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ABSTRACT Interleukin 1 is the prototype of an inflam-
matory cytokine, and evidence suggests that it uses the
sphingomyelin pathway and ceramide production to trigger
mitogen-activated protein kinase (MAPK) activation and
subsequent gene expression required for acute inflammatory
processes. To identify downstream signaling targets of cer-
amide, a radioiodinated photoaffinity labeling analog of cer-
amide ([1251]3-trifluoromethyl-3-(m-iodophenyl)diazirine-
ceramide) was employed. It is observed that ceramide specif-
ically binds to and activates protein kinase c-Raf, leading to
a subsequent activation of the MAPK cascade. Ceramide does
not bind to any other member of the MAPK module nor does it
bind to protein kinase C-c. These data identify protein kinase
c-Rafas a specific molecular target for interleukin 1,8-stimulated
ceramide formation and demonstrate that ceramide is a lipid
cofactor participating in regulation of c-Raf activity.

Interleukin 1 (IL-1) is a major product of activated monocytes
and is also released by many cell types when exposed to an
inflammatory environment. The biological activities of IL-1
are initiated by binding to two types of IL-1 receptors, desig-
nated IL-1 receptors type I and type II. Although the cyto-
plasmic portions of both IL-1 receptors do not contain kinase
domains or motifs homologous to any other known signaling
pathway, rapid intracellular protein phosphorylation occurs in
response to IL-1 stimulation. The nature of the primary signal
delivered by IL-1 receptor activation is poorly understood and
controversial (1), but it is clear that IL-1 does stimulate protein
kinase activities in a wide variety of different cell types. IL-1
and tumor necrosis factor a have been shown to induce rapid
mitogen-activated protein kinase (MAPK) activation in fibro-
blasts, U937 cells, KB cells, and mesangial cells (2-6). Fur-
thermore, both cytokines employ the sphingomyelin signaling
pathway to generate ceramide and to stimulate a putative
ceramide-activated serine/threonine protein kinase (7-9).
Lipid second messengers are increasingly recognized as im-
portant mediators of extracellular signals, and ceramide gen-
erated by the action of neutral and acidic sphingomyelinases
has been implicated in a variety of physiological processes, like
effects on cell growth, differentiation, and apoptosis (8, 9).
Rat renal mesangial cells are a well-defined IL-i-responsive

cell type that is involved in most pathological processes of the
renal glomerulus (10, 11). Resting mesangial cells do not
produce any inflammatory mediator constitutively but require
a triggering by invading immune cells. Three prominent fea-
tures of mesangial cells evolve as a result of the crosstalk with
invading neutrophils and macrophages, as follows: increased
mediator production, increased matrix synthesis, and increased
mesangial cell proliferation (10, 11). IL-1 has been reported to

induce the expression of a specific type IV collagenase, a group
II phospholipase A2, eicosanoids, an inducible nitric oxide
synthase, and a variety of chemokines in mesangial cells (11).
We have used rat mesangial cells as a model system to evaluate
IL-1-induced signaling events and report that IL-1 stimulates
ceramide production, which subsequently specifically binds to
and activates protein kinase c-Raf.

MATERIALS AND METHODS
Cell Culture. Rat renal mesangial cells were cultured as

described (12). Single cells were cloned by limited dilution on
96-microwell plates. Clones with apparent mesangial cell mor-
phology were used for further processing. The cells were grown
in RPMI 1640 medium supplemented with 10% (vol/vol) fetal
calf serum, penicillin (100 units/ml), streptomycin (100 Ag/
ml), and bovine insulin (0.66 units/ml). For the reported
experiments, passages 5-18 of mesangial cells were used.

