Supporting Information

Sudhakaran et al. 10.1073/pnas.1309543111

Fig. S1. dFmr1 interacts with Atx2, Me31B, and Ago1 for long-term habituation (LTH) to CO₂. (A) Compared with dFmr1 in heterozygous condition ($dfmr1^{3}/+$), transheterozygote flies for $dfmr1^{3}/atx2^{x1}$ (q = 10.654, ***P < 0.001), $me31B^{\Delta^2}/+$; $dfmr1^{3}/+$ (q = 9.653, ⁺⁺⁺P < 0.001), and $ago1^{K08121}/+$; $dfmr1^{3}/+$ (q = 7.365, ^{^^}P < 0.001) show a defect in LTH formation after 4-d exposure to CO₂ (gray bars). Flies heterozygous for Atx2, Me31B, and Ago1 ($atx2^{x1}/+$, $me31B^{\Delta^2}/+$, and $ago1^{K08121}/+$) show normal LTH after exposure to CO₂. (B) The expression of an Ataxin2 genomic rescue transgene (P[atx2+]) (1) restores the LTH defect in $dfmr1^{3}/atx2^{x1}$ flies, and LTH defects observed in $dfmr1^{3}/atx2^{x1}$, $me31B^{\Delta^2}/+;dfmr1^{3}/+$, and $ago1^{K08121}/+;dfmr1^{3}/+$ flies are rescued by the expression of a dFmr1 genomic rescue transgene (P[dfmr1+]) (2). (C) Transheterozygote $dfmr1^{3}/atx2^{x1}$, $me31B^{\Delta^2}/+;dfmr1^{3}/+$, and $ago1^{K08121}/+;dfmr1^{3}/+$ flies, as well as heterozygous mutations, do not show a defect in short-term habituation (STH); (A-C) Gray bars indicate CO₂-exposed and white bars indicate air-exposed flies. Error bars show ±SEM (n > 8 sets). Student t test performed (**P < 0.01, ***P < 0.001) except in A, which uses two-way ANOVA.

1. McCann C, et al. (2011) The Ataxin-2 protein is required for microRNA function and synapse-specific long-term olfactory habituation. Proc Natl Acad Sci USA 108(36):E655–E662. 2. Bolduc FV, Bell K, Cox H, Broadie KS, Tully T (2008) Excess protein synthesis in Drosophila fragile X mutants impairs long-term memory. Nat Neurosci 11(10):1143–1145.

Fig. S2. Knockdown of Me31B in local circuit interneurons (LNs) block LTH. Flies exposed to ethyl butyrate (EB) (black bars) or CO_2 (gray bars) and paraffin oil or air, respectively (white bars). Adult-specific knockdown of Me31B in LNs shows defects in LTH. For adult-specific knockdown, flies were shifted to 29 °C after eclosion and during odor exposure to specifically knock down Me31B in adults. *LN1-GAL4,tubGAL80^{ts}>Me31BRNAi* flies show a defect in LTH to both EB and CO_2 , whereas they show normal STH. Error bars show \pm SEM (n > 8 sets). **P < 0.01, ***P < 0.001 (Student *t* test).

Table S1.	Raw values	of behavior	experiments
-----------	------------	-------------	-------------

