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Experiments

1.1. Dispersal Experiment. Density profiles in the six replicated
dispersal events, at successive times, are shown in Fig. 2 A-F.
Collected data were binned in 5-cm bins, Wthh corresponds to
the typical length scale of the dispersal process (1/D/r ~5 cm).
Individuals of Tetrahymena sp., initially localized at one end of
the landscape, colonized the whole system in 4 d. The position of
the wavefront at each time was estimated by looking for the first
occurrence, starting from the end of the landscape, of a fixed
value of the density (more precisely, we linearly interpolated the
density profile between the first occurrence of a density value
above threshold and the following spatial point), which we set at
p* =200 ind/cm (results are not affected by different choices of
this reference value) (Fig. 3C). The position of the wavefront at
different times is shown in Fig. 34. As noticeable, there is an
initial growth phase followed by a linear increase in the front’s
coordinate with time. We fitted a linear model (least-squares fit)
to each replica in the linear region (1-4 d) and found a mean
speed of v, =52.0+1.8 cm/d (mean + SE). Note that the exis-
tence of an initial nonlinear spread has been documented in
several case studies (1-3). Shown in Table S1 are the observed
velocities in the six replicas (Fig. 3).

1.2. Local Growth Experiment. We discuss here the analysis of
growth measurements according to the deterministic framework
of the Fisher—-Kolmogorov equation. For the analysis of these
data in the stochastic framework, see section 2.2.

We report in Table S2 the best-fit parameters of the deter-
ministic logistic model dp/dt=rp[l —p/K] to the growth mea-
surements data. Note that the variability in the carrying capacity
among replicas resembles the variability in the mean density
observed in the dispersal experiment in the region behind the
wavefront (Fig. 2).

1.3. Local Movement Experiment. We ran four additional dispersal
events, independent from the dispersal experiment, and recorded
videos of individuals moving ahead of the advancing wavefront,
where the density was low. To obtain experimental estimates of the
diffusion coefficient, we fitted the measured values of (x*(¢)) to the
equation (x?(¢)) = 2Dt — 2Dz[1 —e~"/7], for all videos of each rep-
lica (see section 4.2.1 for a derivation of this equation in the
context of persistent random walks). The mean value of the dif-
fusion coefficient is D=0.17+0.01 mm?/s =140+10 cm?/d;
the mean autocorrelation time is 7=3.9+0.4 s.

Note that we have measured the diffusion coefficient by looking
at individuals at the front of the traveling wave, as these are the
individuals responsible for the colonization of empty space.
During the dispersal experiment, we also measured the diffusion
coefficient of Tetrahymena sp. in the bulk of the wave, that is,
where the population was at high density. We observed that
trajectories differ qualitatively between the bulk and the front of
the wave, and this difference reflects in a much smaller diffusion
coefficient estimate where the population is at carrying capacity.
In fact, in the bulk of the wave, we measured a mean diffusion
coefficient of Dy, =0.003 +0.001 mm? /s, much smaller than at
the wavefront. Such density-dependent effects, however, are not
assumed to be operating at the low densities that determine the
speed of the front, and the results support our assumption.

1.4. Speed of the Wavefront: Deterministic Prediction and Observations.

Here, we compare the wavefront speeds observed in the dis-
persal experiment to predictions of the theory (deterministic
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Fisher-Kolmogorov Eq. 1) (Materials and Methods) for which
we use the independent estimates of » and D (as i in sections 1.2
and 1.3). Use of the mean value of r=4.9+0.5 d™' (mean + SE)
and D=140+10 cm?/d (mean + SE) gives a predicted speed of
vik =2VrD=52.4+33 cm/d. In the main text, we adopted
a bootstrap approach and computed the quantity 2v/D for all
possible combinations of the » and D values measured in the
growth and movement experiments. The mean speed computed
with this approach is v=51.9+ 1.1 cm/d (mean + SE). Both vpg
and v are very close and compatible with the mean observed speed
in the dispersal experiment, v, =52.0 +1.8 cm/d (mean + SE). To
further compare the predicted values for the speed in the bootstrap
approach to the observed speed in the dispersal experiment, we
performed a f test between the two sets. The ¢ test gives a P value
p=0.96 (t=0.05, df =9); thus, the null hypothesis that the mean
difference is 0 is not rejected at the 5% level. Therefore, there is
no indication that the two means are different.

