
	   1	  

 

Supplementary Information 
Supplementary Figure Legends 

 
Supp. Fig. 1 related to Fig. 1 Distribution of the number of mutations per samples 

across different tumor types 

A boxplot-based representation of the distribution of the number of somatic mutations in 

the different tumor types, ordered according to their median is shown. The median, first 

quartile, third quartile and outliers in the distribution are shown. 

 

Supp. Fig. 2 related to Fig. 2 Variation of the number of predicted TSGs with 

increasing number of samples 

Subsets of the mutation dataset containing decreasing numbers of mutations are analyzed 

with the TUSON Explorer method and the number of predicted (true positive) TSGs is 

estimated through the method proposed by Mosig et al. (see Experimenthal Procedures, 

Mosig et al., 2001). Additionally, 812 additional samples were added to the current 

dataset from the published database recently described by Alexandrov et a., 2013 

(Alexandrov et al., 2013) to generate the data point with the highest number of samples 

 

Supp. Fig. 3. Related to Fig. 3 CORUM and Betweenness analysis on predicted OGs 
and TSGs 

A) Analysis of the involvement of predicted TSGs and OGs in protein complexes. The 

CORUM dataset of human protein complexes was used to determine the fraction of TSGs 

and OGs that belong to known protein complexes. Corresponding p-values are shown as 

determined by the Wilcoxon test. 

B) Betweenness analysis on the predicted TSGs and OGs. Enrichment of high 

betweenness of TSGs and OGs were computed on the interaction network from BioGRID 

using the Kruskal–Wallis one-way analysis of variance (p-values are shown). 

 

Supp. Fig. 4 related to Fig. 6 Correlation analysis of density, Charm and Chrom for 
TSGs, OGs and essential genes and arm- and chromosome-level deletion and 
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amplification frequency 

A correlation analysis (Pearson's correlation) of the arm-level or chromosome-level 

frequency of deletion and amplification with the indicated parameter among the relative 

density (Dens), Charm score, Chrom score for TSGs, OGs or Essential genes and 

different combination of these scores as indicated. The r-value and p-value for each 

correlation is shown. The lists of TSGs and OGs are the same used for Fig. 6. 

 

Supp.  Fig. 5 related to Fig. 6 Correlation analysis of density, Charm and Chrom for 

TSGs, OGs and essential genes and arm- and chromosome-level deletion and 
amplification frequency 

A correlation analysis (Pearson's correlation) of the arm-level or chromosome-level 

frequency of deletion and amplification with the indicated parameter among the Charm 

score, Chrom score for TSGs, OGs or Essential genes in different combination of these 

scores as indicated. The r-value and p-value for each correlation is shown. The 

correlations shown in panels A-B are based on the lists of TSGs and OGs used for Fig. 6, 

while the correlations shown in panels C-F, marked with an asterisk, are based on the top 

300 TSGs and top 250 OGs ranked by TUSON combined q-value, without taking into 

account additional parameters or cutoffs. 

 

 

 

Supplementary Table Legends 
 

Supp.  Table 1 related to Fig. 1: List of tumor types, N of samples and mutations in 

each.  
Supp.  Table 1 contains the list of the tumor types present in the dataset their relative 

number of samples and total number of mutations. In addition, this table shows the tumor 

types for which an individual analysis is shown in Supp.  Table 4.  

Supp. Table 2 related to Fig. 2: Lists of TSG and OG training sets and the Neutral 
genes set and Behavior of parameters in the binary classifications 
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• Supp. Table 2a: Lists of TSG and OG training sets and the Neutral genes set 

Supp. Table 2a contains the TSG and OG training sets as well as the Neutral gene 

set, derived as described in the methods. 

• Supp. Table 2b: Behavior of parameters in the binary classifications 
Supp. Table 2b shows the 22 parameters for the prediction of TSGs and OGs, 

together with their median in the indicated gene set: Neutral genes, TSG training 

set and OG training set. 
 

Supp.  Table 3 related to Fig. 3: Ranking of TSGs and OGs by TUSON Explorer 

and Lasso and related analyses  

• Supp. Table 3a: Ranking of TSGs by TUSON Explorer and Lasso 

This table shows all the parameters used for the prediction of TSGs with relative 

p-values and q-values (see methods), as indicated. The Total N of Silent, 

Missense, LOF and Splicing mutations, the coding sequence length (CDS), the 

ratios of the different classes of mutations and the corresponding p-values and q-

values are shown as specified. In addition, the p-value and q-value for deletion 

and amplification are shown. Columns X and Y contain the combined p-value and 

q-value from TUSON Explorer method and column Z contains the probability of 

gene of being TSG as predicted by the Lasso method. 	  

• Supp. Table 3b: Ranking of OGs by TUSON Explorer and Lasso 
This table shows all the parameters used for the prediction of OGs with relative p-

values and q-values (see methods), as indicated. The Total N of Silent, Missense, 

Entropy Score, the CDS and the ratios of different classes of mutations and their 

p-values and q-values are shown as specified. In addition, the p-value and q-value 

for deletion and amplification are shown. Columns X and Y contain the combined 

p-value and q-value from TUSON Explorer method and column Z contains the 

probability of gene of being OG as predicted by the Lasso method. 	  

• Supp. Table 3c: GO-term enrichment analysis for TSGs predicted by TUSON 
GO-term enrichment analysis using DAVID of the top 300 candidate TSGs 

predicted by the PAN-Cancer analysis (http://david.abcc.ncifcrf.gov/, Huang et al., 

2009). 
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• Supp. Table 3d: Analysis and ranking of familial TSGs in sporadic cancer 

A list of familial TSGs with the corresponding p-values and q-values derived 

from the TUSON Explorer analysis on sporadic tumors.	  

