assume that cells have a preferred lateral
area A0

l and a basal area A0
b, and we expand the lateral and basal

tensions, respectively, around these preferred areas:

γb = γ0b + δ1
�
r2 −A0

b

�
[S29]

αl = α0l − δ2

�
V0

r
−A0

l

�
: [S30]

If δ1 and δ2 are positive, then the system is stable, and these
stabilizing terms are exactly the same from a mathematical point
of view as the ones described in the main text. The previous
analysis then holds unchanged. In particular, this type of stabi-
lizing mechanism gives rise to the same type of continuous vs.
discontinuous transitions in cellular aspect ratios.
If δ1 or δ2 is negative, then the system is linearly unstable: One

must expand the tensions up to the next order. Additional stable
states are generically expected in this case.
For curved epithelia, the number of possible stabilizing terms

is much larger. We fix γb = 0 in analogy to that in the main text,
and we assume, as an example, an active regulation of the lateral
adhesion αl.
In analogy with the previous equations, we write the simplest

dependence of αl on Aap and Abas, which avoids Abas = r21 → 0 and
Aap = r22 → 0,

αl = α0l − δ3

�
1
Aap

+
1

Abas

�
; [S31]

and we incorporate, as in the main text, a term in A
h2 in the energy

to avoid r1 →∞. We show that the main features of 3D archi-
tecture discussed in the main text are preserved using this as-
sumption. Indeed, for low values of αl, the curvature modulus of
the sheet is low and the curvature increases smoothly with Λa.
Moreover, αl increases with increasing Λa (Fig. S3A). Above
a critical value of αl, the curvature modulus remains high until
a critical value of Λa, above which it jumps to lower values. In-
terestingly, αl undergoes the same type of continuous vs. discon-
tinuous transitions as the geometrical parameters r1 and r2.
The phase diagram of epithelial cell morphology in 3D (Fig.

S3B) is also similar to the one in the main text, with three spi-
nodals joining for increasing values of γb. On the other hand, in
this model, spheres are always favored compared with tubes,
which may be related to the fact the effective lateral adhesion is
lowered considerably (Fig. S3A) as Λa increases and r2 decreases
(αl is always positive for large enough Λa; therefore, the hy-
pothesis underlying the qualitative argument of the main text for
tubular stability does not hold).
Experiments would be needed to verify whether the cellular

morphology (for instance, the value of the apical and basal areas)
has indeed a feedback effect on tensions.
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Fig. S1. Force balance on a cell.
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Fig. S2. Phase diagrams for various values of the exponent n of polymer repulsion. (A) Phase diagram of the 2D architecture of epithelial tissue on planar
substrates, as a function of apical belt tension Λa and cell–cell adhesion αl , for γb = 15 and n= 2 (blue), n= 9=4 (red), n=7=2 (green), and n=4 (black). (B)
Evolution of the phase diagram of the 3D architecture of curved epithelia for n= 4 and for various values of γb = 1 (blue), γb = 6 (red), and γb = 15 (black). (C)
Phase diagram of tubular vs. spherical organization of curved tissue, as a function of apical surface tension γa and cell–cell adhesion αl , for n= 4.
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Fig. S3. A different hypothesis of shape stabilization: active regulation of the cell–cell tension. (A) (Left) Typical numerical integrations of the basal and apical
lengths r1 and r2 as a function of apical belt tension Λa, for αl = −5 (Top), αl = 10 (Middle), and αl = 20 (Bottom). (Right) Corresponding cell–cell lateral tension,
which now changes with Λa, because it is actively regulated depending on r1 and r2. We observe the same qualitative effect of cell–cell adhesion as in the main
text. Moreover, αl undergoes the same type of continuous vs. discontinuous transitions as the geometrical parameters r1 and r2. (B) Evolution of the phase
diagram of the 3D architecture of curved epithelia for an active regulation of tensions and for various values of γb = 0 (blue), γb = − 5 (red), and γb = − 15
(black). Again, the qualitative results of the main text are unchanged.
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Fig. S4. Phase diagram as a function of Λa and αl , for varying values of γb: 0 (blue), −5 (purple), −15 (brown), and −45 (green).

Fig. S5. (A) Phase diagram of the 3D architecture of epithelial tissue, as a function of apical belt tension force Λa and the basal tension γb. We plot both the
spinodal lines (blue dots) deliminating bistable equilibria (hatched region) and the separation between negative and positive curvatures (dashed lines). Plot for
αl =6 is shown. (B) Same phase diagram of the 3D architecture comparing two values of cell–cell adhesion, αl = 6 (blue) and αl = 4 (red). Shown is a zoom-in on
the frontier separating positive and negative curvature, for various values of cell–cell adhesion: αl = − 4 (green), αl = 0 (black), αl = 4 (red), and αl = 6 (blue). (C)
Example of a numerical integration of the basal and apical length (Left) and curvature changing sign (Right) for increasing Λa. We chose αl = 6 and γb = 20.
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Fig. S6. (A) Limit of infinitely soft substrate: aspect ratio of the curved epithelia (height divided by the radius of curvature) and cell thickness, as a function of
apical belt tension Λa, for various values of αl = 1 (yellow), αl = 3 (green), αl = 4:5 (purple), and αl = 5:5 (black). (B) For finite elasticities of the substrate, effective
bending modulus and spontaneous curvature as a function of the substrate bending modulus Kp. We use the same parameter set as before: γb = 0, αl = 4:5, and
Λa = 10. (C) Spontaneous curvature of an apically constricted tissue with various substrate bending moduli Kp and for αl = 4:5. (Left) γb = 0. For Kp = 0 (orange),
the same transition as before is obtained. When Kp increases [Kp = 0:01 (green), Kp = 0:1 (violet), Kp = 100 (black), and Kp = 10,000 (red)], the curvature de-
creases as expected, and the discontinuous transition also disappears. (Right) γb = − 10. When Kp increases[Kp = 0:1 (orange), Kp = 1 (green), Kp = 100 (violet),
Kp = 104 (black), and Kp = 106 (red)], the curvature also decreases as expected. For K→∞, we expect to be in the previous limit of a planar epithelial, with
a squamous to columnar morphological transition [observed for Kp = 106 (red)]. The discontinuous transition disappears when Kp decreases.
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Fig. S7. (A) Phase diagram of the 3D architecture of epithelial tissue, as a function of apical belt tension Λa and cell–cell adhesion αl , for γb = − 1. (B) Evolution
of the phase diagram for various values of γb = 0 (blue), γb = − 1 (red), γb = − 2 (green), and γb = − 4 (black).
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Fig. S8. Comparison of the mechanical stability for cellular tubes and spheres. (A) Energies of a sphere and tubes as a function of the apical cortex tension γa
for αl = 1 (Left) and αl = 4 (Right). (B) Schematics of a infinitesimal piece of a cellular ellipsoid. (C) Curvatures ( and ), aspect ratios ( and ), and ratios of
curvatures of an ellipsoid as a function of apical tension γa.
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Fig. S9. Cell confinement and phase separation. When squamous cells are confined, two scenarios are possible. (A and B) For high values of cell–cell adhesions,
a phase separation occurs (A), with squamous and columnar cells maintaining their radii and converting to match the total available area (B). (C) For low values
of cell–cell adhesions, the transition is continuous. (D) Diagram of phase separation.
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