Lipid Extraction and Separation. Confluent cells in 30-mm
diameter dishes were labeled for 24 h with [14C]serine (0.3
,tCi/ml; specific activity, 53 mCi/mmol) and stimulated as
indicated. The reaction was stopped by extraction of lipids
(13), and sphingomyelin and ceramide were resolved by se-
quential one-dimensional TLC using chloroform/methanol/
ammonia (65:35:7.5; vol/vol) followed by chloroform/
methanol/acetic acid (9:1:1, vol/vol). Spots corresponding to
ceramide and sphingomyelin were analyzed and quantitated using
a Berthold (Nashua, NH) LB 2842 automatic TLC scanner.

In Vivo Ps-Labeling of Cells and Immunoprecipitation.
Confluent mesangial cells in 100-mm diameter dishes were
incubated for 2 days in DMEM containing 0.1 mg of fatty
acid-free BSA per ml and then washed three times with
phosphate-free DMEM to remove all phosphate. Then the
cells were metabolically labeled for 4 h at 37°C with
[32P]orthophosphate (0.5 mCi/plate) in phosphate-free
DMEM. After labeling, cells were stimulated as indicated. To
stop the reaction, cells were washed twice with ice-cold buffer
containing 50 mM Tris HCl (pH 7.5) and 150 mM NaCl and
scraped into 1 ml of buffer A (50 mM Tris HCl, pH 7.5/150
mM NaCl/10% glycerol/1% Triton X-100/2 mM EDTA/2
mM EGTA/40-mM ,B-glycerophosphate/50 mM NaF/10 mM
sodium pyrophosphate/25 ,ug of leupeptin per ml/200 units of
aprotinin per ml/1 ,tM pepstatin A/1 mM phenylmethylsul-
fonyl fluoride) and homogenized by 10 passes through a
26-gauge needle. The homogenate was centrifuged for 10 min
at 14,000 x g, and the supernatant was taken for immunopre-
cipitation.

Abbreviations: IL-1, interleukin 1; MAPK, mitogen-activated protein
kinase; TID, 3-trifluoromethyl-3-(m-iodophenyl)diazirine; MEK,
MAPK kinase; PKC, protein kinase C.
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Samples (1 ml), containing 150 x 106 cpm of labeled
proteins, 5% fetal calf serum, and 1.5 mM iodoacetamide in
buffer A were incubated with the indicated antibodies for 3 h
at room temperature, or overnight at 4°C. Then 100 ,l of a
50% (vol/vol) slurry of protein A-Sepharose 4B-CL in PBS
was added, and the mixture was incubated for 1 h under mild
shaking. After centrifugation for 5 min at 3000 x g, immuno-
complexes were washed three times with 1 ml of a low-salt
buffer (50 mM Tris HCl, pH 7.5/150 mM NaCl/0.2% Triton
X-100/2 mM EDTA/2 mM EGTA/0.1% SDS) and three
times with a high-salt buffer (50mM Tris HCl, pH 7.5/500mM
NaCl/0.2% Triton X-100/2 mM EDTA/2 mM EGTA/0.1%
SDS). Pellets wer boiled for S min in 50 gl of Laemmli
dissociation buffer and subjected to SDS/PAGE.

3-Trifluoromethyl-3-(m-iodophenyl)diazirine (TID) Label-
ing Studies. Confluent mesangial cells were incubated for 2
days in DMEM containing 0.1 mg of fatty acid-free BSA per
ml. Thereafter cells were stimulated for 5 min with 50 nM
N-[3-[[[2-(125I)Iodo-4-[3-(trifluoromethyl)-3H-diazirin-3-yl]-
benzyl]oxy]carbonyl]propanoyl]-D-erythro-sphingosine
([125I]TID-ceramide; 0.2 mCi/ml) and subjected to photolysis
for 30 s using a high-pressure mercury lamp (Osram HBO, 350
W; Osram, Berlin, Germany) mounted in a SUSS LH 1000
lamphouse equipped with a shutter to control exposure time.
Cells were then lysed in buffer A homogenized by 10 passes
through a 26-gauge needle fitted to a 1-ml syringe and cen-
trifuged for 10 min at 14,000 x g, and the supernatant was
taken for immunoprecipitation and subjected to SDS/PAGE.
The antibodies for c-Raf, p42 and p44 isoforms of MAPK,
MAPK kinase (MEK), and protein kinase C (PKC)-; have
been characterized in detail elsewhere (14-16). After fixation
in 25% isopropanol/10% acetic acid, the gels were dried and
exposed to Hyperfilm MP (Amersham) at -70°C.
MAPK Activity Assay. MAPK activity assays were per-