 
 

Supp.  Table 4 related to Fig. 3: TUSON Explorer prediction of TSGs and OGs on 

single tumor types and related analysis 

• Supp. Table 4a: TUSON Explorer prediction of TSGs on single tumor types 

Supp. Table 4a contain the TUSON Explorer p-value and q-value for each of the 

indicated tumor type for the prediction of TSGs. 

• Supp. Table 4b: TUSON Explorer prediction of OGs on single tumor types 

Supp. Table 4b contain the TUSON Explorer p-value and q-value for each of the 

indicated tumor type for the prediction of OGs 

• Supp. Table 4c: Analysis of TSGs of single tumor types compared to the TSGs 

in the PAN-Cancer analysis 
For each of indicated tumor types Supp. Table 4c contains the number of TSGs 

predicted by the PAN-Cancer analysis on the mutation dataset after removing the 

corresponding type of tumor (column B), the number of TSGs predicted by the 

analysis of the indicated specific tumor type (column C). Column E and F report 

the number and % of TSGs among the tissue specific ones (column C) not found 

in the PAN-cancer TSGs (column B). 

 

Supp.  Table 5 related to Fig. 5: Analysis of functional gene sets, analysis of TSGs on 
the chromosomes and analysis of mutations in females versus males 

• Supp. Table 5a: Analysis of functional gene sets (STOP and Essential genes) 

Supp. Table 5a contains the lists of STOP genes and the two lists of in silico 

derived Essential genes (145 and 332 genes) as described in the methods. In 

addition, this table reports the list of genes localized in regions of recurrent focal 

deletions or amplifications (Beroukhim et al., 2010). 

• Supp. Table 5b: Relative density of TSG on the chromosomes. 

Supp. Table 5b shows the relative density of predicted TSGs (first 300 genes from 
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the TUSON Explorer prediction, combined p-value) on the different 

chromosomes, including its deviation from the expected density from the overall 

gene distribution on the chromosomes and the significance (p-value) of this 

deviation (one tailed binomial test). 

• Supp. Table 5c: Mutation density on X and autosomes in males and females 

Supp. Table 5c shows the analysis performed on males and females tumor 

samples relative to the occurrence of Silent and LOF mutations on the 

chromosome X. The total N of samples, the density of silent mutations on the X 

(normalized for the number of copies of X) and the number of LOF and Silent 

mutations on the TSGs on the X chromosome in males and females are shown. 

 

Supp.  Table 6 related to Fig. 6: Density, Charm, Chrom scores for TSGs, OGs and 

Essential genes and frequency of deletion and amplification across cancers 

Supp. Table 6 shows the values of the various parameters used to establish the correlation 

between SCNAs data and the gene density, the Charm scores and Chrom scores for TSGs, 

OGs and the Essential genes. For each arm and chromosome and each class of genes 

(TSGs, OGs and Essential genes) we show the density, Charm and Chrom score. 

Additionally, the CharmTSG-OG and the CharmTSG-OG-Ess are shown (see experimental 

procedure for the method of calculation). Lastly, the average frequency of arm- and 

chromosome-level deletion and amplification is shown. Supp. Table 6a contains the 

values used for the tighter list of TSGs and OGs using stringency cutoffs (see methods); 

6b contains the values used for the top 300 TSGs and top 250 OGs after ranking 

according to the TUSON q-value, without stringency cutoffs. 

  

Supp.  Table 7 related to Fig. 3: Manually curated list of genes predicted by TUSON 
Explorer to have TSG-like or OG-like signatures. 

• Supp. Table 7a: Manually curated list of genes predicted by TUSON Explorer 
to have TSG-like signatures 

Supp. Table 7a lists the gene symbol, description, key parameters, and 

heuristically-derived confidence level for the top 1000 genes ranked by TUSON 
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to have a pattern of mutation similar to TSGs. Q-values for the parameters utilized 

by TUSON are included, along with the combined p-values and q-values 

(TUSON Explorer), and the probability of each gene being a TSG as predicted by 

Lasso. A manual confidence column indicates our overall level of confidence of 

each gene being a true TSG (see supplementary methods). We report GO terms 

and KEGG pathways associated with each gene. For a subset of genes, we 

summarize evidence from the literature implicating the gene as a cancer driver or 

suggesting a putative functional role in cancer.  Relevant publications are 

referenced by their PMID. We categorize the literature status of these genes as 

Known, Putative, Unclear or Context-dependent, or Novel (see supplementary 

methods). 

 

• Supp. Table 7b: Manually curated list of genes predicted by TUSON Explorer 

to have OG-like signatures 
Supp. Table 7b lists the gene symbol, description, key parameters, and 

heuristically-derived confidence level for the top 1000 genes ranked by TUSON to 

have a pattern of mutation similar to OGs. Q-values for the parameters utilized by 

TUSON are included, along with the combined p-values and q-values (TUSON 

Explorer), and the probability of each gene being an OG as predicted by Lasso. A 

manual confidence column indicates our overall level of confidence of each gene 

being a true OG (see supplementary methods). We report GO terms and KEGG 

pathways associated with each gene. For a subset of genes, we summarize 

evidence from the literature implicating the gene as a cancer driver or suggesting a 

putative functional role in cancer.  Relevant publications are referenced by their 

PMID. We categorize the literature status of these genes as Known, Putative, 

Unclear or Context-dependent, or Novel (see supplementary methods). 

 

Supplemental Experimental Procedures 
Somatic mutation dataset and SCNA data. 
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The dataset of somatic mutations included data from all-exome and all-genome 

sequencing published by Alexandrov et al. (Alexandrov et al., Nature 2013) (3653 

tumors), from the Catalogue Of Somatic Mutations in Cancer (COSMIC, 

http://cancer.sanger.ac.uk/cancergenome/projects/cosmic/) (738 tumors) and data from 

the Cancer Genome Atlas (TCGA, http://cancergenome.nih.gov/) research network (3816 

tumors). Tumor samples present in more than one dataset were excluded and the final 

dataset contained 1,195,228 mutations from 8207 tumor samples from more than 20 

tumor types (Supp. Table 1). Hypermutated tumors with more than 2000 mutations in 

coding sequences where excluded from the analysis. This dataset was used for the 

mutational analysis and TUSON Explorer predictions and will be available at 

http://elledgelab.med.harvard.edu/. All data related to SCNAs were derived from Zach et 

al., 2013.  

