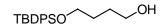
Fully Reagent-Controlled Asymmetric Synthesis of (–)-Spongidepsin via the Zr-Catalyzed Asymmetric Carboalumination of Alkenes (ZACA Reaction)

Gangguo Zhu and Ei-ichi Negishi*

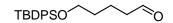
Herbert C. Brown Laboratories of Chemistry, Purdue University, 560 Oval Dr., West Lafayette, Indiana, USA, 47907-2084

Supporting Information

Table of contents


General Experiment	S1
General Procedures and Text Part	S2-S16
NMR Spectrum	S17-S61

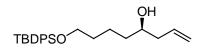
General. THF and ether were distilled from sodium and benzophenone. CH_2Cl_2 was distilled from CaH₂. Flash chromatographic separation was carried out on 230–400 mesh silica gel 60. Gas chromatography was performed on an HP 6890 Gas Chromatograph using an HP-5 capillary column (30 m × 0.32 mm, 0.5 µm film) with appropriate hydrocarbons as internal standards. ¹H and ¹³C NMR spectra were recorded in CDCl₃ on a Varian Inova-300 spectrometer. Optical rotations were measured on an Autopol III automatic polarimeter. ZnBr₂ and Zn(OTf)₂ were flame-dried under vacuum prior to use. (+)- and (–)-(NMI)₂ZrCl₂^[a] as well as Pd(DPEphos)Cl₂^[b] were prepared as reported in the literature.


5-tert-Butyldiphenylsilyloxy-1-pentanol. Representative Procedure A

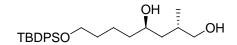
This compound was prepared by a literature method^[c] with a modification involving the use of ten-fold excess of inexpensive 1,5-pentanediol rather than one equivalent leading to higher product yield. To a solution of 43 mL (500 mmol) of 1,5-pentanediol and 4.1 g (60 mmol) of imidazole in 200 mL of DMF was added dropwise 13 mL (50 mmol) of *tert*-butyldiphenylchlorosilane over 2 h at 0 °C. After stirring for 3 h at 23 °C, the reaction mixture was quenched with 200 mL of water, extracted with ether, dried over MgSO₄, and concentrated. Purification by column chromatography (silica gel, 70/30 hexanes-EtOAc) afforded 15.7 g (92%) of the title compound as a colorless oil: ¹H NMR (300 MHz, CDCl₃) δ 1.14 (s, 9 H), 1,4-1.75 (m, 6 H), 1.95-2.15 (m, 1 H), 3.65 (t, *J* = 6.6 Hz, 2 H), 3.76 (t, *J* = 6.6 Hz, 2 H), 7.4-7.55 (m, 6 H), 7.7-7.85 (m, 4 H); ¹³C NMR (75 MHz, CDCl₃) δ 19.11, 21.86, 26.78 (3 C), 32.17, 32.28, 62.63, 63.69, 127.50 (4 C), 129.44 (2 C), 133.91 (2 C), 135.45 (4 C).

4-tert-Butyldiphenylsilyloxy-1-butanol.

The title compound was prepared according to Representative Procedure A except that 0.9 g (10 mmol) of 1,4-butanediol was used in place of 1,5-pentanediol to afford 3.0 g (90%) of the desired product; ¹H NMR (300 MHz, CDCl₃) δ 1.25 (s, 9 H), 1.75-1.9 (m, 4 H), 3.0-3.15 (m, 1 H), 3.75-3.85 (m, 4 H), 7.5-7.6 (m, 6 H), 7.8-7.9 (m, 4 H); ¹³C NMR (75 MHz, CDCl₃) δ 19.03, 26.72 (3 C), 29.11, 29.47, 62.37, 63.86, 127.53 (4 C), 129.53 (2 C), 133.54 (2C), 135.42 (4 C).

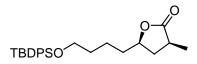

5-tert-Butyldiphenylsilyloxy-1-pentanal. Representative Procedure B

This compound was prepared by the Swern oxidation^[d], as follows. To a solution of 5.2 mL (60 mmol) of oxalyl chloride in 100 mL of CH₂Cl₂ was added slowly a solution of 7.1 mL (100 mmol) of DMSO in 20 mL of CH₂Cl₂ at -78 °C. After stirring for 15 min, 15.6 g (46 mmol) of 5-*tert*-butyldiphenylsilyloxy-1-pentanol in 30 mL of CH₂Cl₂ was added to the above solution. After stirring at -78 °C for 1 h, 14 mL (100 mmol) of Et₃N was added at -78 °C. The reaction mixture was slowly warmed to 23 °C, quenched with saturated aqueous NH₄Cl, extracted with CH₂Cl₂, dried over MgSO₄, and concentrated. Purification by column chromatography (silica gel, 95/5 hexanes-EtOAc) afforded 14.4 g (92%) of the desired aldehyde as a colorless oil; ¹H NMR (300 MHz, CDCl₃) δ 1.27 (s, 9 H), 1.7-1.85 (m, 4 H), 2.52 (t, *J* = 6.6 Hz, 2 H), 3.87 (t, *J* = 6.3 Hz, 2 H), 7.5-7.6 (m, 6 H), 7.85-7.9 (m, 4 H), 9.84 (s, 1 H); ¹³C NMR (75 MHz, CDCl₃) δ 18.30, 18.97, 26.66 (3 C), 31.58, 43.17, 63.05, 127.45 (4 C), 129.41 (2 C), 133.56 (2 C), 135.31 (4 C), 202.10.

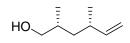

4-tert-Butyldiphenylsilyloxy-1-butanal.

The title compound was prepared according to Representative Procedure B except that 3.0 g (9 mmol) of 4-*tert*-butyldiphenylsilyloxy-1-butanol was used in place of 5-*tert*-butyldiphenylsilyloxy-1-pentanol to afford 2.6 g (88%) of the desired product; ¹H NMR (300 MHz, CDCl₃) δ 1.11 (s, 9 H), 1.9-2.0 (m, 2 H), 2.57 (td, *J* = 6.9, 1.5 Hz, 2 H), 3.74 (t, *J* = 6.0 Hz, 2 H), 7.4-7.5 (m, 6 H), 7.7-7.75 (m, 4 H), 9.81 (t, *J* = 1.5 Hz, 1 H); ¹³C NMR (75 MHz, CDCl₃) δ 19.06, 25.12, 26.72 (3 C), 40.62, 62.80, 127.59 (4 C), 129.58 (2 C), 133.46 (2 C), 135.42 (4 C), 202.21.