Stochastic Model

The Fisher-Kolmogorov Eq. 1 (Materials and Methods) is de-
terministic and therefore cannot reproduce the variability ob-
served in biological dispersal (4) (Fig. 3). To address fluctuations
in the range expansion of invading species, we propose a stochastic
partial differential equation (SPDE), that is, a generalization of
Eq. 1, accounting for demographic stochasticity. The SPDE reads:

dp &Pp P
2= Dw+rp[l—]?} +oy/pn, [S1]

where n is a Gaussian, zero-mean white noise [i.e., (n(x,?)
n',t))=6(x—x")8(t—t"), with 8 the Dirac’s delta function] and
0 >0 measures the noise strength. We adopt the Itd’s stochastic
calculus (5), as appropriate in this case. Note, in fact, that the
choice of the Stratonovich framework would make no sense here,
as the noise term would have a constant nonzero mean (5, 6),
which would allow an extinct population to possibly escape the
zero-density absorbing state. We simulated Eq. S1 using the
estimates for r, K, and ¢ obtained with a maximum likelihood
approach applied to the growth experiment data (section 2.2)
and D as estimated in the local movement experiment (section
1.3). The square-root multiplicative noise term in Eq. S1 is com-
monly interpreted as describing demographic stochasticity in
a population (7) and needs extra care in simulations (8, 9). In
particular, standard stochastic integration schemes fail to pre-
serve the positivity of p. We adopted a recently developed
split-step method (9) (see also section 2.1) to numerically inte-
grate Eq. S1. This method allows us to perform the integration
with relatively large spatial and temporal steps maintaining nu-
merical accuracy. Fig. 2 G and H shows two integrations of Eq. 1
with initial conditions as in Fig. 2 4 and B at the second exper-
imental time point. Simulations were performed with reflective
boundary conditions at x=0 cm and x=220 cm and with the
parameters r=06.1 d™', K=903 ind/cm, o=25 a2 (results of
the maximum likelihood estimation) (see section 2.2) and
D =140 cm?/d. The integration steps were Ax=5 cm and
Atr=0.002 d, which were able to reproduce the deterministic
behavior and speed for very small values of the noise strength
oc. It should be noted that the mathematical structure of Eq. S1
allows the formation of traveling waves, although endowed with
a speed slower than 2+/7D. The reader is referred to the literature
for a detailed account of the mathematical details (6, 10, 11).
Suffice it here to note that the parameter identification of the
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demographic traits 7, K, and ¢ on the growth experiment data
accounts for the relative balance of the processes and results in
a reliable prediction of both the mean speed and the range vari-
ability (section 2.3).

2.1. Spatial Discretization. Eq. S1 is interpreted as the continuum
limit of a set of coupled It6 equations resulting from a discretiza-
tion of space (9). Let Ax be the step of spatial discretization on a
1D lattice. The discretization reads:

dpi\ _
dt)(

+rp;(t) (1 —’%) +\/%

where i identifies the lattice site and the term +/Ax ensures
proper normalization in the continuum limit (12). This spatial
discretization allows us to compare the noise term in Eq. S1 to
the local noise acting at a lattice site of size Ax. In particular, it
allows us to estimate the noise strength ¢ by parameter identifi-
cation on the growth experiment data, where we looked at the
density of a single site i of size /=7 cm (a length comparable with
the step size adopted in the numerical integration, that is Ax=5
cm). The equation governing the density of the single site i in the
growth experiment is thus:

f{;() ()<1——)+—Fn [S3]

5 [Piv1 (6) +pici (1) = 2p;(1)] +

[S2]
/)i(t)n(t)a

where the diffusion term is neglected as we are in a well-mixed set-
ting and we dropped the i subscript as we only have one site. The
maximum likelihood approach described in the following section
allows us to estimate r, K, and o from the experimental growth data.

2.2. Parametric Inference in the Stochastic Framework. We fit Eq. S3
to the growth data (local growth experiment), with fitting parame-
tersr, K, and . The likelihood function for Eq. S3 can be written as:

HP

(1), 4o (t-1), 115 6], [S4]

where 7 is the total number of observations in the growth time
series, = (r,K, o) is the vector of demographic parameters, and
P(p,tlpy,to;0) is the transitional probability density of having
a density of individuals p at time ¢, given that the density at time
ty was p, (for a given 0). The transitional probability density
P(p,t|py, t0;0) satisfies the Fokker—Planck equation associated
with Eq. S3, that is:

d d P
&P(/’aﬂﬂoﬂoag)— o [r[’(l—E)P(PJV’oJOﬁ) +
[S5]
o* & P 0
+2_16p2L0 (p7t|p07t07 )]