Definition of classes of mutations 

We utilized the PolyPhen2 Hum-Var prediction model (Adzhubei et al., 2010) to weight 

the functional impact of each missense mutation and to classify them as high functional 

impact (HiFI) or low functional impact (LoFI) based on their probability of being 

damaging predicted by the PolyPhen2 HumVar algorithm. The HiFI and LoFI mutations 

were defined as mutations with a probability of being damaging higher than 0.447 

(corresponding to Possibly or Probably damaging in Hum-Var prediction) or lower than 

0.25, respectively. Based on this predicted functional impact, we defined these four 

classes of mutations, which were used to define the parameters in Lasso (see below): 

-‐ Benign mutations: Silent + LoFI Missense 

-‐ Loss of Function mutations (LOF): Nonsense and Frameshift mutations 

-‐ Splicing mutations: mutations affecting splicing sites (more than 95% of splicing 

mutations are in the first two positions at donor or acceptor sites) 

-‐ HiFI missense mutations (damaging missense mutations) 

 

Entropy of missense mutations 
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Mutations often occur recurrently on a few residues in oncogenes, suggesting that tumor 

evolution selection acts to favor of them. We measure the strength of the selection force 

by the entropy score, which measures the degree of randomness in where the mutations 

occur. Advantages of using entropy include 1) it can sensitively detect mild selection 

forces distributed over many residues; 2) the score is largely independent of gene size or 

the total number of mutations.  

Given a protein, we represent a somatic mutation by 𝑀𝑖 = 𝑝𝑖,𝐴𝑖 , where 𝑝𝑖 represents 

its location on the protein, and 𝐴𝑖 represents the new amino acid into which it has 

mutated. We scan the protein and obtain the number of occurrence, 𝑛𝑖, for each mutation 

type 𝑀𝑖, the total number of different mutation types 𝑘, and the total number of all 

mutations 𝑛. The observed frequency for each mutation type 𝑀𝑖  is  computed  as  𝑓𝑖 =

𝑛!/𝑛.  The entropy of the observed data is calculated as 

𝑆 = −𝑓𝑖 ⋅ ln  (𝑓𝑖)
𝑘

𝑖!!

, 

where 𝑙𝑛 is the natural logarithm. The maximum entropy, where each mutation type has 

the same probability 𝑝𝑖 = 1/𝑘, is 

𝑆! = −𝑝𝑖 ⋅ ln  (𝑝𝑖)
𝑘

𝑖!!

= ln 𝑘 . 

We use the difference between the two scores, 𝛥𝑆 = 𝑆! − 𝑆, to measure the selection 

force over the whole protein.                        

Under a null random model, the probability of observing 𝑘 mutation types with 

occurrences 𝑛!, 𝑛!,… , 𝑛𝑘 out of a total 𝑛 mutations is 

𝑃 = !
!!,!!,……,!!

!!
!

!!!
!!! . 

Using the Sterling approximation, we have  

ln 𝑃 ≈ 𝑛 ⋅ 𝛥𝑆. 
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The p-values were computed based on the above formula. We normalized 𝑛 for all 

proteins to the average number of mutations in well-known oncogenes to avoid artifactual 

effects due to large gene sizes. For the entropy score calculation, hypermutated samples 

deriving from melanoma patients were excluded. 

Definition of primary parameters for the prediction of OG and TSG 

Based on the classification of mutations described above, the entropy score calculation 

and other gene-specific features we selected a set of 22 primary parameters associated 

with each gene for the prediction of TSG and OG.  

1. Silent mutations/kb 

2. Total N Missense mutations 

3. Total N LOF mutations 

4. Total N of Splicing mutations 

5. Missense mutations/kb 

6. LOF mutations/kb 

7. Entropy score for missense mutations 

8. LOF/Silent ratio 

9. Splicing/Silent ratio 

10. Missense/Silent ratio 

11. HiFI missense/LoFI missense ratio 

12. LOF/Benign ratio 

13. Splicing/Benign ratio 

14. Missense/Benign ratio 

15. HiFI missense/Benign ratio 

16. Average PolyPhen2 score for missense mutations 

17. LOF/Total mutations 

18. Missense/Total mutations 

19. Splicing/Total mutations 

20. LOF/Missense mutations  

21. High-level Deletion frequency 

22. High-level Amplification frequency 
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For the parameters 8, 9, 10, 11, 12, 13, 14, 15, 17, 18, 19, and 20 that involve ratios, a 

pseudo-count estimated from the median of each parameter calculated on all genes was 

added. Let us consider a gene 𝐺!   with the number of mutations 𝑀!
!  𝑀!

!   in class A and B, 

along with their medians 𝑚!  and  𝑚!. The parameter 𝑝!!"  involving the ratio of mutations 

in class A and B was calculated as follows: 

𝑝𝑖
𝐴𝐵   =

  𝑀𝑖
𝐴     + 12   𝑚

!

  𝑀𝑖
𝐵     + 12   𝑚

!
 

Derivation of TSG, OG and Neutral Gene (NG) training sets 

To derive the TSG and OG training sets, we started from the entire list of 468 genes 

reported to be mutated (somatic or germline) in cancer from the Cancer Gene Census 

(Futreal et al., 2004) (http://cancer.sanger.ac.uk/cancergenome/projects/census/). We 

excluded genes reported in translocations. We considered genes whose mutations were 

reported as Dominant for OG and reported as Recessive for TSG. Furthermore, we 

selected the most high confidence TSG and OG as those genes that have been implicated 

in tumorigenesis by strong experimental evidence in model organisms. The final lists of 

TSG and OG contained 50 genes each and are reported in Supplemental Table 2. 