Genotype	Odorant exposed	Naïve (n)	After exposure (n)
	5% EB (30 min)		
CS		0.68 ± 0.02 (10)	0.33 ± 0.02 (10)
dfmr1 ^{B55}		0.68 ± 0.01 (11)	0.40 ± 0.03 (11)
dfmr1 ³		0.71 ± 0.05 (8)	0.25 ± 0.03 (9)
GH14GAL4, tubGAL80 <uasdfmr1rnai< td=""><td>at 18 °C</td><td>0.68 ± 0.02 (9)</td><td>0.31 ± 0.02 (10)</td></uasdfmr1rnai<>	at 18 °C	0.68 ± 0.02 (9)	0.31 ± 0.02 (10)
GH14GAL4, tubGAL80ts <uasdfmr1rnai< td=""><td>at 29 °C</td><td>0.66 ± 0.04 (10)</td><td>0.33 ± 0.02 (10)</td></uasdfmr1rnai<>	at 29 °C	0.66 ± 0.04 (10)	0.33 ± 0.02 (10)
dfmr1 ³ /+		0.67 ± 0.01 (15)	0.31 ± 0.02 (15)
me31B $^{\Delta 2}$ /+		0.64 ± 0.03 (6)	0.38 ± 0.04 (6)
$atx2^{x1}/+$		0.65 ± 0.02 (8)	0.36 ± 0.06 (8)
ago1 ^{K08121} /+		0.68 ± 0.03 (6)	0.29 ± 0.03 (6)
dfmr1 ³ /atx2 ^{x1}		0.71 ± 0.04 (8)	0.34 ± 0.05 (8)
me31B $^{\Delta 2}$ /dfmr1 ³		0.75 ± 0.01 (6)	0.35 ± 0.02 (6)
ago1 ^{K08121} /dfmr1 ³		0.70 ± 0.03 (8)	0.33 ± 0.02 (8)
LN1GAL4, tubGAL80ts <uasdfmr1rnai< td=""><td>at 29 °C</td><td>0.72 ± 0.04 (9)</td><td>0.38 ± 0.03 (9)</td></uasdfmr1rnai<>	at 29 °C	0.72 ± 0.04 (9)	0.38 ± 0.03 (9)
LN1GAL4. tubGAL80ts <uasatx2rnai< td=""><td>at 29 °C</td><td>0.62 + 0.02 (8)</td><td>0.25 + 0.03 (8)</td></uasatx2rnai<>	at 29 °C	0.62 + 0.02 (8)	0.25 + 0.03 (8)
	15% CO ₂ (30 min)	,	,
CS		0.70 ± 0.02 (8)	0.36 ± 0.02 (8)
dfmr1 ^{B55}		0.68 ± 0.03 (9)	0.34 ± 0.02 (9)
dfmr1 ³		0.69 + 0.03 (10)	0.31 + 0.03 (10)
LN1GAL4.tubGAL80ts <uasdfmr1rnai< td=""><td>at 29 °C</td><td>0.67 ± 0.04 (8)</td><td>0.43 ± 0.03 (8)</td></uasdfmr1rnai<>	at 29 °C	0.67 ± 0.04 (8)	0.43 ± 0.03 (8)
LN1GAL4.tubGAL80ts <uasatx2rnai< td=""><td>at 29 °C</td><td>0.59 ± 0.01 (11)</td><td>0.21 ± 0.03 (11)</td></uasatx2rnai<>	at 29 °C	0.59 ± 0.01 (11)	0.21 ± 0.03 (11)
	20% EB (4 d)		
CS		0.65 + 0.03 (9)	0.31 + 0.03 (9)
dfmr1 ^{B55}		0.66 ± 0.01 (9)	0.61 ± 0.03 (9)
dfmr1 ³		0.66 + 0.03 (9)	0.59 + 0.03 (9)
Pldfmr1 ⁺ 1.dfmr1 ³		0.69 + 0.03 (10)	0.35 + 0.02 (10)
GH14GAL4. tubGAL80ts <uasdfmr1rnai< td=""><td>at 18 °C</td><td>0.65 ± 0.02 (11)</td><td>0.38 ± 0.02 (11)</td></uasdfmr1rnai<>	at 18 °C	0.65 ± 0.02 (11)	0.38 ± 0.02 (11)
GH14GAL4. tubGAL80ts <uasdfmr1rnai< td=""><td>at 29 °C</td><td>0.70 ± 0.02 (11)</td><td>0.67 ± 0.02 (11)</td></uasdfmr1rnai<>	at 29 °C	0.70 ± 0.02 (11)	0.67 ± 0.02 (11)