formed as described (15). In brief, stimulated cells were lysed
and homogenized in kinase buffer (20 mM Tris HCl, pH 7.5/1
mM EGTA/2 mM MnCl2/0.1 mM sodium orthovanadate/25
,tg of leupeptin per ml/200 units of aprotinin per ml/1 ,uM
pepstatin A/1 mM phenylmethylsulfonyl fluoride) by 10 passes
through a 26-gauge needle, centrifuged for 5 min at 14,000 x
g, and the supernatant was taken for determination of protein
concentration. Cell extracts (50 ,tg) were incubated for 15 min
at 30°C in the presence of 20 pLg of myelin basic protein, 10 ,uM
ATP, and 2 ,uCi of [y-32P]ATP. The reaction was terminated
by adding Laemmli buffer, and samples were subjected to
SDS/PAGE (14% acrylamide gel) followed by autoradiogra-
phy to visualize the phosphorylation of myelin basic protein.

c-Raf Activity Assay. Stimulated cells were lysed in buffer A
and homogenized by 10 passes through a 26-gauge needle.
Homogenates were centrifuged for 10 min at 14,000 x g, and
the supernatant was taken for immunoprecipitation of c-Raf
using a C terminus-specific polyclonal antibody as described
(14). Immunoprecipitates were incubated for 10 min at 37°C in
a 50-gl kinase reaction containing 10 mM Tris HCl (pH 7.5),
10 mM MnCl2, 150 mM NaCl, 2 mM dithiothreitol, 1% Triton

Table 1. Stimulation of ceramide production and sphingomyelin
hydrolysis by IL-1l3

Ceramide, Sphingomyelin,
Addition % of control % of control

Control 100 ± 5 100 ± 2
IL-1,8 536 ± 25* 67 ± 9**

Mesangial cells were labeled for 24 h with [14C]serine and stimulated
for 10 min with 1 nM IL-1,B. Lipids were extracted and separated on
TLC as described. Spots corresponding to ceramide and sphingomy-
elin were analyzed and quantitated. Results are expressed as percent-
age of the respective control values and are means ± SD (n = 3).
Significant differences from corresponding control: *, P < 0.001; **
P < 0.01 (by ANOVA).

X-100, 1 ,uM ATP, 1 ,uCi of [,y-32P]ATP, and 100 ng of purified
recombinant kinase-negative MEK (MEKk-). The reaction
was stopped by addition of SDS/sample buffer and subjected
to SDS/PAGE. After fixation in 25% isopropanol/10% acetic
acid, the gels were dried and exposed to Hyperfilm MP or
analyzed with a PhosphorIm4ger (Molecular Dynamics).