To derive the list of Neutral genes (NG), we considered the entire gene list (18700 

protein coding genes) and we excluded all the genes satisfying any of the following 

criteria: a) belonging to the Cancer Gene Census list of mutated or rearranged genes; b) 

having been previously implicated in any Entrez databases at NCBI as oncogene or tumor 

suppressor gene (http://cbio.mskcc.org/CancerGenes/DescribeMethods.action); and c) 

belonging to a list of housekeeping genes or genes highly conserved across evolution (see 

Derivation of Functional gene sets). The final list of NG (10,900 genes) is contained in 

Supplemental Table 2. 

Predictions based on classification models 

Classification models were used to train and predict the probabilities of being a tumor 

suppressor gene or an oncogene for each gene. We used a statistical method called Lasso 

(least absolute shrinkage and selection operator) to narrow down our original list of 22 
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parameters. This method minimizes the residual sum of squares as in standard linear 

regression but with the added constraint on the sum of the absolute values of the 

coefficients (this tends to shrink some coefficients to zero and allows removal of those 

variables to simplify the model). We curated the final lists of parameters based on Lasso 

selection results, with manual removal of some obviously biased parameters such as the 

total number of mutations. 

We first performed three binary classifications, between 1) TSG and OG, 2) TSG and NG 

and 3) OG and NG. Each classification estimated probabilities of each gene being in one 

of the classes. The final probabilities of being a TSG or OG were obtained by averaging 

the results of three classifiers. We tested both the Lasso classifier and the well-known 

Supporting Vector Machine (SVM) (Cortes and Vapnik, 1995). To compensate for 

Lasso’s inflexibility of taking account of non-linear effects, we transformed each 

parameter 𝑥 into 6 new parameters: 𝑥, 𝑥!, 𝑥!, 𝑥!, 𝑥! and ln  (𝑥). The lambda value was 

determined by using a 20-fold cross validation approach. SVM is known for its efficient 

computation and for taking account of potentially non-linear effects of parameters. To 

determine the optimal weights for parameters, we performed a computationally-heavy 

grid search. We used the Gaussian Radial Basis function as the kernel, and used the R 

package e1071 for computation. Comparing the cross-validation results from Lasso and 

SVM, we found that Lasso always displayed higher accuracy; thus the final predictions 

were performed by Lasso only. To avoid issues associated with imbalanced 

classifications when the 10,900 NG set was used, we generated 20,000 random small NG 

sets of size 150 each. Each NG was covered 275 times among these random sets. With 

each random set, we performed a Lasso classification against either TSG or OG. The 

final results were averaged over these 20,000 results.  

Tumor Suppressor and Oncogene Explorer (TUSON Explorer) 

p-value and q-value calculation First we derived a p-value for each of the following 

parameters selected through the Lasso method for the prediction of TSGs or OGs. The 

parameters selected through Lasso for the prediction of TSGs were the following 3 

parameters: 
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1. LOF/Benign ratio (Lasso coefficient 𝛽 = -7.96) 

2. HiFi Missense/Benign ratio (Lasso coefficient 𝛽 =-0.61) 

3. Splicing/Benign ratio (Lasso coefficient 𝛽 = 0.89) 

 The parameters selected through Lasso for the prediction of OGs were the following 2 

parameters: 

1.    Entropy Score (Lasso coefficient 𝛽 = -1.21) 

2.  HiFi Missense/Benign ratio (Lasso coefficient 𝛽 = 1.06) 

Additionally, LOF/Benign was selected by Lasso as the best parameters for 

discriminating between TSGs and OGs (Lasso coefficient 𝛽 =-0.79).  

For the Entropy score, the p-values were calculated as described above.  For the 

LOF/Benign, Splicing/Benign, and HiFI missense/Benign ratios, the p-values were 

computed by using the exact binomial test as follows. Let us consider a gene 𝐺𝑖 among all 

genes G and define 𝑆!,𝐻! and 𝐵!  to be its number of Splicing, HiFI missense and Benign 

mutations, respectively. Let N be the set of NG. We define 𝐸! and 𝐸! as 

𝐸! = 𝑆𝑗

  

!|𝐺𝑗∈!

/ 𝐵𝑗

  

!|𝐺𝑗∈!

 

𝐸𝐻 = 𝐻𝑗

  

𝑗|𝐺𝑗∈𝑁

/ 𝐵𝑗

  

𝑗|𝐺𝑗∈𝑁

 

We compute the p-value for Splicing/Benign 𝑝𝑠 and HiFI missense/Benign 𝑝𝐻 for 

gene i as follows: 

𝑝𝑆𝑖 =
𝑆𝑖 + 𝐵𝑖

𝑗

𝑆𝑖!𝐵𝑖

𝑗!𝑆𝑖

⋅
𝐸𝑆

1+ 𝐸𝑆

𝑗

⋅
1

1+ 𝐸𝑆

𝑆𝑖!𝐵𝑖!𝑗

 

𝑝𝐻𝑖 =
𝐻𝑖 + 𝐵𝑖

𝑗

𝐻𝑖!𝐵𝑖

𝑗!𝐻𝑖

⋅
𝐸𝐻

1+ 𝐸𝐻

𝑗

⋅
1

1+ 𝐸𝐻

𝐻𝑖!𝐵𝑖!𝑗

 



	   13	  

For the LOF/Benign parameter, we applied an additional normalization in 

relationship to the non-homogeneous codon usage among genes. Since we are interested 

in the frequency of LOF mutations per gene, that number can deviate from the average 

simply on the basis of codon usage. The vast majority of nonsense mutations are single 

base changes and only 18 of 61 codons can mutate to a stop codon by a single nucleotide 

change. Therefore we normalized the number of nonsense mutations to the number of 

potential nonsense codons. The normalization factor for a gene is given by the ratio of the 

density of possible nonsense codons in the gene divided by the average density among all 

genes in the genome, as described below. 