(4*R*)-8-tert-Butyldiphenylsilyloxy-1-octen-4-ol (8). Representative Procedure C Allylboration of 5-tert-butyldiphenylsilyloxy-1-pentanal was carried out by the Brown


allylboration.^[e] To a suspension of 9.5 g (30 mmol) of (–)-Ipc₂B(OMe) in 150 mL of ether was added 30 mL (30 mmol) of 1.0 M solution of allylmagnesium bromide in ether at –78 °C. After stirring for 15 min at –78 °C, the reaction mixture was warmed to 23 °C and kept at this temperature for 1 h. A solution of 8.5 g (25 mmol) of 5-*tert*-butyldiphenylsilyloxy-1-pentanal in 30 mL of ether was added at –78 °C. After stirring for 2 h at –78 °C, the reaction mixture stirred at 23 °C for 2 h, which was followed by addition of 50 mL of 2 N NaOH and 30 mL of 50% H₂O₂. After stirring overnight at 23 °C, the reaction mixture was extracted with ether, washed with brine, dried over MgSO₄, and concentrated. Purification by column chromatography (silica gel, 90/10 hexanes-EtOAc) afforded 8.3 g (87%) of the title compound as a colorless oil: $[\alpha]_D^{23} = +2.7$ (*c*, 1.4, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 1.09 (s, 9 H), 1.4-1.7 (m, 6 H), 2.1-2.4 (m, 2 H), 3.6-3.75 (m, 3 H), 5.1-5.2 (m, 2 H), 5.8-5.95 (m, 1 H), 7.4-7.5 (m, 6 H), 7.7-7.75 (m, 4 H); ¹³C NMR (75 MHz, CDCl₃) δ 19.17, 21.86, 26.83 (3 C), 32.45, 36.43, 41.85, 63.75, 70.54, 118.02, 127.56 (4 C), 129.50 (2 C), 134.02 (2 C), 134.83, 135.53 (4 C); HRMS calcd. for C₂₄H₃₅O₂Si [M+H]⁺: 383.2401, found: 383.2409.

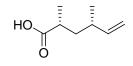
(2*S*,4*R*)-8-*tert*-Butyldiphenylsilyloxy-2-methyl-1,4-octanediol (9). Representative Procedure D


1.911 g (5 mmol) of (4*R*)-8-*tert*-butyldiphenylsilyloxy-1-octen-4-ol dissolved in 5 mL of CH_2Cl_2 was mixed with 0.5 mL (5 mmol) of Me₃Al in 5 mL of CH_2Cl_2 at –78 °C, and the mixture was warmed to 23 °C and stirred for 1 h to generate the Me₂Al-protected alkenol. In a separate reactor, 1.5 mL (15 mmol) of Me₃Al in 5 mL of CH_2Cl_2 was treated with 90 uL (5 mmol) of H₂O to partially convert Me₃Al to methylaluminoxane (MAO).^[f] To this was added 167 mg (0.25 mmol) of (+)-(NMI)₂ZrCl₂. To a wine-red solution thus formed was added the Me₂Al-protected alkenol solution in CH_2Cl_2 , and the resultant mixture was

stirred overnight at 23 °C. After confirming the total consumption of the starting alkenol by GC, the mixture was treated at 0 °C with a stream of oxygen bubbled through at the rate of 5 mL per min for 1 h and further stirred at 23 °C for 6 h under O₂ atmosphere. It was quenched with 2 N NaOH, extracted with CH₂Cl₂, washed with saturated aqueous NH₄Cl and brine, dried over MgSO₄, and concentrated. After passing it through a short path column of silica gel using EtOAc as an eluent remove metal-containing impurities, evaporation provided 1.5 g (73%) of the crude product, which essentially consisted of the desired product and its diastereomers (dr = 3.5/1). Purification by column chromatography (silica gel, 95/5-85/15 hexanes-EtOAc) provided 872 mg (42%) of the desired product (dr = 40/1, by ¹³C NMR); $[\alpha]_D^{23} = -7.5$ (c, 2.1, CHCl₃), ¹H NMR (300 MHz, CDCl₃) δ 0.91 (d, J = 6.9 Hz, 3 H), 1.07 (s, 9 H), 1.4-1.9 (m, 9 H), 3.05-3.3 (m, 2 H), 3.37 (dd, J = 10.5, 7.8 Hz, 1 H), 3.57 (dd, J = 10.5, 4.8 Hz, 1 H), 3.65-3.7 (m, 1 H), 3.69 (t, J = 6.3 Hz, 2 H), 7.35-7.5 (m, 6 H), 7.65-7.7 (m, 4 H); ¹³C NMR (75 MHz, CDCl₃) δ 18.05, 19.14, 21.86, 26.83 (3 C), 32.39, 34.53, 38.12, 43.09, 63.75, 68.69, 70.85, 127.53 (4 C), 129.50 (2 C), 133.96 (2 C), 135.51 (4 C); HRMS (ESI) calcd. for C₂₅H₃₈NaO₃Si [M+Na]⁺: 437.2482, found: 437.2489.

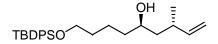
(2*S*,4*R*)-4-[4'-(*tert*-Butyldiphenylsilyloxy)butyl]-2-methyl-γ-butylrolactone (10).