Chemicals. [14C]Serine, [ly-32P]ATP, and [32P]orthophos-
phate were from Amersham, C6- and C16-ceramide were from
Calbiochem, IL-1f3 was provided by CIBA-Geigy, and protein
A-Sepharose 4B-CL was from Pharmacia. The photoaffinity
labeling reagent [125I]TID-ceramide was synthesized as de-
scribed (17).
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FIG. 1. Specific binding of [125I]TID-ceramide to c-Raf in vivo. (A)
Mesangial cells were stimulated for 5 min with [1251]TID-ceramide
then directly lysed (-) or photolyzed before lysis (+), and equal
amounts of protein were taken from immunoprecipitation using
specific antibodies against phosphotyrosine (PY; at a dilution of
1:200), p42maPk -and p44mapk (MAPK; 1:100 each), PKC-; (1:100),
MEK (1:100), c-Raf (1:250), and MEK kinase (1:100). Immunopre-
cipitates were separated on SDS/PAGE and exposed to Hyperfilm MP
at -70°C. (B) Exogenous ceramide and IL-1,B pretreatment of mes-
angial cells decrease [1251]TID-ceramide binding to c-Raf. Mesangial
cells were stimulated for 5 min with 5OnM [125I]TID-ceramide (0.2
mCi/ml) and directly lysed (lane 2) or photolyzed before lysis (lanes
1 and 3-6). Binding of [125I]TID-ceramide was inhibited by addition
of 450 nM (lane 4) or 50 nM (lane 5) exogenous unlabeled ceramide
or by pretreatment of the cells with lnM of IL-1lB for 2 min before
TID-ceramide addition (lane 6).Thereafter c-Raf was immunoprecipi-
tated (lanes 2-6; lane 1, preimmune serum), subjected to SDS/PAGE,
and exposed to Hyperfilm MP at -70°C.
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FIG. 2. (A) Stimulation of c-Raf activity by C6-ceramide and C16-ceramide in vitro. c-Raf was immunoprecipitated from quiescent mesangial cells.
Immunoprecipitates were incubated in vitro for 15 min at 30°C with the indicated concentrations of C6 and C16 ceramide before the addition of 100 ng
of recombinant MEKk- and 1 ,uCi of [-y-32P]ATP for 10 min. Samples were subjected to SDS/PAGE, exposed to Hyperfilm MP, and quantitated on a

Phosphorlmager. Data are expressed as percentage of the respective control values and are means of three independent experiments (the SD ranges from
12 to 34%). (Inset) Autoradiograph of one representative experiment. (B) Stimulation of c-Raf activity by C6-ceramide and C16-ceramide in vivo.
Quiescent intact mesangial cells were stimulated with the indicated concentrations C6- and C16-ceramide for 5 min. Thereafter cell lysates were prepared
and c-Raf was immunoprecipitated. Immunoprecipitates were incubated for 10 min at 30°C with 100 ng of recombinant MEKk- and 1 ,uCi of [-y-32P]ATP.
Samples were subjected to SDS/PAGE, exposed to Hyperfilm MP, and quantitated on a Phosphorlmager. Data are expressed as percentage of the
respective control values and are means of two independent experiments giving similar results. (Inset) Autoradiograph of one representative experiment.
(C) Effect of C6- and C16-ceramides on MAPK activity in mesangial cells. Quiescent mesangial cells were stimulated with the indicated concentrations
C6- and C16-ceramide for 5 min. Thereafter myelin basic protein phosphorylation was measured as described.

RESULTS

Upon exposure to IL-1fB, mesangial cells hydrolyze sphingo-
myelin to generate ceramide (Table 1) and display a rapid
activation of MAPK, which is sustained for >24 h (5). To
identify possible molecular targets of ceramide signaling in

mesangial cells, we prepared a photoaffinity labeling analog of
ceramide of high [12 I]iodine-specific radioactivity (>2000
Ci/mmol) (17). Incubation of intact cells with ['25I]TID-
ceramide for 5 min followed by homogenization and sequential
immunoprecipitation of the different members of the MAPK
module with specific polyclonal antibodies reveals a selective
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labeling of protein kinase c-Raf (Fig. 1A), which is increased
up to 243 ± 37% (mean + SD, n = 4) upon UV-induced
labeling. There is no labeling of the p42 and p44 isoforms of
MAPK nor of their upstream activator MEK, MEK kinase,
PKC-C, or any protein immunoprecipitated with an anti-
phosphotyrosine antibody (PY) as shown in Fig. 1A. All
antibodies used in this study have been shown to immunopre-
cipitate their respective antigens (14-16). Labeling by
[1251]TID-ceramide is inhibited by exogenous addition of in-
creasing concentrations of unlabeled ceramide (Fig. 1B) as
well as by endogenous ceramide produced by IL-113 prestimu-
lation of the cells (Fig. IB). These data establish that IL-1,8-
induced ceramide specifically binds to c-Raf in mesangial cells.
Comparable data were obtained for tumor necrosis factor
a-stimulated mesangial cells (data not shown).
Next we investigated whether ceramide binding to c-Raf also