Let us define 𝑁!, 𝐹𝑖 to be the number of Nonsense and Frameshift mutations for gene 𝐺𝑖. 

We also define 𝑡𝑖  as the number of possible nonstop codons (codons among the 18 codons 

that can be mutated to a nonsense by single nucleotide substitution) and 𝑛𝑖 the total 

number of codons of gene 𝐺𝑖. The average density of possible nonstop codons among all 

genes is  

𝑑   =
Σ𝑗𝑐𝑗

Σ𝑗𝑛𝑗

  . 

The relative density of possible nonsense codons for gene 𝐺𝑖 is 

𝑑𝑖 =
𝑡𝑖

𝑛𝑖
∙
1
𝑑
  . 

We compute expected ratio of Nonsense/Benign 𝐸𝑁𝑖  for the gene 𝐺𝑖 as  

𝐸𝑁𝑖 =
  𝑑𝑖. 𝑁𝑗

  
𝑗|𝐺𝑗∈𝑁   +    𝐹𝑗

  
𝑗|𝐺𝑗∈𝑁

𝐵𝑗
  
𝑗|𝐺𝑗∈𝑁      . 

Using the exact binomial test, the p-value 𝑝𝐿𝑖for LOF/Benign mutations for gene 𝐺𝑖 is 

computed as follows: 

𝑝𝐿𝑖 =
𝑁𝑖 + 𝐹𝑖 + 𝐵𝑖

𝑗

𝑁𝑖!𝐹𝑖!𝐵𝑖

𝑗!𝑁𝑖!𝐹𝑖

⋅
𝐸𝑁𝑖

1+ 𝐸𝑁𝑖

𝑗

⋅
1

1+ 𝐸𝑁𝑖

𝑁𝑖!𝐹𝑖!𝐵𝑖!𝑗

  . 
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Furthermore, an additional normalization was applied to genes with a high CDS length. 

We first noticed that the distribution of CDS length has a long right tail with the 

skewness coefficient of 9. Likewise, a similar degree of skewness is present in the 

distribution of silent mutations, which mainly depends on gene length. We thus 

normalized the number of each class of mutations for all the genes whose total number of 

silent mutations is higher than 30 (2 standard deviation away from the mean). To 

illustrate this, if a gene 𝐺𝑖  had a number of silent mutations 𝑆𝑖  higher than 30, the 

numbers of its mutations 𝑀𝑖 in each class of mutations (nonsense, frameshift, silent and 

HiFI)  are normalized to 𝑛𝑜𝑟𝑚𝑀𝑖  = 𝑀𝑖 ⋅ 𝑆!/30   . The normalized number 𝑛𝑜𝑟𝑚𝑀𝑖  of the 

mutations in each class was then used to compute the p-values as described above. 

Calculation of a combined p-value   

To derive a combined p-value, we combined the p-values deriving from the 3 or 2 

parameters selected by Lasso for the prediction of TSGs and OGs, respectively. For this 

purpose, we used an extension of the Liptak’s method (Liptak, 1958) with correlation 

correction because 1) correlations were observed between parameters and 2) different 

parameters have different effect sizes and need to have different weights. A grid search 

method was used to find the optimal weights which results in the best rankings for the 

TSG or OG genes in the training sets. For each gene, p-values from different parameters 

were transformed into Z-scores, 𝒁 = 𝑍!,𝑍! . The combined Z-score is computed as 

𝑍𝑐 =
𝒘⋅𝒁

𝒘⋅𝝆⋅𝒘′
, where 𝒘 is the weight and 𝝆 is the correlation matrix. The combined Z-

score is then transformed back into the combined p-value. For TSG predictions, we 

combined p-values from LOF/Benign, Splicing/Benign and HiFI/Benign parameters. For 

OG predictions, we combine p-values from Missense entropy and HiFI/Benign 

parameters. The q-value was computed by using the Benjamini & Hochberg method 

(Benjamini and Hochberg, 1995).  

The LOF/Benign ratio was predicted by Lasso as the best parameter discriminating 

between TSGs and OGs. For the final prediction of the OGs, in order to discriminate 

between OGs and TSGs, the genes having a q-value for LOF/Benign ratio lower than 0.3 

were excluded from the final list. Conversely, for the TSGs, the genes having a q-value of 
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1 for the LOF/Benign parameter were excluded from the final list. 

Estimate of the number of cancer genes 

We implemented a histogram-based method proposed by Mosig et al. (Mosig et al., 2001) 

to estimate the numbers of TSGs and OGs, given the combined p-values. The method 

assumes a uniform distribution for the p-values of null hypotheses and estimates its 

number. The number of rejected hypotheses then corresponds to the number of TSG 

genes or OG genes. In addition, we validated the Mosig analysis by applying a simple 

FDR-based method to the ranking made by a single parameter using the q-value. This 

entails choosing a group of ranked genes starting from the top-ranked gene and 

multiplying that number by (1-q) for the last gene in the list to reveal the number of 

statistically significant gene signatures on the list. This analysis confirmed the 

conclusions from the Mosig method. 

In addition to estimating the N of TSGs and OGs predicted by TUSON Explorer on the 

dataset used for the mutation analysis, we also assessed how the number of predictive 

TSGs by the analysis described above changes by analyzing datasets composed of 

progressively increasing numbers of samples and total N of mutations (Supp. Fig. 2). 

Random subsets (10 for each data point shown in the figure) of the mutation dataset were 

analyzed by TUSON Explorer method and the N of predicted TSGs was assessed. 

Additionally, 812 more samples were added to the current dataset from the published 

database recently described by Alexandrov et a., 2013 (Alexandrov et al., 2013) to 

generate the data point shown in the graph corresponding to the dataset with the highest 

number of samples (Supp. Fig. 2). 