Maximization of the likelihood is equivalent to the minimization
of the negative log-likelihood —logL (), which is computation-
ally less expensive. To compute the likelihood for a fixed set of
parameters 6, one has to solve numerically the Fokker—Planck
Eq. S5 for all observed transitions, with the [¢;, p(¢)] as measured
in the experiment. It is computationally more accurate to solve
Eq. S5 in terms of the cumulative distribution function (CDF), as
its initial condition in the transition [ti_1,p(fi-1)] = [tj, p(¢;)] can
be expressed as a step function instead of a delta function, the
first one being more accurate in the numerical approximation
(13). The transitional probability densities (solutions of Eq. S5)
can then be recovered by numerical differentiation. The numerical
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integration was performed adopting the implicit Crank—Nicolson
scheme (13); the minimization was performed with the software
MATLAB, adopting the active-set algorithm in a large domain.
We verified that different initial conditions for the parameters
led to the same estimate for the minimum, which is thus inter-
preted as the global minimum of the negative log-likelihood
function, that is, the global maximum for the likelihood func-
tion. The set of demographlc parameters that maximized the
likelihood function is r=6.1+0.8 d™', K=903+135 ind/cm,
6=25+5 d7? (mean + SE).

2.3. Comparison with Experimental Data. Wavefront. The black curve
in Fig. 34 is the mean position of the front over 1,020 in-
tegrations of Eq. S1, with 170 iterations starting from each ex-
perimental density profile at the second measurement time point
(Fig. 34 and Materials and Methods). The dark and light gray
shadings in Fig. 34 represent, respectively, the 95% and 99%
intervals for the front’s position. The increase in width for the
front’s position is captured by the red curve in Fig. 3B, which
represents the 95% interval width for the front’s position at each
time step. Simulations are in quantitative agreement with data
(Fig. 3B). Examples of the front’s position in different simu-
lations of the stochastic equation are shown in Fig. S2.

Speed of the front. We measured the speed of the front in the
stochastic simulations by fitting the front’s position at eight equally
spaced time points in the time interval [1—4] d, over 1,020 in-
tegrations of Eq. S1. The resulting mean speed of the front was 52.1
cm/d; the SD was 4.2 cm/d. The mean speed in the dispersal ex-
periment was 52.0 cm/d, and the measured SD was 4.3 cm/d.

On the Diffusion Coefficient Estimates in Field Studies

In the literature, reaction—diffusion processes applied to ecolog-
ical processes were sometimes criticized because of unsatisfactory
fits to some empirical observations. For instance, reaction—diffusion
models have been questioned for neglecting the fact that organ-
isms move at a finite speed (3, 14) or for predicting slower spreads
with respect to observations (3). The presence of rare long-distance
dispersers has been invoked by some authors (1, 3) to account for
the observation of faster-than-predicted spreads. We argue that
the origins of some mismatches between empirical observations
and reaction—diffusion models could be due to imprecise esti-
mates of the diffusion coefficient, which proved to be the most
delicate measurement also in our experiment. In fact, the diffu-
sion coefficient is traditionally measured through the mean
square displacement (MSD) of individuals or collective move-
ment, computed with the available data. These data might refer to
a timescale that is too short to be in the region of linear increase
of MSD with time; that is, one might be still observing the auto-
correlated phase that is shown in Fig. S1 for small times. Com-
puting the MSD in the auto-correlated region leads to a lower
estimate of the diffusion coefficient, which in turn leads to a
smaller predicted speed for the advancing wavefront. When
computing the MSD, therefore, one should compute it at differ-
ent time points until the autocorrelated and linear regimes are
discernible. Notably, the duration of the autocorrelated phase is
expected to vary significantly from species to species (15). Addi-
tionally, our experiment supports that the diffusion coefficient
estimate should be performed in density-independent conditions.

Theoretical Background

Reaction—diffusion models have been shown to accurately de-
scribe the spread of organisms in many comparative studies (1,
16, 17) and are here experimentally confirmed. We acknowledge
that models other than reaction—diffusion equations, such as
integro-difference equations involving dispersal kernels, are best
suited to describe dispersal of organisms that exhibit distinct
reproductive and dispersive phases (3, 4). However, for many
organisms, especially those with continuous, nonoverlapping
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generations and temporally unstructured dispersal-reproductive
dynamics, the reaction—diffusion approach is highly appropriate
(16-18). Refinements of reaction—diffusion models have also been
put forward in the literature. For instance, reaction—telegraph
models were introduced to account for the finite movement
speed of individuals, resulting in a correction to the wavefront
speed (14), which is, however, negligible for our study species, as
we show in the following sections. Here, we briefly review the
theoretical framework of reaction—diffusion processes and discuss
the relationship to reaction—telegraph processes, with reference to
our experiment. The interested reader can refer to specialized
texts for further investigation and generalizations (5, 19, 20).