A solution of 830 mg (2 mmol) of (2*S*,4*R*)-8-*tert*-butyldiphenylsilyloxy-2-methyl-1,4-oct anediol in 10 mL of CH₂Cl₂ and 3 mL of H₂O was added 31 mg (0.2 mmol) of TEMPO (2,2,6,6-tetramethyl-1-piperidinyloxy) and 1.4 g (4.4 mmol) of PhI(OAc)₂. After stirring for 2 h at 23 °C, the reaction mixture was quenched with saturated aqueous NaHCO₃, extracted with CH₂Cl₂, washed with brine, dried over MgSO₄, and concentrated. Purification by column chromatography (silica gel, 80/20 hexanes-EtOAc) afforded 722 mg (88%) of the desired product as a colorless oil; $[\alpha]_D^{23} = +5.9$ (*c*, 1.0, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 1.05 (s, 9 H), 1.26 (d, *J* = 6.3 Hz, 3 H), 1.4-1.8 (m, 7 H), 2.4-2.7 (m, 2 H), 3.67 (t, *J* = 6.0 Hz, 2 H), 4.25-4.35 (m, 1 H), 7.35-7.45 (m, 6 H), 7.6-7.7 (m, 4 H); ¹³C NMR (75 MHz, CDCl₃) δ 14,68, 18,75, 21.22, 26.41 (3 C), 31.69, 34.75, 35.45, 36.88, 63.05, 78.15, 127.17 (4 C), 129.13 (2 C), 133.46 (2 C), 135.08 (4 C), 179.13; HRMS calcd. for C₂₅H₃₅O₃Si [M+H]⁺: 411.2350, found: 411.2354.


(2R,4S)-2,4-Dimethyl-5-hexen-1-ol

To a solution of 1.1 mL (13 mmol) of oxalyl chloride in 20 mL of CH₂Cl₂ was added dropwise a solution of 1.4 mL (20 mmol) of DMSO in 5 mL of CH₂Cl₂ at -78 °C. After stirring for 15 -78°C. 2.5 (10 min at g mmol) of (2R,4S)-5-tert-butyldimethylsilyloxy-2,4-dimethyl-1-pentanol^[g] in 10 mL of CH₂Cl₂ was added. After stirring at -78 °C for 1 h, 3.5 mL (25 mmol) of Et₃N was added at -78 °C. Then the reaction mixture stirred at 23 °C for 3 h and quenched with 30 mL of water, extracted with ether, washed with brine, dried over MgSO₄, and concentrated. Purification by column chromatography (silica gel, 95/5 hexanes-EtOAc) afforded 2.0 g (89%) of the desired aldehyde as a colorless oil.

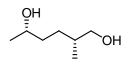
To a solution of 7.1 g (20 mmol) of methyl triphenyl phosphonium bromide in 40 mL of THF under argon was added 8 mL (20 mmol) of 2.5 M n-BuLi solution in hexanes at 0 °C. After stirring at 0 °C for 30 min, the above aldehyde in 10 mL of THF was added. The reaction mixture was warmed to at 23 °C over 3 h then quenched with saturated aqueous NH₄Cl, extracted with ether, washed with brine, dried over MgSO₄, and concentrated. The residue mixture was filtered on a plug of silica gel (5 cm), washed with ether, and concentrated to afford the crude alkenes product.


To a solution of the crude alkenes in 10 mL of THF was added 6 mL (6 mmol) of 1.0 M solution of TBAF in THF. After stirring for 3 h at 23 $^{\circ}$ C, the reaction mixture was quenched with saturated aqueous NH₄Cl, extracted with ether, washed with brine, dried

over MgSO₄, and concentrated. Purification by column chromatography (silica gel, 67/33 hexanes-EtOAc) afforded 360 mg (84%, 2 steps) of the desired alcohol^[h] as a colorless oil; $[\alpha]_D^{23} = +35.7$ (*c*, 2.0, CHCl₃);^{[h] 1}H NMR (300 MHz, CDCl₃) δ 0.88 (d, *J* = 6.9 Hz, 3 H), 1.00 (d, *J* = 7.2 Hz, 3 H), 1.0-1.1 (m, 1 H), 1.3-1.45 (m, 1 H), 1.5-1.7 (m, 1 H), 2.2-2.3 (m, 1 H), 3.2-3.45 (m, 3 H), 4.85-5.0 (m, 2 H), 5.61 (m, 1 H); ¹³C NMR (75 MHz, CDCl₃) δ 16.19, 21.30, 33.15, 35.34, 40.20, 68.10, 112.65, 144.21.

(2R,4S)-2,4-Dimethyl-5-hexenoic acid (2)

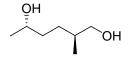
To a solution of 350 mg (2.7 mmol) of (2*R*,4*S*)-2,4-dimethyl-5-hexen-1-ol in 10 mL of DMF was added 4.1 g (10.8 mmol) of pyridinium dichromate at 0 °C. After stirring overnight at 23 °C, the reaction mixture was quenched with 2 mL of saturated aqueous Na₂S₂O₃ and 20 mL of brine, extracted with EtOAc, dried over MgSO₄, and concentrated. Purification by column chromatography (silica gel, 80/20 hexanes-EtOAc) afforded 301 mg (77%) of the desired acid^[h] as a colorless oil; $[\alpha]_D^{23} = -6.2$ (*c*, 1.1, CHCl₃);^{[h] 1}H NMR (300 MHz, CDCl₃) δ 1.02 (d, *J* = 6.6 Hz, 3 H), 1.16 (d, *J* = 6.3 Hz, 3 H), 1.3-1.45 (m, 1 H), 1.7-1.85 (m, 1 H), 2.15-2.3 (m, 1 H), 2.45-2.55 (m, 1 H), 4.9-5.05 (m, 2 H), 5.55-5.7 (m, 1 H), 11.3-11.7 (m, 1 H); ¹³C NMR (75 MHz, CDCl₃) δ 16.61, 20.57, 35.79, 37.22, 39.92, 113.55, 143.37, 183.74.



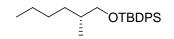
(3S,5R)-9-tert-Butyldiphenylsilyloxy-3-methyl-1-nonen-5-ol (3)

To a solution of 718 mg (1.75 mmol) of (2S,4R)-4-[4'-(*tert*-butyldiphenylsiloxy)butyl]-2-methyl- γ -butylrolactone in 20 mL of CH₂Cl₂ under argon was added dropwise 3.5 mL (3.5 mmol) of 1.0 M solution of

DIBAL-H in CH₂Cl₂ at -78 °C. After stirring for 30 min at -78 °C, the reaction mixture was quenched with 10 mL of MeOH. The resultant mixture was allowed to warm to 23 °C over 1 h until a white precipitate appeared. The residue was filtered on a pad of celite, washed with ether, and concentrated to give the crude lactol, which was directly used in the next step.