Estimating a list of p-values from the corresponding list of q-values 

We designed a novel statistical method to convert a list of q-values into a list of p-values. 

This is needed as the significance of CNVs in GISTIC2 results are in the form of q-values, 

while p-values are needed to obtain the combined p-values (Mermel et al., 2011). We 

basically reversed the Benjamini & Hochberg method of calculating of q-values. If a 

CNV segment has q-value 𝑞 and rank 𝑖 among a total of 𝑛 segments, the p-value is 

𝑝 = 𝑞 ⋅ 𝑖/𝑛  . When two segments with ranks 𝑖− 1 and 𝑖 have the same q-value q, the p-
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value for the (𝑖− 1)th segment is 𝑝 = 𝑞 ⋅ (𝑖 − 0.5)/𝑛. The p-values generated in such a 

way are unbiased estimates from the corresponding list of q-values. These p-values and 

q-values for deletion and amplification are in Supp. Table 3a, b. 

  

CORUM analysis 

The CORUM database contains an experimentally-validated dataset of human protein 

complexes and was employed to determine the involvement of TSG and OG in protein 

complexes (Ruepp et al., 2010). Two-tailed binomial test was used to test the significance 

of the enrichment in genes involved in protein complexes.  

Betweenness centrality 

Betweenness centrality measures the importance or centrality of each gene in the network. 

For a network with 𝑛 genes, define 𝜎𝑖,𝑗 as the total number of shortest paths between gene 

𝑖  and gene 𝑗 , and 𝜎𝑖,𝑗
𝑘  as the total number of 𝜎𝑖,𝑗  that passing through gene 𝑘 . The 

betweenness centrality for gene 𝑘 is defined as: 

𝑏𝑤 𝑘 =
2

𝑛− 1 ⋅ (𝑛− 2) ⋅
𝜎𝑖,𝑗

𝑘   
𝜎𝑖,𝑗  !!!!!  

. 

We downloaded the human gene interaction network from BioGRID, which contains 

15,843 genes and 217,215 interactions. We used the Brandes’ algorithm (Brandes, 2001) 

to compute the betweenness centrality values for the full network. Kruskal–Wallis one-

way analysis of variance was used to access whether the predicted TSGs and OGs have 

significantly larger betweenness centrality values compared to genes in the whole 

network. 

 

Charm and Chrom score and correlation analysis 

The Charm and Chrom scores represent a score assigned, respectively, to each 

chromosome arm or whole chromosome, which depend on the relative density and 
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potency of TSGs and OGs (and occasionally Essential genes) contained in it. We used 

density instead of the total number of TSGs, OGs and essential genes per arm because it 

is likely there is a penalty due to proteotoxic stress that occurs upon changing the dosage 

of many genes at once and this should be proportional to the number of genes in the 

region of interest.  Thus, to approximate this penalty we normalized to the total number 

of genes per arm or chromosome. To determine the Charm and Chrom scores, we first 

selected the TSGs and OGS based on the following parameters derived from TUSON 

Explorer, a method based only on the mutation profile of each gene, independent of any 

SCNA information. The correlation analyses using the top 300 TSGs and top 250 OGs 

after ranking based on the TUSON p-values are shown in Supp. Fig. 5C-F.  In Fig. 6, 

Supp. Fig. 4 and Supp. Fig. 5A-B we show the correlation analyses based on a more 

stringent list of TSGs and OGs selected as described below. We selected the TSGs 

having a combined q-value<0.25, a q-value for the LOF/Benign ratio <0.25 and a 

minimum of 8 LOF mutations (264 TSGs in total). For the OGs we selected the genes 

having a combined q-value<0.35, a q-value for the Entropy score <0.35 and a minimum 

of 10 Missense mutations (219 OGs in total). The correlation analysis for these lists is 

shown in Fig. 6, Supp. Fig. 4-5 and Supp. Table 6. In all cases the potency of each TSG 

and OG was estimated by its rank position on the list ranked by the combined q-value for 

TSGs and OGs respectively determined by TUSON Explorer.  

Given our ranked list of T predicted TSGs and O predicted OGs among all genes 

G, each TSG or OG is assigned a weight w equal to T-r or O-r, where r is the rank 

position of that gene in its respective list. Let us now consider an arm i and define 𝑇𝑖 as 

the TSGs contained in that arm and 𝑂𝑖 the OGs contained in it. In addition, N is the total 

number of genes contained in that arm. We determine the Charm scores for that arm as 

follows: 

𝐶ℎ𝑎𝑟𝑚𝑖
𝑇𝑆𝐺 = 𝑤𝑗

  

𝑗|𝐺𝑗∈𝑇𝑖

/𝑁𝑖;   𝐶ℎ𝑎𝑟𝑚𝑖
𝑂𝐺 = 𝑤𝑗

  

𝑗|𝐺𝑗∈𝑂𝑖

/𝑁𝑖

𝑖

     

In addition to the TSGs and OGs, we also included our in silico list of Essential genes 

(332 genes, Supp. Table 5a). The importance of Essential genes was estimated based on 
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the (LOF + 1/2⋅HiFI)/Benign ratio, with genes with lower ratios having a higher weight 

(all the mutations in the dataset including hypermutated samples were used). Similarly to 

the TSGs and OGs, we determined a Charm score for the Essential genes 𝐶ℎ𝑎𝑟𝑚𝑖
𝐸𝑠𝑠. 

In order to combine the cumulative effects of TSGs and OGs on each arm, we derived a 

combined score.  The 𝐶ℎ𝑎𝑟𝑚𝑖
𝐸𝑠𝑠 and the 𝐶ℎ𝑎𝑟𝑚𝑖

𝑂𝐺 were given negative weights as their effects 

on tumorigenesis go in opposite directions of TSGs. Additionally, to derive this combined score, 

a normalization factor was used to equalize the total effects of the different gene lists. Given the 

number of all genes N and the 𝐶ℎ𝑎𝑟𝑚!
𝑇𝑆𝐺, 𝐶ℎ𝑎𝑟𝑚!