4.1. The Fisher-Kolmogorov Equation. 4.1.1. Brownian motion and the
mean square displacement of particles. The diffusion equation

a_p(x>t) _D—(X,[) [SG]

describes the evolution of the density of an ensemble of indepen-
dent random walkers (5). The diffusion coefficient D can be
measured as the proportionality constant that links the mean
square displacement to time as (5):

(x})=2Dr, [S7]

with D as in Eq. S6.
4.1.2. Reaction—diffusion equations and the Fisher-Kolmogorov equation.
Macroscopically, or phenomenologically, the continuity equation
in the presence of a reaction term reads:

op aJ

—=—-—+F(p). S8

5= "o TEP) [S8]
Assuming proportionality between the flux J and the density
gradient dp/dx via the diffusion coefficient, one finds the so-
called reaction—diffusion equation (18, 20-22):

ap %

(p)-

L=pZL4F

a (591

If the reaction term F(p) is logistic, one finds the Fisher-Kolmo-
gorov equation:
dap *p

——D—+rp[1—

S10
ot ax? [510]

d
K )
where p is the density of organisms, D is the diffusion coefficient
of the species, r is its growth rate, and K its carrying capacity.
4.1.3. Traveling waves in the Fisher-Kolmogorov equation. The Fisher—
Kolmogorov Eq. S10 is probably the best known example of
an equation that accepts traveling wave solutions. A traveling
wave is a wave that travels without change of shape; that is, the
density profile along a line moves rigidly in time without de-
formation (Fig. 1E). Mathematically, these dynamics of propa-
gation mean that, if wu(x,f) is a traveling wave solution of
a reaction—diffusion equation, then u(x,?) is a function of x —vz,
where v is the speed of the wave; that is, u(x,7) =u(x —vz).
Dimensional analysis of Eq. S10 shows that the speed is
v v/rD. Fisher (21) proved that traveling wave solutions can only
exist with speed v>2v/rD and Kolmogorov (22) demonstrated
that, with suitable and reasonable initial conditions, the verified
speed of the wavefront is equal to the lower bound; that is,

v=vpx =2VrD. [S11]
For any concave F(p) in Eq. S9, that is, F(p) < pF’(0), the front

velocity has been shown to be equal to vgp =2+/DF’(0) (20).
The interested reader can refer to the original works by Fisher
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(21) and Kolmogorov (22) or read one of the many good books
on the topic (18, 20).

4.2. The Reaction-Telegraph Equation. The diffusion equation has
been widely used to describe the movement of organisms (2, 18). It
is clear, however, that individuals do not perform exact random
walks at the microscopic scale (where “microscopic” here is used to
refer to the typical length scale of an organism). What is implied
when adopting diffusion equations to describe movement behav-
iors is that there exists an appropriate mesoscopic scale in which
the collective behavior of organisms is indistinguishable from that
of an ensemble of random walkers (1). In this section, we justify why
the adoption of a reaction—diffusion equation is appropriate for our
system, which follows from the fact that the correlation time in the
trajectories performed by individuals of the species Tetrahymena sp.
is much smaller than the typical timescale of the dispersal process
or, more precisely, the growth rate of the species (Eq. S19).
4.2.1. Persistent random walk. One can describe the movement of an
individual (particle) as a sequence of jumps of length Ax and
duration At. A model for a correlated random walk was in-
troduced by R. Fiirth (23) and assumes that particles move along
an infinite line at a constant speed y, with a probability p per unit
time to reverse its direction of motion. Precisely, the probability
for the particle to continue in the direction of motion is given
by 1—puAt and the probability to reverse its direction is pAt, in
such a way that the speed limay a—0Ax/Af =y is constant.