To a solution of 2.8 g (8 mmol) of methyl triphenyl phosphonium bromide in 30 mL of THF under argon was added 3.2 mL (8 mmol) of 2.5 M solution of n-BuLi in hexanes at 0 °C. After stirring at 0 °C for 30 min, the crude lactol in 10 mL of THF was added. After stirring further 3 h at 23 °C, the reaction mixture was quenched with saturated aqueous NH₄Cl, extracted with ether, washed with brine, dried over MgSO₄, and concentrated. Purification by column chromatography (silica gel, 80/20 hexanes-EtOAc) gave 524 mg (73%) of alcohol as a colorless oil; $[\alpha]_D^{23} = -2.8$ (*c*, 1.0, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 1.07 (d, *J* = 6.9 Hz, 3 H), 1.12 (s, 9 H), 1.4-1.7 (m, 8 H), 2.3-2.5 (m, 1 H), 3.6-3.7 (m, 1 H), 3.73 (t, *J* = 6.6 Hz, 2 H), 4.95-5.1 (m, 2 H), 5.73 (ddd, *J* = 17.1, 10.2, 8.4 Hz, 1 H), 7.35-7.5 (m, 6 H), 7.7-7.8 (m, 4 H); ¹³C NMR (75 MHz, CDCl₃) δ 19.14, 21.16, 21.81, 26.83 (3 C), 32.45, 34.67, 37.56, 44.15, 63.72, 69.53, 113.36, 127.53 (4 C), 129.44 (2 C), 133.96 (2 C), 135.51 (4 C), 144.10; HRMS calcd. for C₂₆H₃₉O₂Si [M+H]⁺: 411.2714, found: 411.2709.

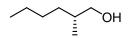
(2R,5S)-2-Methyl-1,5-hexanediol (17a).


The title compound was prepared according Representative Procedure D except that 200 mg (2 mmol) of (*S*)-(+)-hexen-2-ol (>98% *ee*, commercial available from Aldrich) and 67 mg (0.1 mmol) of (-)-(NMI)₂ZrCl₂ was used to afford 206 mg (78%) of the desired product **17a** (dr = 7.7/1, by ¹³C NMR); ¹H NMR (300 MHz, CDCl₃) δ 0.81 (d, *J* = 6.3 Hz, 3 H), 1.15-1.6 (m, 5 H), 3.25-3.4 (m, 4 H), 3.65-3.75 (m, 1 H);

¹³C NMR (75 MHz, CDCl₃) δ 16.33 (16.67), 23.21, 28.52 (29.02), 34.97, 35.62 (36.29), 67.26, 67.40, (68.05).

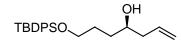
(2*S*,5*S*)-2-Methyl-1,5-hexanediol (17b).

The title compound was prepared according Representative Procedure D except that 200 mg (2 mmol) of (*S*)-(+)-hexen-2-ol (>98% *ee*, commercial available from Aldrich) and 67 mg (0.1 mmol) of (+)-(NMI)₂ZrCl₂ was used to afford 208 mg (79%) of the desired product **17b** (dr = 4.5/1, by ¹³C NMR); ¹H NMR (300 MHz, CDCl₃) δ 0.82 (d, *J* = 6.6 Hz, 3 H), 1.11 (d, *J* = 6.3 Hz, 3 H), 1.0-1.6 (m, 5 H), 3.3-3.4 (m, 2 H), 3.5-3.9 (m, 3 H); ¹³C NMR (75 MHz, CDCl₃) δ 16.67 (16.36), 23.27, 29.02 (28.55), 35.56 (35.00), 36.32, 67.14, 68.05 (67.43).


(2R)-1-tert-Butyldiphenylsilyloxy-2-methyl-hexane

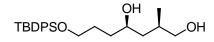
To a solution of 530 mg (4.0 mmol) of (2R,5S)-2-methyl-1,5-hexanediol and 408 mg (6.0 mmol) of imidazole in 20 mL of DMF was added dropwise 1.0 mL (4.0 mmol) of TBDPSCI. After stirring for 3 h at 23 °C, the reaction mixture was quenched with 20 mL of H₂O, extracted with ether, dried over MgSO₄, and concentrated. Purification by column chromatography (silica gel, 80/20 hexanes-EtOAc) afforded 1.3 g (91%) of the desired secondary alcohol as a colorless oil.

To a solution of 1.2 g (3.2 mmol) of the alcohol prepared above, 40 mg (0.3 mmol) of DMAP (4-dimethylaminopyridine), and 0.9 mL (6 mmol) of Et_3N in 10 mL of CH_2Cl_2 was added 0.4 mL (5 mmol) of MsCl at 0 °C. After stirring at 23 °C for 3 h, the reaction mixture was quenched with water, extracted with ether, dried over MgSO₄, filtered on a plug of silica gel (3 cm), washed with ether, and concentrated to afford the crude

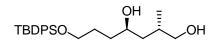

mesylate.

To a solution of the mesylate prepared above in 30 mL of dry ether was added 400 mg (10.5 mmol) of lithium aluminium hydride at 0 °C. After stirring overnight at 23 °C, the reaction mixture was quenched with 2 mL of water, then acidified with 5% HCl, extracted with ether, dried over MgSO₄, and concentrated. Purification by column chromatography (silica gel, 97/3 hexanes-EtOAc) afforded 259 mg (70%) of the desired product as a colorless oil; ¹H NMR (300 MHz, CDCl₃) δ 0.9-1.1 (m, 6 H), 1.18 (s, 9 H), 1.3-1.8 (m, 7 H), 3.5-3.7 (m, 2 H), 7.45-7.55 (m, 6 H), 7.75-8.05 (m, 4 H); ¹³C NMR (75 MHz, CDCl₃) δ 14.12, 16.95, 19.34, 22.99, 26.89 (3 C), 29.22, 32.84, 35.70, 68.94, 127.56 (4 C), 129.47 (2 C), 134.13 (2 C), 135.65(4 C).

