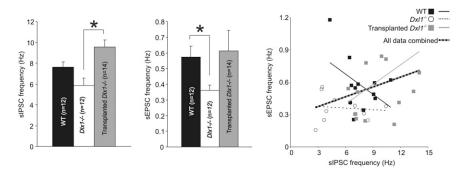
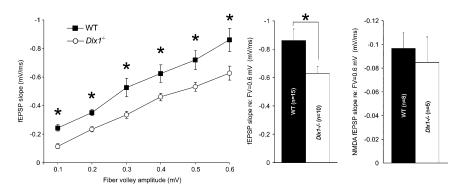

Supporting Information


Howard et al. 10.1073/pnas.1307784111


Fig. S1. Somatostatin-positive (Sst⁺) interneuron numbers in the WT, distal-less homeobox 1 ($Dlx1^{-l-}$), and transplanted $Dlx1^{-l-}$ hippocampus. (A) Cartoon illustration of the postnatal day (P) 35 hippocampus and the orientation of sections. The numbered black lines indicate example sections through the hippocampus and correlate with the images below. (*B*) Representative coronal sections (50-µm sections separated by 300 µm) through the hippocampus of a P35 $Dlx1^{-l-}$ mouse transplanted at P2. Sections were stained with red fluorescent antibody to Sst and green fluorescent antibody to GFP to label transplanted interneurons. (*C*) Mean native (red) and total (native + transplanted; green) Sst⁺ interneuron density across sections of $Dlx1^{-l-}$ hippocampi (n = 3) normalized to WT Sst⁺ numbers (n = 5).

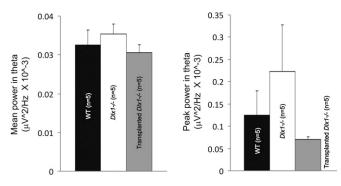

Fig. 52. Dead medial ganglionic eminence (MGE) cell transplantation does not alter inhibitory or excitatory synaptic transmission. Dead MGE cell transplantation (DCT) at P2 had no significant effect (P > 0.05, t tests) on miniature inhibitory postsynaptic current (mIPSC) frequency in WT (A; WT = 12.57 \pm 0.66 Hz, n = 27; WT DCT = 13.34 \pm 1.28 Hz, n = 7) or $Dlx1^{-/-}$ (B; $Dlx1^{-/-}$ = 9.86 \pm 0.71 Hz, n = 27; D $lx1^{-/-}$ DCT = 10.89 \pm 0.89 Hz, n = 19) mice or on miniature excitatory postsynaptic current (mEPSC) frequency in WT (C; WT = 0.388 \pm 0.023 Hz, n = 16; WT DCT = 0.388 \pm 0.046 Hz, n = 11) or $Dlx1^{-/-}$ (D; $Dlx1^{-/-}$ = 0.307 \pm 0.030 Hz, n = 17; $Dlx1^{-/-}$ DCT = 0.281 \pm 0.028 Hz, n = 8) mice.

Fig. S3. Spontaneous inhibitory and excitatory synaptic event frequencies do not linearly correlate in individual neurons. Spontaneous inhibitory postsynaptic current (sIPSC) frequency (*Left*; WT = 7.62 \pm 0.50 Hz, n = 12; $D|x1^{-/-} = 5.85 \pm 0.72$ Hz, n = 12; transplanted $D|x1^{-/-} = 9.54 \pm 0.69$ Hz, n = 14; *P < 0.001, one-way ANOVA) and spontaneous excitatory postsynaptic current (sEPSC) frequency (*Center*; WT = 0.572 \pm 0.070, n = 12; $D|x1^{-/-} = 0.361 \pm 0.033$ Hz, n = 12; transplanted $D|x1^{-/-} = 0.611 \pm 0.131$ Hz, n = 14; *P < 0.05, one-way ANOVA) in WT, $D|x1^{-/-}$, and MGE-transplanted $D|x1^{-/-}$ CA1 pyramidal neurons exhibit patterns similar to those shown by mIPSC and mEPSC data. (*Right*) Scatter plots of these two measures made in single neurons show no significant linear correlation between the two measures for any of the three groups (R^2 values: WT = 0.21, $D|x1^{-/-} = 0.012$, transplanted $D|x1^{-/-} = 0.10$).

Fig. 54. Field potentials reveal decreased AMPA-mediated but normal NMDA-mediated synaptic transmission in $D/x1^{-/-}$ hippocampus. (*Left*) Input/output function of the field excitatory postsynaptic potential (fEPSP) slope plotted as a function of fiber volley (FV) amplitude reveals decreased synaptic responses in $D/x1^{-/-}$ slices relative to WT across a broad range of stimulus intensities (FV = 0.1: WT = 0.243 ± 0.023 mV/ms, n = 20; $D/x1^{-/-} = 0.115 \pm 0.017$, n = 15; FV = 0.2: WT = 0.352 ± 0.024 mV/ms, n = 20; $D/x1^{-/-} = 0.336 \pm 0.025$, n = 15; FV = 0.3: WT = 0.527 ± 0.064 mV/ms, n = 20; $D/x1^{-/-} = 0.336 \pm 0.025$, n = 15; FV = 0.3: WT = 0.721 ± 0.068 mV/ms, n = 20; $D/x1^{-/-} = 0.322 \pm 0.032$, n = 15; FV = 0.5: WT = 0.721 ± 0.068 mV/ms, n = 20; $D/x1^{-/-} = 0.532 \pm 0.032$, n = 15; FV = 0.5: WT = 0.721 ± 0.068 mV/ms, n = 20; $D/x1^{-/-} = 0.628 \pm 0.051$, n = 15; FV = 0.5: WT = 0.721 ± 0.068 mV/ms, n = 20; $D/x1^{-/-} = 0.628 \pm 0.051$, n = 15; FV = 0.5: WT = 0.721 ± 0.068 mV/ms, n = 20; $D/x1^{-/-} = 0.532 \pm 0.032$, n = 15; FV = 0.6: WT = 0.86 ± 0.082 mV/ms, n = 20; $D/x1^{-/-} = 0.628 \pm 0.051$, n = 15; FV = 0.05, t tests). At high stimulus levels (FV = 0.6 mV), the fEPSP slope was decreased (*Center*) but the isolated NMDA-mediated fEPSP slope was unchanged (*Right*) from WT (WT = 0.097 ± 0.013 mV/ms, n = 8; $D/x1^{-/-} = 0.085 \pm 0.021$, n = 5; *P > 0.05, t tests).