has functional consequences. Fig. 2A shows that C6 and C16
analogs of ceramide, in a concentration-dependent manner,
increase protein kinase c-Raf activity in an immunocomplex
kinase assay in vitro. Moreover, C6 and C16 analogs also
activate protein kinase c-Raf in vivo when added to intact cells
and subsequent evaluation of c-Raf activity by an immuno-
complex kinase assay (Fig. 2B). Fig. 2C demonstrates that
ceramide analogs not only activate c-Raf but that the signal is
further processed along the MAPK cascade and causes an
increased activity of the p42 and p44 isoforms of MAPK.
Ceramide-stimulated activation of MAPK is inhibited by PD
098059 (18), a synthetic inhibitor of MEK (data not shown). To
prove that IL-1l3 indeed uses this signaling pathway to activate
c-Raf in mesangial cells, we examined c-Raf phosphorylation
and activity. As shown in Fig. 3, IL-1,B induces a rapid
phosphorylation and activation of c-Raf within 5 min and
subsequent stimulation of MAPK (5).
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FIG. 3. IL-l,B-induced phosphorylation and activation of c-Raf in
vivo. (A) Quiescent mesangial cells were labeled with 32Pi and were
stimulated with IL-1l3 for the indicated time periods. c-Raf was

immunoprecipitated, subjected to SDS/PAGE, and exposed to Hy-
perfilm MP. (B) Cells were treated with vehicle (control) or IL-lb (1
nM) for 5 min, and c-Raf activity in mesangial cell homogenates was
determined as described. Results are expressed as percentage of
control and are means ± SD of three independent experiments.

DISCUSSION
The serine/threonine kinase c-Raf is a well-studied signaling
molecule that is responsible for phosphorylation and activation
of MEK in the classical MAPK cascade (19). The mechanism
of activation of protein kinase c-Raf has been studied exten-
sively, and it is now clear that.this is a multistep event. In a first
step, c-Raf translocates to the plasma membrane and associ-
ates with Ras-GTP. However, this association with Ras-GTP
is not sufficient for c-Raf activation but is required for its
recruitment to the plasma membrane (20,21). In a second step,
c-Raf is activated by an unknown mechanism that may com-
prise tyrosine and/or serine/threonine phosphorylation of
c-Raf (14, 19, 22-25) or the interaction with another mem-
brane cofactor such as a lipid (18, 24, 25). The c-Raf amino
terminus contains a highly. conserved region (CR-1) that
encompasses a zinc-finger motif analogous to the lipid-binding
domain of PKC (19), and it is tempting to speculate that c-Raf
is activated by binding of a lipid second messenger in away similar
to the mechanism of activation of PKC by 1,2-diacylglycerol.
The present data clearly demonstrate that ceramide specif-