(2R)-2-Methyl-1-hexanol

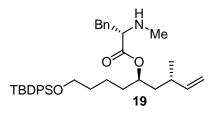

То а solution of 555 mg (1.5)mmol) of (2R)-1-tert-butyldiphenylsilyloxy-2-methyl-hexane in 3 mL of THF was added 2 mL (2 mmol) of 1.0 M solution of TBAF in THF. After stirring at 23 °C for 3 h, the reaction mixture was guenched with saturated aqueous NH₄Cl, extracted with ether, washed with brine, dried over MgSO₄, and concentrated. Purification by column chromatography (silica gel, 70/30 hexanes-EtOAc) afforded 134 mg (78%) of the desired alcohol^[i] as a colorless oil; optical purity by Mosher ester analysis, 77% ee; ¹H NMR (300 MHz, CDCl₃) δ 0.8-0.95 (m, 6 H), 1.0-1.6 (m, 7 H), 2.65-3.05 (m, 1 H), 3.25-3.5 (m, 2 H); ¹³C NMR (75 MHz, CDCl₃) δ 13.95, 16.47, 22.90, 29.14, 32.81, 35.59, 67.99.

(4R)-7-tert-Butyldiphenylsilyloxy-1-hepten-4-ol (15)


The title compound was prepared according to Representative Procedure C except that

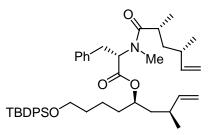
2.5 g (7.5 mmol) of 4-*tert*-butyldiphenylsilyloxy-1-butanal was used to afford 2.3 g (83%) of desired product (**15**); ¹H NMR (300 MHz, CDCl₃) δ 0.98 (s, 9 H), 1.45-1.65 (m, 4 H), 2.05-2.25 (m, 3 H), 3.6-3.65 (m, 3 H), 5.0-5.1 (m, 2 H), 5.7-5.85 (m, 1 H), 7.3-7.4 (m, 6 H), 7.55-7.65 (m, 4 H); ¹³C NMR (75 MHz, CDCl₃) δ 19.06, 26.75 (3 C), 28.66, 33.37, 41.82, 63.97, 70.38, 117.59, 127.53 (4 C), 129.50 (2 C), 133.57 (2 C), 134.89, 135.45 (4 C); MS (CI): 369 (1.5), 351 (3.4), 327 (5.0), 179 (100).

(2R,4R)-7-tert-Butyldiphenylsilyloxy-2-methyl-1,4-heptanediol (18a).

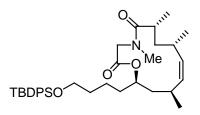

The title compound was prepared according Representative Procedure D except that 1.8 g (5 mmol) of **15** and 168 mg (0.25 mmol) of (–)-(NMI)₂ZrCl₂ was used to afford 1.3 g (67%) of **18a** (dr = 5.5/1, by ¹³C NMR); the product was further purified by column chromatography (silica gel, 85/15 hexanes-EtOAc) to give 782 mg (40%) of **18a** (dr = 40/1, by ¹³C NMR); $[\alpha]_D^{23} = +1.2$ (*c*, 1.5, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 0.96 (d, J = 6.9 Hz, 3 H), 1.09 (s, 9 H), 1.5-2.0 (m, 7 H), 3.45-3.6 (m, 2 H), 3.73 (t, J = 5.7 Hz, 2 H), 3.8-3.95 (m, 2 H), 7.35-7.5 (m, 6 H), 7.65-7.75 (m, 4 H); ¹³C NMR (75 MHz, CDCl₃) δ 17.37, 19.09, 26.75 (3 C), 29.02, 32.14, 34.61, 41.88, 64.31, 67.82, 68.75, 127.64 (4 C), 129.64 (2 C), 133.43 (2 C), 135.51 (4 C); HRMS (ESI) calcd. for C₂₄H₃₆NaO₃Si [M+Na]⁺: 423.2326, found: 423.2335.

(2S,4R)-7-tert-Butyldiphenylsilyloxy-2-methyl-1,4-heptanediol (18b).

The title compound was prepared according Representative Procedure D except that 1.8 g (5 mmol) of **15** and 168 mg (0.25 mmol) of (–)-(NMI)₂ZrCl₂ was used to afford 1.4 g (69%) of **18b** (dr = 3.5/1, by ¹³C NMR); the product was further purified by column chromatography (silica gel, 85/15 hexanes-EtOAc) to give 700 mg (35%) of **18b** (dr = 40/1, by ¹³C NMR); [α]_D²³ = -6.9 (*c*, 1.0, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 0.89 (d,

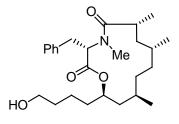

J = 6.9 Hz, 3 H), 1.03 (s, 9 H), 1.4-1.9 (m, 7 H), 3.38 (dd, *J* = 7.5 Hz, 1 H), 3.3-3.4 (m, 1 H), 3.56 (dd, *J* = 7.5 Hz, 1 H), 3.68 (t, *J* = 5.4 Hz, 2 H), 3.7-3.8 (m, 1 H), 7.3-7.45 (m, 6 H), 7.4-7.5 (m, 4 H); ¹³C NMR (75 MHz, CDCl₃) δ 18.21, 19.09, 26.78 (3 C), 28.85, 34.81, 35.68, 43.42, 64.34, 68.80, 70.74, 127.67 (4 C), 129.67 (2 C), 133.40 (2 C), 135.51 (4 C).

Compound 19


To a solution of 420 mg (1.5 mmol) of (*S*)-*N*-Boc-methylphenylalanine, 411 mg (1.0 mmol) of **3** and 24 mg (0.2 mmol) of DMAP (4-dimethylaminopyridine) in 5 mL of CH_2Cl_2 was added a solution of 4.2 g (2.0 mmol) of DCC in 5 mL of CH_2Cl_2 . After stirring overnight, the reaction mixture was filtered on a pad of celite, washed with ether. The residue was concentrated and purified by column chromatography (silica gel, 95/5 hexanes-EtOAc) to give 597 mg (89%) of the coupled product as a colorless oil.