Fig. S5. Data for theta oscillations in local field potential recordings. Mean power (*Left*; WT = 0.0306 ± 0.00206 , n = 5; $D/x1^{-/-} = 0.0353 \pm 0.00261$, n = 5; transplanted $D/x1^{-/-} = 0.0326 \pm 0.0085$ Hz, n = 5; P > 0.05, one-way ANOVA) and peak power (*Right*; WT = 0.125 ± 0.054 , n = 5; $D/x1^{-/-} = 0.223 \pm 0.104$, n = 5; transplanted $D/x1^{-/-} = 0.071 \pm 0.0062$ Hz, n = 5; P > 0.05, one-way ANOVA) in the theta frequency band over the same 5-min epoch illustrated in Fig. 6B.

Table S1.	Transplanted cells	colabeling t	for neuronal markers
-----------	--------------------	--------------	----------------------

Marker	GFP ⁺ cells colabeled \pm SEM, %
NeuN	85.2 ± 1.85
GAD67	61.2 ± 3.49
Sst	36.2 ± 4.12
PV	22.5 ± 2.19
NPY	3.56 ± 0.50
CR	6.98 ± 1.16
GFAP	0.60 ± 0.60

n = 5 for each marker. CR, calretinin; NeuN, RNA binding protein, fox-1 homolog (*C. elegans*) 3; NPY, neuropeptide Y; PV, parvalbumin; Sst, somatostatin; GAD67, glutamic-acid decarboxylase.

Table S2. Quantification of inhibitory synaptic transmission in WT, $Dlx1^{-/-}$, and transplanted $Dlx1^{-/-}$ mice

Measure	WT	Dlx1 ^{-/-}	Transplanted Dlx1 ^{-/-}
P21 mIPSC amplitude, pA	24.06 ± 1.66 (17)	21.57 ± 1.57 (18)	
P21 mIPSC frequency, Hz	10.52 ± 0.74 (17)	10.55 ± 0.78 (18)	
P35 mIPSC amplitude, pA	22.36 ± 1.83 (27)	25.85 ± 2.0 (27)	25.19 ± 3.1 (11)

Total population numbers are shown in parentheses. $Dlx1^{-/-}$, distal-less homeobox 1; mIPSC, miniature inhibitory postsynaptic current; P, postnatal day.

Table S3.	Quantification of excitatory synaptic transmission in WT, Dlx1 ^{-/-} , and transplanted
<i>Dlx1^{-/-}</i> m	ice

Measure	WT	Dlx1 ^{-/-}	Transplanted Dlx1 ^{-/-}
P21 mEPSC amplitude, pA	11.90 ± 1.1 (6)	10.72 ± 0.83 (14)	
P21 mEPSC frequency, Hz	0.275 ± 0.042 (6)	0.259 ± 0.029 (14)	
P35 mEPSC amplitude, pA	12.65 ± 0.61 (15)	13.48 ± 0.76 (11)	
P35 mEPSC rise time, ms	1.65 ± 0.16 (5)	1.59 ± 0.17 (6)	
P35 mEPSC decay tau, ms	9.78 ± 0.61 (15)	8.94 ± 0.49 (11)	
P35 paired pulse ratio	1.98 ± 0.091 (15)	1.97 ± 0.088 (20)	2.05 ± 0.096 (23)

Total population numbers are shown in parentheses. mEPSC, miniature excitatory postsynaptic current.

Table S4.	Action	potential	characteristics	in respo	nse to lo	ong-duration	current steps

Measure	WT (<i>n</i> = 20)	$DIx1^{-/-}$ (n = 21)	P value
Voltage threshold	–46.87 ± 0.36 mV	-46.35 ± 0.65 mV	0.49
Action potential amplitude	$101.06 \pm 1.47 \text{ mV}$	101.69 ± 2.43 mV	0.91
Action potential half-width	$1.23 \pm 0.041 \text{ ms}$	$0.995 \pm 0.032 \text{ ms}$	<0.001*
No. of action potentials to 500-pA current step	31.15 ± 2.62	24.86 ± 1.59	0.04*

P values are taken from paired t tests. Total population numbers are shown in parentheses. *Significant P value.

Table S5. Quantification of gamma frequency oscillations in WT, $DIx1^{-/-}$, and transplanted $DIx1^{-/-}$ mice

Measure	WT	Dlx1 ^{-/-}	Transplanted Dlx1 ^{-/-}
Mean theta power	0.0326 ± 0.0038	0.0353 ± 0.00261	0.0306 ± 0.00206
Peak theta power	0.125 ± 0.0539	0.223 ± 0.104	0.0705 ± 0.0062
Mean gamma power	4.0 * $10^{-3} \pm 0.20$ * 10^{-3}	$4.93~*~10^{-3}~\pm~0.30~*~10^{-3}$	4.38 * $10^{-3} \pm 0.27$ * 10^{-3}

Units are expressed as squared microvolts per hertz. n = 5 for each group.

PNAS PNAS