𝑂𝐺  𝑎𝑛𝑑  𝐶ℎ𝑎𝑟𝑚!
    𝐸𝑠𝑠 scores, the combined score 

for arm i is as follows: 

𝐶ℎ𝑎𝑟𝑚𝑖
𝑇𝑆𝐺!𝑂𝐺!𝐸𝑠𝑠 =    𝐶ℎ𝑎𝑟𝑚𝑖

𝑇𝑆𝐺 −
𝐶ℎ𝑎𝑟𝑚  

𝑇𝑆𝐺
𝑖

𝐶ℎ𝑎𝑟𝑚  
𝑂𝐺

𝑖
⋅ 𝐶ℎ𝑎𝑟𝑚𝑖

𝑂𝐺   −
𝐶ℎ𝑎𝑟𝑚  

𝑇𝑆𝐺
𝑖

𝐶ℎ𝑎𝑟𝑚  
𝐸𝑠𝑠

𝑖
⋅ 𝐶ℎ𝑎𝑟𝑚𝑖

𝐸𝑠𝑠     

 

The 𝐶ℎ𝑎𝑟𝑚𝑖
𝑇𝑆𝐺!𝑂𝐺 was calculated in a similar way but omitting the 𝐶ℎ𝑎𝑟𝑚𝑖

𝐸𝑠𝑠 term. 

The Chrom score was calculated in a similar way to the Charm score, considering each 

entire chromosome instead of each arm individually. 

For the correlation test, we used the one-sided Pearson's correlation. We determined the 

correlation between the frequency of arm-level deletion or amplification with the Charm 

scores and the frequency of chromosome-level deletion or amplification with the Chrom 

scores. In addition to the Charm and Chrom scores we also determined the correlation 

using the relative density of TSGs, OGs and essential genes, in the absence of a rank-

based weighting. 

Data for SCNAs was derived from the following tumor types (Zach et al., 2013). The 
tumor types are BLCA, BRCA, COADREAD, GBM, HNSC, KIRC, LUAD, LUSC, OV, 
STAD, SKCM, THCA, UCEC and KICH. The frequency of the different types of 
SCNAs was determined as described below. For each available tumor type, we calculated 
the frequencies of samples having deletions, high level deletions, amplifications and high 
level amplifications using the thresholds -0.415, -2, 0.32 and 0.807 respectively for the 
log copy ratios. The overall frequency of arm level SCNAs is the unweighted average 
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among all tumor types. 

 
Functional gene sets (STOP and Essential) and analysis of their density in focal 

deletions 

To define the list of STOP genes, we employed the data from functional genome-

wide shRNA based proliferation screening (Solimini et al., 2012), specifically from the 

secondary validation screen. We performed an analysis using RNAi gene enrichment 

ranking (RIGER) algorithm (Cheung et al., 2011), using Kolmogorov-Smirnov statistics. 

The genes with a p-value <0.005 were considered. The final list of STOP genes is in 

Supplemental Table 8. 

To define a list of genes predicted to be Essential, from the KEGG database we 

determine a list of genes predicted to be essential as being part of the following crucial 

biological processes including DNA replication, RNA transcription, mRNA transport, 

tRNA synthesis, RNA splicing, glycolysis, oxidative phosphorylation, fatty acid 

biosynthesis, fatty acid metabolism, purine metabolism, pyrimidine metabolism and 

amino acid metabolism (650 genes, KEGG list). Furthermore, we considered a list 

containing housekeeping genes and highly conserved genes	  (Marcotte et al., 2012). The 

housekeeping genes list contains 1722 genes expressed in more than 90% of analyzed 

tissues in a human expression database (Su et al., 2004). The list of highly conserved 

genes contains 1617 identified in 8 different species (A.thaliana, B. taurus, C. elegans, C. 

familiaris, M. mulatta, M. musculus, R. norvegicus, and S. cerevisiae), as determined by 

Paranoid (O'Brien and Fraser, 2005, Marcotte et al., 2012). The final list of Essential 

genes used in the functional gene set analysis contains 150 genes and was determined as 

the genes belonging to all three lists: KEGG, the housekeeping genes list and the highly 

conserved genes list (Supplemental Table 8). For the correlation analysis shown in 

Supplemental Fig. 4 a larger list of 332 genes was used, represented by genes belonging 

to both the housekeeping and the ortholog genes lists. 

 We determined whether there was a significant enrichment or depletion of STOP 

and Essential genes, respectively, within recurrent focal deletions. To this aim, we 
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considered the 82 regions of recurrent focal deletions defined in Beroukhim et al., 2010 

(Beroukhim et al., 2010). We considered the genes found in recurrent deletions and how 

many among those belonged to the STOP or Essential genes. We used the Fisher’s exact 

test to examine the significance of the association (contingency) between the presence of 

a gene in recurrent deletions and its presence among the Essential genes or the STOP 

genes. 

Analysis of mutations in tumors from males and females 

We used the data deriving from TCGA only because of the availability of gender 

information, after removal of the hypermutated tumors (see Somatic mutation dataset and 

SCNA data). We extracted the male-female information on a total of 627 female samples 

and 990 male samples of the following tumor types that do not have a strong gender-

specificity: glioblastoma multiforme, head and neck adenocarcinoma, kidney clear cell 

carcinoma, lung adenocarcinoma and lung squamous cell carcinoma. To estimate the 

mutation background on the X chromosome and autosomes, we determined the average 

density of silent mutation per Mb of total coding region on X chromosome and on 

autosomes in each tumor (Supplemental Table 10). We employed the Wilcoxon test to 

test the significance of the difference between the mutation density on autosomes and the 

mutation density on the X chromosome in males and females. Additionally, we also 

derived the number of LOF and Silent mutations occurring on the TSGs present on the X 

in males and females (Supplemental Table 10). 