To a solution of 503 mg (0.75 mmol) of the above amide in 2 mL of dry CH₂Cl₂ under argon was added 0.6 mL (7.5 mmol) of CF₃CO₂H at 0 °C. After stirring for 3 h at 23 °C, the reaction mixture was quenched with saturated aqueous NaHCO₃, extracted with EtOAc, washed with brine, dried over Na₂SO₄, and concentrated. Purification by column chromatography (silica gel, 60/40 hexanes-EtOAc) gave 590 mg of the desired product^[h] (87%) as a colorless oil; ¹H NMR (300 MHz, CDCl₃) δ 1.09 (d, *J* = 6.6 Hz, 3 H), 1.18 (s, 9 H), 1.2-1.8 (m, 8 H), 2.2-2.3 (m, 1 H), 2.48 (s, 3 H), 3.0-3.15 (m, 2 H), 3.5-3.6 (m, 1 H), 3.7-3.8 (m, 2 H), 5.0-5.25 (m, 3 H), 5.75-5.9 (m, 1 H), 7.25-7.35 (m, 5 H), 7.45-7.55 (m, 6 H), 7.75-7.85 (m, 4 H).

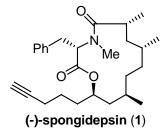
Compound 21


To a solution of 372 mg (0.65 mmol) of **19** and 128 mg (0.90 mmol) of **2** in 5 mL of CH₂Cl₂ was added 45 mg (0.30 mmol) of HOBt (1-hydroxybenzotriazole), 550 mg (3.0 mmol) of EDCI (*N*-(3-dimethylaminopropyl)-*N*-ethylcarbodiimide). After stirring 24 h at 23 °C, the reaction was quenched with 1 N HCl, extracted with ether, washed with brine, dried over Na₂SO₄, and concentrated. Purification by column chromatography (silica gel, 95/5 hexanes-EtOAc) afforded 384 mg (85%) of diene (**21**) as a colorless oil; $[\alpha]_D^{23} = -18.4$ (*c*, 1.0, CHCl₃);^{[h] 1}H NMR (300 MHz, CDCl₃) δ 0.54 (d, *J* = 6.6 Hz, 0.6 H), 0.68 (d, *J* = 6.6 Hz, 2.4 H), 0.8-1.0 (m, 16 H), 1.1-1.65 (m, 9 H), 1.7-1.9 (m, 1 H), 2.0-2.2 (m, 1 H), 2.4-2.55 (m, 1 H), 2.72 (s, 2.4 H), 2.73 (s, 0.6 H), 2.8-3.0 (m, 1 H), 3.1-3.35 (m, 1 H), 3.5-3.6 (m, 2 H), 4.5-4.55 (m, 0.2 H), 4.7-4.95 (m, 5 H), 5.3-5.7 (m, 2.8 H), 7.0-7.2 (m, 5 H), 7.25-7.4 (m, 6 H), 7.58 (dd, *J* = 13.5, 4.5 Hz, 4 H).

Compound 22

To a solution of 200 mg (0.29 mmol) of **21** in 500 mL of dry CH_2Cl_2 under argon was added 25 mg (0.028 mmol) of 2nd generation Grubbs catalyst. After stirring overnight at reflux, 13 mg (0.014 mmol) of 2nd generation Grubbs catalyst was added. After stirring further 8 h at reflux, the reaction mixture was concentrated and purified by column chromatography (silica gel, 90/10 hexanes-EtOAc) to afford 174 mg (92%) of **22** as a

colorless oil; $[\alpha]_D^{23} = -89.2$ (*c*, 1.0, CHCl₃);^{[h] 1}H NMR (300 MHz, CDCl₃) δ 0.7-0.8 (m, 1 H), 1.00 (t, *J* = 6.3 Hz, 6 H), 1.06 (s, 9 H), 1.10 (d, *J* = 7.2 Hz, 3 H), 1.25-1.8 (m, 8 H), 1.90 (t, *J* = 12.6 Hz, 1 H), 2.05-2.2 (m, 1 H), 2.4-2.55 (m, 1 H), 2.61 (s, 3 H), 3.33 (dd, *J* = 12.3, 3.0 Hz, 1 H), 3.49 (t, *J* = 12.0 Hz, 1 H), 3.57 (dd, *J* = 10.8, 3.9 Hz, 1 H), 3.66 (t, *J* = 6.3 Hz, 1 H), 5.0-5.25 (m, 3 H), 7.1-7.3 (m, 5 H), 7.35-7.45 (m, 6 H), 7.6-7.7 (m, 4 H); ¹³C NMR (75 MHz, CDCl₃) δ 18.50, 19.11, 19.31, 19.84, 21.44, 26.78 (3 C), 30.09, 32.34, 33.57, 34.36, 35.06, 39.27, 43.00, 44.07, 63.41, 66.78, 73.07, 126.38, 127.50 (4 C), 128.29, 129.33, 129.44, 133.82, 135.39 (4 C), 135.53, 135.95, 138.54, 169.90, 176.44.