With these assumptions (20) one obtains the telegraph equa-
tion for the density of particles:

1% dp_rop

S12
2;4 a2 o 2/4 a2’ [512]
which we rewrite as
62/) 6/) dzp
T a T [S13]

where 77! =2y is the correlation time of the turning process and

=y2/(2u). Note that Eq, S13 differs from the diffusion equation
for the additional term z%%. Eq. S13 is a hyperbolic equation, and
therefore information cannot travel faster than the speed of particles
y. In a way, then, the telegraph equation is physically more appro-
priate than the diffusion equation, as for the diffusion equation the
probability density of finding a particle in an infinitesimal interval
around (x,#) is larger then zero for allx and ¢ > 0; that is, signals can
travel at infinite speed. In our specific case, the correlation time 7t is

very small, so we argue that the term r 2 is negligible compared
with the other terms in the equation, and thus the system is well-
described by the diffusion equation. To estimate the parameters
tand D from experimental data, one can compute the value for
the mean square displacement along the line, that is,

+o0
= / dx x*p(x,t). [S14]
Multiplying Eq. S13 by x? and integrating one has
/ dxx — (x,1) / dxx — x )=
[S15]
+o0 a
P
=D / dxxzﬁ (x,1),
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which reads

@) ) o

dr? dt ’ [S16]

assuming that p(x,?), ‘;—?(x, f) and zsz(x,t) go to zero sufficiently
fast for x - + co. Assuming further that p(x,0) =5(x) (where & is
the delta function) and dp/dt(x, )|,, =0, one has (x*)|,_, =d(x?)/

dt|,_,=0 and

((0)) =2D1=2Dz[1 -] [S17]

Fig. S1 shows that Eq. S17 provides a very good fit to the exper-
imentally measured mean square displacement for individuals of
Tetrahymena sp.

4.2.2. The reaction—telegraph equation. One can amend the instan-
taneous adjustment of the flux to the density gradient implied by
Fick’s first law with the introduction of a relaxation time t, which
leads to the reaction-telegraph equation (14, 20)

*p a0 Pp

[S18]
Eq. S18 can be obtained combining the telegraph Eq. S13 with
kinetics (20). Eq. S18 differs from the reaction—diffusion Eq. S9

for the additional term r%—rF’(p) ‘;—f. Solutions of Eq. S18
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converge to solutions of the reaction—diffusion equation as r— 0
(20, 24). In our case, we argue that the correlation time t is
sufficiently small to consider the process as well described by
the reaction—diffusion equation. We will give quantitative sup-
port to this statement in the next section. One can also show that
the introduction of reactions in the persistent random-walk
equations leads to the reaction—telegraph Eq. S18 (20) with
771 =24 and D=y?/(2u) as in Eq. S13.

4.2.3. Traveling waves in the reaction-telegraph equation. E. E. Holmes
(14) studied the propagation of traveling wavefronts in the re-
action-telegraph equation with logistic reaction F, estimating model
parameters for several case studies. The reaction—telegraph Eq. S18
with logistic growth was shown (25) to accept traveling wave
solutions with speed:

2\/@_ VFK

1+ 147

VRT = [S19]

if rr < 1; otherwise vgr = (D/ r)%. In this perspective, we claim that,
in our specific case, the ratio between the speed of a reaction—
telegraph and that of a reaction—diffusion equation is practically
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Fig. S1. Mean square displacement (x?) of individuals’ trajectories versus time, for a representative video. The red curve is the best fit of the data to the
equation (x?(t)) =2Dt —2Dz[1 —e~t/]. After an initial auto-correlated phase, the mean square displacement increases linearly with time. Error bars are + SE.
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Fig. S2. Front’s position in six integrations of the stochastic model Eq. S1 (compare with experimental positions in Fig. 34). Each simulation was initialized
from each of the measured density profiles at the second experimental time point.

Table S1. Best-fit estimates of the wavefront speed in six
replicated dispersal events

Replica Speed, cm/d

546+19
51.7+238
48.0+1.5
58.0+4.0
53.4+18
46.3+1.0

AU WN =

Errors are + SE.
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Table S2. Best-fit estimates of the growth rate r and the
carrying capacity K for Tetrahymena sp.

Replica r,d™! K, ind/cm
1 6.0+0.2 1020 + 20
2 3.7+0.2 680+ 30
3 3.8+0.5 950 + 80
4 52+0.7 550 +30
5 5.8+0.5 1300 +92

Estimates of growth rate r and carrying capacity K obtained in five in-
dependent growth measurements. The fit is performed in the framework of
the deterministic logistic equation. ind, individuals. Errors are + SE.

Time 38.0s

Movie S1. Reconstructed trajectories of individuals of Tetrahymena sp. swimming in density-independent conditions at the front of a traveling wave. Dif-
ferent colors identify different individuals.

Movie S1
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