ically binds to c-Raf and stimulates its kinase activity. These
observations extend previous reports on putative lipid factors
extractable with chloroform/methanol from membranes of
activated cells that markedly enhance c-Raf enzymatic activity
(19, 25) and identify ceramide as a lipid second messenger that
acts as a major direct activator of c-Raf in IL-1l3-triggered
signal propagation. Ceramide has gained recognition as an
important signaling molecule regulating fundamental biolog-
ical processes, like cell proliferation and differentiation, on-
cogenesis, and immune and inflammatory processes (8, 9).
Ceramide is produced by sphingomyelin hydrolysis by both
neutral and acid sphingomyelinases. With respect to immedi-
ate targets of ceramide, suggestions for several ceramide-
activated enzymes have been forwarded. These include a
97-kDa proline-directed serine/threonine protein kinase (26,
27), a ceramide-activated protein phosphatase (28) and PKC-G
(29). Recently Yao et al. (30) observed that a 97-kDa ceram-
ide-activated protein kinase phosphorylates c-Raf on Thr-269
and increases its activity toward MEK. Furthermore, in intact
HL-60 cells, ceramide-activated protein kinase forms com-
plexes with c-Raf and, in response to tumor necrosis factor a,
phosphorylates and activates c-Raf. In IL-1,3-stimulated mes-
angial cells, ceramide definitely does not bind to PKC-C and
there is also no ceramide-binding protein in the range of 97
kDa visible in the cell homogenates (data not shown). In
contrast, our data define c-Raf as a ceramide-activated protein
kinase, thus suggesting that there is more than one ceramide-
activated protein kinase and that ceramide may have cell-type
specific targets.

Previous reports suggested that short-chain ceramide ana-
logs are biologically more active than their long-chain equiv-
alents likely due to the increased solubility of the former.
Based on this background, the observation that the C16-
ceramides were more potent the C6-ceramides in activating
c-Raf is rather unexpected. Moreover, we observed that
stimulation of c-Raf activity in vivo occurs at lower concen-
trations of both ceramide derivatives than in vitro.
A possible explanation could be that C16-ceramide was a

natural product, whereas C6-ceramide was a synthetic com-
pound. In addition to chain length and solubility in aqueous
solution, other factors may be important for biological activity,
especially the degree of unsaturation of the alkyl chains.

In summary, IL-113 signaling in mesangial cells involves
ceramide generation and subsequent direct binding to and
activation of c-Raf. Two important aspects of this study are the
identification of ceramide as the long-missing lipid activator of
c-Raf and the identification of protein kinase c-Raf as another,
yet molecularly defined, member of an emerging family of
ceramide-activated protein kinases. Activation of protein ki-
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nase c-Raf by ceramide is probably only one possible way to
activate this kinase, especially in response to cytokines like
IL-1f3 or tumor necrosis factor a. Activation of c-Raf by
phosphorylation is an alternative mechanism used by tyrosine
kinase receptor agonists or G-protein-coupled receptors,
which do not trigger sphingomyelin hydrolysis.
Some pressing questions that immediately arise are con-

cerned with the molecular mechanism of ceramide binding to
and activation of c-Raf and the possibility that ceramide
stimulation of c-Raf also signals to other MAPK modules like
the stress-activated protein kinases (31), as has recently been
suggested for HL-60 cells (32).

This work was supported by an European Molecular Biology
Laboratory shortterm fellowship to A.H., by Swiss National Science
Foundation Grants 31-43090.95 to J.P. and 31-36193.92 to J.B., by
grants from the Commission of the European Union (Biomed 2, PL
950 979), by a grant from the Wilhelm Sander-Stiftung, and by grants
of the Roche Research Foundation and the CIBA-Geigy Jubilaums-
stiftung.

1. Dinarello, C. A. (1991) Blood 77, 1627-1652.
2. Guy, G. R., Cluna, S. P., Wong, N. S., Ng, S. B. & Tan, Y. H.

(1991) J. Bio. Chem. 266, 14343-14352.
3. Bird, T. A., Sleath, P. R., de Ross, P. C., Dower, S. K. & Virca,

G. D. (1991) J. Biol. Chem. 266, 22661-22670.
4. Guesdon, F., Freshney, N., Waller, R. J., Rawlinson, L. & Sak-

latvala, J. (1993) J. Biol. Chem. 268, 4236-4243.
5. Huwiler, A. & Pfeilschifter, J. (1994) FEBS Lett. 350, 135-138.
6. Wiegmann, K., Schutze, S., Machleidt, T., Witte, D. & Kronke,

M. (1994) Cell 78, 1005-1015.
7. Mathias, S., Younes, A., Kan, C., Orlow, I., Joseph, C. &

Kolesnick, R. N. (1993) Science 259, 519-522.
8. Kolesnick, R. & Golde, D. W. (1994) Cell 77, 325-328.
9. Hannun, Y. A. & Obeid, L. M. (1995) Trends Biochem. Sci. 20,

73-77.
10. Kashgarian, M. & Sterzel, R. B. (1992) Kidney Int. 41, 524-529.
11. Pfeilschifter, J. (1994) News Physiol. Sci. 9, 271-276.
12. Pfeilschifter, J., & Vosbeck, K. (1991) Biochem. Biophys. Res.