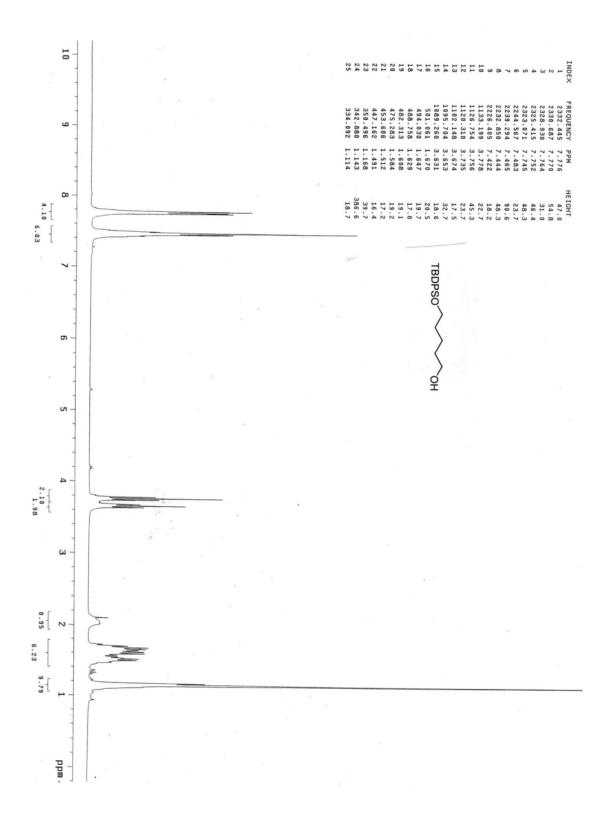


Compund 23

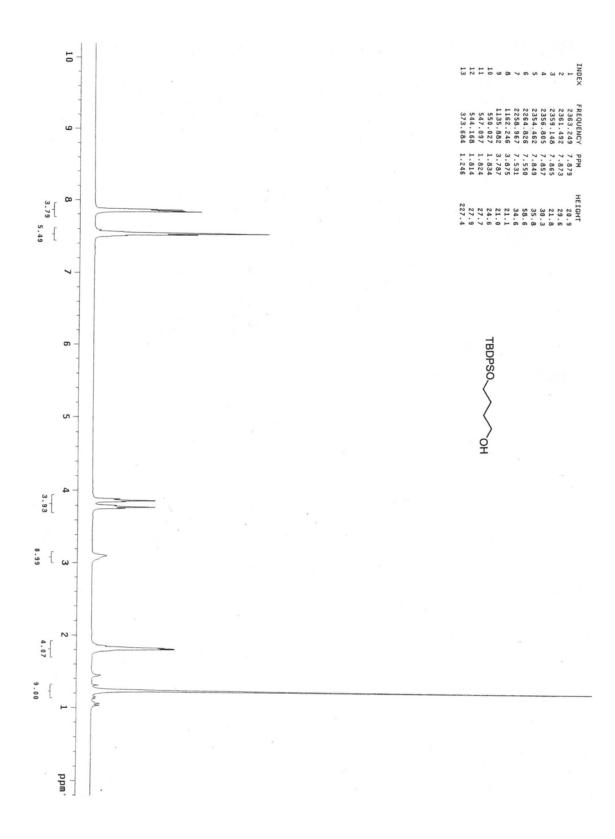
To a solution of 170 mg (0.26 mmol) of **22** in 5 mL of THF was added 0.75 mL (0.75 mmol) of 1.0 M solution of TBAF in THF. After stirring for 3 h at 23 °C, the reaction mixture was quenched with saturated aqueous NH₄Cl, extracted with ether, dried over MgSO₄, and concentrated. Purification by column chromatography (silica gel, 70/30 hexanes-EtOAc) afforded 106 mg (95%) of the corresponding alcohol as a white solid.

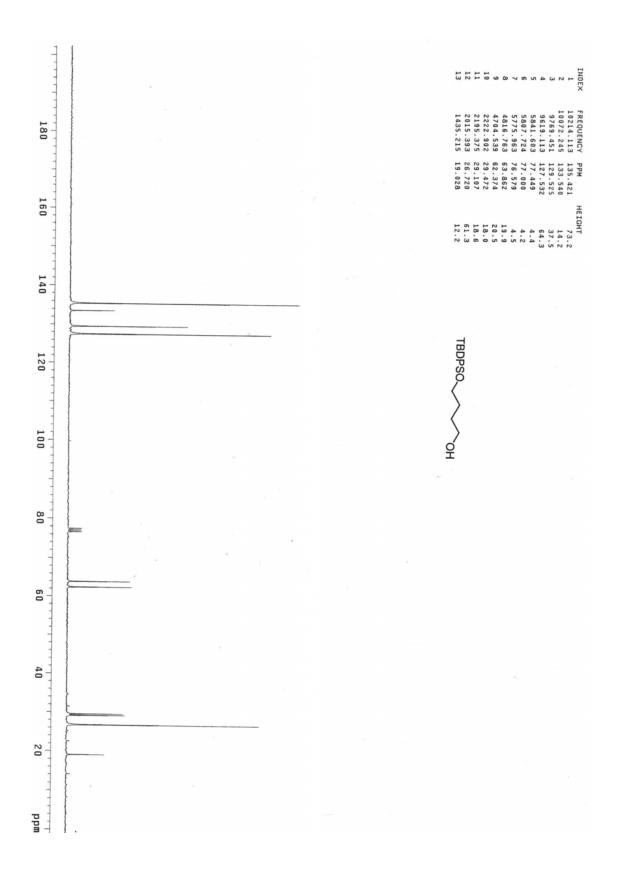
To a solution of 105 mg (0.24 mmol) of the macrocyclic olefin prepared above and 80 mg (0.03 mmol) of 5% Pd/C in 8 mL of EtOAc was bubbled with H₂ overnight. The mixture was filtered on a plug of silica gel (5 cm), washed with EtOAc, and concentrated to give 99 mg (94%) of the title compound as a colorless oil; $[\alpha]_D^{23} = -175.6$ (*c*, 1.0, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 0.66 (ddd, *J* = 13.5, 11.1, 3.0 Hz, 1 H), 0.82 (d, *J* = 6.3 Hz, 6 H), 1.04 (d, *J* = 7.2 Hz, 3 H), 1.1-1.7 (m, 16 H), 1.91 (t, *J* = 12.6 Hz, 1 H), 2.57 (s, 3 H), 2.65-2.8 (m, 1 H), 3.22 (dd, *J* = 12.9, 3.6 Hz, 1 H), 3.42 (t, *J* = 13.5 Hz, 1 H), 3.51 (dd, *J* = 11.4, 7.2 Hz, 1 H), 3.58 (t, *J* = 6.9 Hz, 2 H), 5.05-5.1 (m, 1 H), 7.05-7.25 (m, 5 H); ¹³C NMR (75 MHz, CDCl₃) δ 18.72, 21.33, 21.64, 22.23, 24.00, 27.20, 31.38, 32.25, 32.53,