dfmr1 ³ /atx2 ^{x1}		0.68 ± 0.02 (12)	0.64 ± 0.02 (11)
me31B Δ^2 /dfmr1 ³		0.70 ± 0.02 (12)	0.60 ± 0.01 (12)
$ago1^{K08121}/dfmr1^{3}$		0.63 ± 0.04 (9)	0.55 ± 0.01 (9)
$dfmr1^{3}/+$		0.64 ± 0.01 (15)	0.32 ± 0.01 (15)
me31B $\Delta^2/+$		0.56 ± 0.02 (9)	0.32 ± 0.02 (9)
$atx2^{x1}/+$		0.66 ± 0.04 (10)	0.30 ± 0.02 (10)
$ago1^{K08121}/+$		0.65 ± 0.02 (9)	0.32 ± 0.05 (9)
$P[Atx2^+]$: dfmr1 ³ /atx2 ^{x1}		0.68 ± 0.02 (10)	0.37 ± 0.01 (10)
$P[dfmr1^+].dfmr1^3/atx2^{x1}$		0.70 ± 0.02 (8)	0.36 ± 0.02 (8)
$me31B^{\Delta 2}$ /+: P[dfmr1 ⁺]/dfmr1 ³		0.67 ± 0.03 (9)	0.38 ± 0.03 (9)
$ago1^{K08121}/+: P[dfmr1^+]/dfmr1^3$		0.66 ± 0.03 (10)	0.41 ± 0.03 (10)
LN1GAL4. tubGAL80ts <uasdfmr1rnai< td=""><td>at 18 °C</td><td>0.70 ± 0.04 (9)</td><td>0.33 ± 0.03 (9)</td></uasdfmr1rnai<>	at 18 °C	0.70 ± 0.04 (9)	0.33 ± 0.03 (9)
IN1GAI 4. tubGAI 80ts <uasdfmr1rnai< td=""><td>at 29 °C</td><td>0.78 ± 0.04 (10)</td><td>0.64 ± 0.02 (10)</td></uasdfmr1rnai<>	at 29 °C	0.78 ± 0.04 (10)	0.64 ± 0.02 (10)
LN1GAL4. tubGAL80ts <uasatx2rnai< td=""><td>at 29 °C</td><td>0.62 ± 0.02 (9)</td><td>0.64 ± 0.03 (9)</td></uasatx2rnai<>	at 29 °C	0.62 ± 0.02 (9)	0.64 ± 0.03 (9)
	5% CO ₂ (4 d)		
CS		0.68 + 0.01(10)	0.36 + 0.01 (10)
dfmr1 ^{B55}		0.71 ± 0.03 (10)	0.69 ± 0.01 (10)
dfmr1 ³		0.72 + 0.04 (11)	0.66 + 0.01 (11)
Pldfmr1 ⁺ 1.dfmr1 ³		0.71 ± 0.05 (11)	0.33 ± 0.01 (11)
GH14GAI4, tubGAI80 <11ASdFmr1RNAi		$0.66 \pm 0.01(10)$	0.31 ± 0.01 (10)
GH14GAI4, tubGAI80ts <iiasdfmr1rnai< td=""><td>at 18 °C</td><td>0.65 ± 0.01 (10)</td><td>0.36 ± 0.07 (10)</td></iiasdfmr1rnai<>	at 18 °C	0.65 ± 0.01 (10)	0.36 ± 0.07 (10)
INIGALA tubGAL80ts <td>at 29 °C</td> <td>0.59 ± 0.01 (9)</td> <td>0.30 ± 0.02 (3) 0.27 \pm 0.03 (8)</td>	at 29 °C	0.59 ± 0.01 (9)	0.30 ± 0.02 (3) 0.27 \pm 0.03 (8)
INIGALA tubGAL80ts IASdFmr1RNA</td <td>at 18 °C</td> <td>$0.69 \pm 0.03 (10)$</td> <td>$0.60 \pm 0.03(0)$</td>	at 18 °C	$0.69 \pm 0.03 (10)$	$0.60 \pm 0.03(0)$
IN1GAI4_tubGAI80ts <uasatx2rnai< td=""><td>at 29 °C</td><td>0.59 ± 0.01 (11)</td><td>0.65 ± 0.02 (10) 0.65 ± 0.03 (11)</td></uasatx2rnai<>	at 29 °C	0.59 ± 0.01 (11)	0.65 ± 0.02 (10) 0.65 ± 0.03 (11)