Analysis of individual tumor types  

We performed the analysis of 20 individual tumor types indicated in Supplemental Table 

1. Hematological and lymphoid malignances were analyzed together and indicated as 

ALL.Hematological cancers. The analysis on single tumor types was performed using the 

TUSON Explorer method described in the previous sections for the PAN-Cancer analysis 

on the entire dataset. The q-values were calculated on the genes showing at least 3 

mutations in the LOF and Silent mutation sets for TSGs and at least 5 missense mutations 

for OGs. The combined p-values and q-values for TSG and OG for the single tumor types 

are reported in Supplemental Table 7. In addition, for each of the 20 tumor types 
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indicated in Supp. Table 4c, we applied our method to the entire dataset excluding each 

individual tumor type, one at a time and compared the predicted TSGs found in this 

analysis (q-value<0.25) with the TSGs found in the analysis of the individual tumor type 

(q-value<0.25, Supp. Table 4c). 

Heuristic approaches to define a manually curated list of TSGs and OGs 

We collected additional information about TSGs and OGs, including SCNAs, gene 

function, and supporting literature, to assign an overall confidence level for each gene 

(increasing levels of confidence from 1 to 4). All genes were assigned a default 

confidence level of “1.” For TSGs, confidence level was increased to “2” if more than 8 

LOF or more than 15 overall mutations were analyzed.  Confidence level was further 

increased to “3” if the gene deletion frequency was in the top 10% for all genes, if the 

gene was ranked 250th or better by Lasso, or if we found significant literature evidence 

supporting the gene’s role as a TSG. Confidence level was increased to “4” if the gene 

met two or more of these criteria.  For OGs, confidence level was increased to “2” if 

more than 12 missense mutations were analyzed.  Confidence level was further increased 

to “3” if the gene amplification frequency was in the top 10% for all genes, if the gene 

was ranked 250th or better by Lasso, or if we found significant literature evidence 

supporting the gene’s role as an OG. Confidence level was increased to “4” if the gene 

met two or more of these criteria.   

 For a subset of TSGs and OGs ranked highly by TUSON, we summarized any 

current literature evidence supporting each gene’s role as a cancer driver. Based on these 

literature searches, we categorized the literature status of each gene as: Known, Putative, 

Unclear/context-dependent, or Novel. We classified genes as novel if there are no papers 

reporting evidence of alteration or a functional role in cancer.  

For some genes, the existing evidence supports roles as both a TSG and OG, sometimes 

dependent upon tissue-specific or context-related factors; we classified these genes as 

unclear or context-dependent. We do not assert that these literature summaries are 

comprehensive, but rather that they highlight selected findings which inform our overall 

confidence for some of the genes. 
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For TSGs we assigned 83 genes a confidence level of “4”, 125 a level of “3”, 322 

a level of “2” and 470 a confidence level of “1”.  Among the confidence level “4” genes, 

4 were characterized as novel based on an absence of literature evidence suggesting a 

connection to cancer.  Among the confidence level “3” genes, an additional 52 were 

characterized as novel. 

For OGs we assigned 55 genes a confidence level of “4”, 147 a level of “3”, 699 a 

level of “2” and 99 a confidence level of “1”.  Among the 66 confidence level “4” and “3” 

genes for which literature searches were performed, 15 novel genes were identified based 

on absence of literature evidence suggesting a connection to cancer.   

 

Note on RPL22 as a potential cancer driver  

The most frequently mutated ribosomal gene in our study, RPL22, which ranked 

22 on our TSG list, had a very unusual pattern of LOF mutations, primarily occurring as a 
frameshift in a stretch of As in tumor types associated with microsatellite-instability (for 

example uterine corpus endometrioid carcinomas, (Esteller et al., 1998; Goodfellow et al., 

2003). While it could be non-phenotypic, its presence in ~10% of specific tumor types, 

such as uterine corpus endometrioid carcinoma, suggests that it is under positive selection, 

as recently suggested	  (Cancer Genome Atlas Research et al., 2013) 

	  

Estimates of Haploinsufficiency  

 We have performed three sets of analyses to detect happloinsufficiency based on 

the pattern of enrichment or depletion in focal deletions. The previous analysis of 

recurring focal deletions found an enrichment of ~20% of STOP genes and 22% 

depletion of GO genes in these regions suggesting a minimum of ~20% 

haploinsufficiency. As we do not have a definitive list of essential genes we used 

different functional and bioinformatics methods to obtain lists of potential GO genes.   A 

similar analysis with a different set of 476 potential essential GO genes for human cells 

derived from the analysis of three independent shRNA based screens (Cheung	   	   et	   al.,	  
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2011;	  Marcotte et al., 2012; Solimini et al., 2012) showed a 30% depletion from deletion 

regions (not shown). A third set of set of 332 GO genes predicted to be essential based on 

their conservation among different species and their expression in >90% of all human 

tissues showed ~27% fewer LOF/Silent mutations and a significant exclusion from focal 

deletions (45% more than expected), confirming the 30% estimate of haploisufficiency. 

Like the Cancer Gene Island hypothesis for focal deletions (Solimini et al., 2012), these 

observations argue that a substantial proportion of genes are haploinsufficient, 30-45%, 

and that deletions gain their selective advantage by the sum of the haploinsufficiency 

effects of the genes within that deletion.   Additional evidence for haploinsufficiency 

comes from the studies of Xue et al, where they examined the genes on 8p22 that are 

frequently hemizygously deleted in liver cancer and found that multiple genes in that 

region acted cooperatively to restrain tumorigenesis (Xue et al., 2012).  Together, our 

conservative estimate is 30% haploinsufficiency, between 20 and 40%. 
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