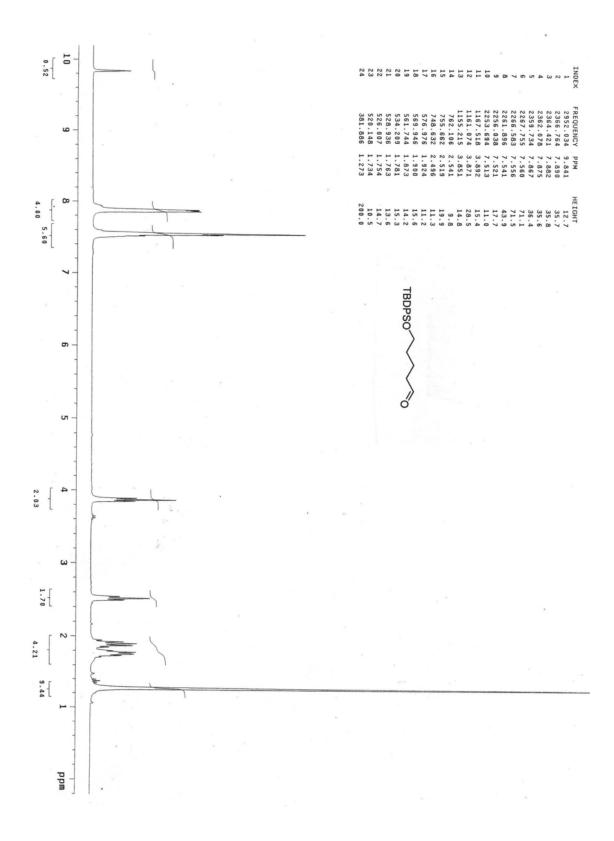
33.26, 34.33, 35.54, 36.94, 39.10, 39.58, 62.60, 66.84, 73.15, 126.41, 128.35 (2 C), 129.39 (2 C), 138.68, 170.15, 176.80; MS (EI): 432 (4.3), 431 (9.2), 296 (6.7), 284 (7.4), 134 (55); HRMS calcd. for C₂₆H₄₁NO₄ [M]⁺: 431.3036, 431.3001.


To a solution of 45.1 mg (0.1 mmol) of **23** in 3 mL of CH_2Cl_2 was added 85 mg (0.2 mmol) of Dess-Martin periodinane at 0 °C. After stirring for 1 h at 23 °C, the reaction mixture was quenched with 0.3 mL of saturated aqueous Na₂SO₃ and 0.3 mL of saturated aqueous NaHCO₃. After stirring for 30 min at 23 °C, the resultant mixture was filtered on a plug of silica gel (5 cm), washed with ether, and concentrated to give the crude aldehyde, which was directly used in the next step.


To a solution of the aldehyde prepared above and 110 mg (0.5 mmol) of Ohira-Bestmann's reagent^[j] in 10 mL of MeOH was added 56 mg (0.45 mmol) of K₂CO₃ under argon. After stirring for 2 h at 35 °C, the reaction mixture was quenched with saturated aqueous NH₄Cl, extracted with ether, dried over MgSO₄, and concentrated. Purification by column chromatography (silica gel, 95/5 hexanes-EtOAc) gave 35.2 mg (79%, 2 steps) of (–)-spongidepsin (1) as a crystalline solid; $[\alpha]_D^{23} = -211.8$ (*c*, 1.0, CH₃OH); $[\alpha]_D^{23} = -203.2$ (*c*, 0.4, CH₃OH)^[h]; ¹H NMR (300 MHz, CDCl₃) δ 0.7-0.85 (ddd, *J* = 13.5, 11.2, 3.0 Hz, 1 H), 0.89 (d, *J* = 6.0 Hz, 3 H), 0.92 (d, *J* = 6.3 Hz, 3 H), 1.07 (d, *J* = 6.9 Hz, 3 H), 1.2-1.8 (m, 10 H), 1.91 (t, *J* = 12.6 Hz, 1 H), 2.2-2.3 (m, 3 H), 2.71 (s, 3 H), 2.85-3.0 (m, 1 H), 3.24 (dd, *J* = 14.1, 5.1 Hz, 1 H), 3.40 (dd, *J* = 14.1, 11.1 Hz, 1 H), 3.98 (dd, *J* = 11.1, 4.5 Hz, 1 H), 5.1-5.25 (m, 1 H), 7.15-7.35 (m, 5 H); ¹³C NMR (75 MHz, CD₃OD) δ 18.93 (2 C), 21.63, 22.47, 25.19, 25.47, 28.31, 32.49, 33.36, 34.46, 35.27, 35.75, 37.97, 40.30, 40.38, 67.56, 69.97, 73.90, 84.63, 127.66, 129.49 (2 C),


130.55 (2 C), 139.51, 171.82, 179.35; MS (CI): 427 (23), 426 (79), 275 (11), 180 (100); HRMS calcd. for C₂₇H₃₉NO₃ [M+H]⁺: 426.3003, found: 426.3009.


References:


- [a] Erker, G.; Aulbach, M.; Knickmeier, M.; Wingbermuhle, D.; Kruger, C.; Nolte, M.;
- Werner, S. J. Am. Chem. Soc. 1993, 115, 4590.
- [b] Kranenburg, M.; van der Burgt, Y. E. M.; Kamer, P. C. J.; van Leeuwen, P. W. N. M.;
- Goubitz, K.; Fraanje, J. Organometallics 1995, 14, 3081.
- [c] Chamberland, S.; Woerpel, K. A. Org. Lett. 2004, 4739.
- [d] Omura, K.; Swern, D. Tetrahedron 1978, 34, 1651.
- [e] Brown, H. C.; Jadhav, P. K. J. Am. Chem. Soc. 1983, 105, 2092.
- [f] Wipf, P. Ribe, S. Org. Lett. 2000, 2, 1713-1716.
- [g] (1) Tan, Z.; Negishi, E. Angew. Chem. Int. Ed. 2004, 43, 2911. (2) Liang, B.; Novak,
- T.; Tan, Z.; Negishi, E. J. Am. Chem. Soc. 2006, 128, 2770.
- [h] (1) Chen, J.; Forsyth, C. J. Angew. Chem. Int. Ed. 2004, 43, 2148–2152. (2) Ghosh, A.
- K.; Xu, X. Org. Lett. 2004, 6, 2055. (3) Ferrié, L.; Reymond, S.; Capdevielle, P.; Cossy, J. Org. Lett. 2006, 8, 3441.
- [i] Guintchin, B.; Bienz, S. Tetrahedron 2003, 59, 7527.
- [j] Müller, S.; Liepold, B.; Roth, G. J.; Bestmann, H. J. Synlett 1996, 521.