Commun. 175, 372-379.

13. Bligh, E. C. & Dyer, W. J. (1995) Can. J. Biochem. Physiol. 37,
911-917.

14. Sozeri, O., Vollmer, K., Liyanage, M., Frith, D., Kour, G., Mark,
G. E., III, & Stabel, S. (1992) Oncogene 7, 2259-2262.

15. Huwiler, A., Stabel, S. Fabbro, D. & Pfeilschifter, J. (1995)
Biochem. J. 305, 777-784.

16. Huwiler, A., Fabbro, D., Stabel, S. & Pfeilschifter, J. (1992) FEBS
Lett. 300, 259-262.

17. Weber, T. & Brunner, J. (1995) J. Am. Chem. Soc. 117, 3084-
3095.

18. Dudley, D. T., Pang, L., Decker, S. J., Bridges, A. J. & Saltiel,
A. R. (1995) Proc. Natl. Acad. Sci. USA 92, 7686-7689.

19. Daum, G., Eisenmann-Tappe, I., Fries, H.-W., Toppmair, J. &
Rapp, U. R. (1994) Trends Biochem. Sci. 19, 474-480.

20. Leevers, S. J., Paterson, H. F. & Marshall, C. J. (1994) Nature
(London) 369, 411-414.

21. Stokoe, D., Macdonald, S. G., Cadwallader, K., Symons, M. &
Hancock, J. F. (1994) Science 264, 1463-1467.

22. Kolch, W., Heidecker, G., Kochs, G., Hummel, R., Vahidi, H.,
Mischak, H., Finkenzeller, G., Marme, D. & Rapp. U. R. (1993)
Nature (London) 364, 249-252.

23. Belka, C., Wiegmann, K., Adam, D., Holland, R., Neuloh, M.,
Herrmann, F., Kr6nke, M. & Brach, M. A. (1995) EMBO J. 14,
1156-1165.

24. Marais, R., Light, Y., Paterson, H. F. & Marshall, C. J. (1995)
EMBO J. 14, 3136-3145.

25. Dent, P., Reardon, D. B. Morrison, D. K. & Sturgill, T. W. (1995)
Mol. Cell. Biol. 15, 4125-4135.

26. Mathias, S., Dressler, K. A. & Kolesnick, R. N. (1991) Proc. Nat!.
Acad. Sci. USA 88, 10009-10013.

27. Joseph, C. K., Byun, H.-S., Bittman, R. & Kolesnick, R. N. (1993)
J. Biol. Chem. 268, 20002-20006.

28. Dobrowsky, R. T., Kamibayashi, C., Mumby, M. C. & Hannun,
Y. A. (1993) J. Biol. Chem. 268, 15523-15530.

29. Muller, G., Ayoub, M., Storz, P., Rennecke, J., Fabbro, D. &
Pfizenmaier, K. (1995) EMBO J. 14, 1961-1969.

30. Yao, B., Zhang, Y., Delikat, S., Mathias, S., Basu, S. & Kolesnick,
R. (1995) Nature (London) 378, 307-310.

31. Cano, E. & Mahadevan, L. C. (1995) Trends Biochem. Sci. 20,
117-122.

32. Westwick, J. K., Bielawska, A. E., Dbaibo, G., Hannun, Y. A. &
Brenner, D. A. (1995) J. Biol. Chem. 270, 22679-22692.

Biochemistry: Huwiler et al.


