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This supplementary appendix to Ashcraft, Fernandez-Val, and Lang contains the proofs of

the main results of the paper, and the formal analysis for the effects of underreporting of abor-

tions, misreporting of abortions, underreporting of miscarriages, and multiple teen pregnancies,

which are outlined in the paper.

A Proofs of Section 1

A.1 Preliminary results

The following lemmas will be used in the proofs of the results of Section 1. The first lemma

links the conditional ASFs with moments of the potential outcomes in populations defined by

abortion and miscarriages types.

Lemma 1 Under Assumptions 2 and 3, for d ∈ {0, 1},

µ(d,X) = E[Y ∗(d) | A∗ = 0,M∗ = 1− d,X], a.s (24)

Proof of Lemma 1 By definition of µ(d, x) and Assumption 2

µ(d, x) = E[Y ∗(d) | A∗ = 0, X = x] = E[Y ∗(d) | A∗ = 0,M∗ = 1− d,X = x]. (25)

�
The following lemma gives a system of equations linking moments of the observed variables

to moments of the structural variables.

Lemma 2 (Moment conditions) Under Assumptions 1—3, for t ∈ {1, . . . , T̄ − 1} and F ∗A =
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f ∈ {0, 1},

pA(X, t) = p∗fA(X, t){
∑T̄

s=t
p∗fM (X, s)− [1− f ]p∗fM (X, t)}, (26)

pM (X, t) = p∗fM (X, t){
∑T̄

s=t
p∗fA(X, s)− fp∗fA(X, t)}, (27)

SM (X, t) + SA(X, t) = S∗fM (X, t)S∗fA(X, t) + 1, (28)

SM (X, t− 1) + fSA(X, t) + (1− f)SA(X, t− 1) = (29)

S∗fM (X, t− 1)[fS∗fA(X, t) + (1− f)S∗fA(X, t− 1)] + 1, (30)

fSM (X, t− 1) + (1− f)SM (X, t) + SA(X, t− 1) =

[fS∗fM (X, t− 1) + (1− f)S∗fM (X, t)]S∗fA(X, t− 1) + 1, (31)

E[Y | D = 1, X] = E[Y ∗(1) | A∗ = 0,M∗ = 0, X],

E[Y | TA = t,X] = E[Y ∗(0) | T ∗A = t, T ∗M , X], (32)

E[Y | TM = t,X]pM (X, t) = p∗fM (X, t){
∑T̄

s=t
p∗fA(X, s)E[Y ∗(0) | T ∗A = s, T ∗M = t,X]

−fp∗fA(X, t)E[Y ∗(0) | T ∗A = t, T ∗M = t,X]}, a.s. (33)

Proof of Lemma 2We drop the dependence on X and f from all the functions to simplify

the notation.

The first result follows from

pA(t) =
T̄∑

s=t+1

P[T ∗A = t, T ∗M = s] + fP[T ∗A = t, T ∗M = t] = p∗A(t){
T̄∑
s=t

p∗M (s)− [1− f ]p∗M (t)}, (34)

where the first equality uses the law of total probability, and second equality uses Assumption

2. The second result follows similarly.

The third result follows from the equality of events {TA > t, TM > t} = {T ∗A > t, T ∗M > t},
independence of {T ∗A > t} and {T ∗M > t} conditional on X, and {TA ≤ t, TM ≤ t} = ∅ for t < T̄

by definition of TM and TA, so that

P[T ∗A > t, T ∗M > t] = S∗A(t)S∗M (t), (35)

and

P[TA > t, TM > t] = 1− P[TA ≤ t or TM ≤ t] = SA(t) + SM (t)− 1. (36)

The fourth and fifth results follow similarly.

The sixth result follows from Assumption 1 since D = (1−A∗)(1−M∗), so that {D = 1} =

{A∗ = 0,M∗ = 0}.
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The seventh result follows from

E[Y | TA = t] = E[Y ∗(0) | T ∗A = t] = E[Y ∗(0) | T ∗A = t, T ∗M ], (37)

where the first equality uses Assumption 1 and second equality uses Assumption 2.

The last result follows from

E[Y | TM = t]pM (t) = E[Y ∗(0) | T ∗M = t, T ∗A > t or T ∗A(1− f) = t, F ∗A = f ]pM (t) (38)

= {
T̄∑
s=t

p∗A(s)E[Y ∗(0) | T ∗A = s, T ∗M = t]− fp∗A(t)E[Y ∗(0) | T ∗A = t, T ∗M = t]}

∗pM (t)/{
T̄∑
s=t

p∗A(s)− fp∗A(t)},

where the first equality uses Assumption 1, and second equality uses Assumption 2 and the law

of total probability. To obtain the final expression we use the second result of the Lemma. �

A.2 Proof of Proposition 1

The proposition follows from standard results for competing risks models in discrete time with

independent risks (e.g., Kalbfleisch and Prentice, 2002, chap. 8), properly adjusted to deal with

within-week ties in scheduled abortions and miscarriages. �

A.3 Proof of Theorem 1

We drop the dependence on X and f from all the functions to simplify the notation.

The result for µ(1) follows from Lemmas 1 and 2 since

µ(1) = E[Y ∗(1) | A∗ = 0,M∗ = 0] = E[Y | D = 1]. (39)

For µ(0), by Lemma 1 and law of total probability

µ(0) = E[Y ∗(0) | A∗ = 0,M∗ = 1] = [1− S∗M (T̄ − 1)]−1
T̄−1∑
t=1

E[Y ∗(0) | T ∗A = T̄ , T ∗M = t]p∗M (t),

(40)

where we use that
∑T̄−1
t=1 p∗M (t) = 1− S∗M (T̄ − 1).
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By Lemma 2, for t ∈ {1, .., T̄ − 1}

E[Y | TM = t]pM (t) = p∗M (t){S∗A(T̄−1)E[Y ∗(0) | T ∗A = T̄ , T ∗M = t]+
T̄−1∑
s=t

p∗A(s)YA(s)−fp∗A(t)YA(t)},

(41)

where we use that p∗A(T̄ ) = S∗A(T̄ − 1) and E[Y ∗(0) | T ∗A = s, T ∗M = t] = YA(s), for s ∈
{t, ..., T̄ − 1}. Adding over t ∈ {1, .., T̄ − 1}

YM [1−SM (T̄ −1)] = S∗A(T̄ −1)[1−S∗M (T̄ −1)]µ(0)+

T̄−1∑
t=1

p∗A(t)[

t∑
s=1

p∗M (s)−fp∗M (t)]YA(t), (42)

where we use that
∑T̄−1
t=1 pM (t) = 1− SM (T̄ − 1), equation (40), and interchange the indexes of

the sums in the second term of the right hand side.

The result follows by solving for µ(0). �

A.4 Proof of Theorem 2

We drop the dependence on X and f from all the functions to simplify the notation.

The expression of γ∗ follows by the law of total probability.

Let YD = E[Y | D = 1] and YA = E[Y | A = 1]. Then, from Theorem 1

∆ = µ(1)− µ(0) = YD − YM +
γ∗[1− S∗A(T̄ − 1)]

S∗A(T̄ − 1)
[YA − YM ], (43)

where we use that YA(t) = E[Y ∗(0) | T ∗A = t] = E[Y ∗(0) | A∗ = 1,M∗ = 0] = YA by Lemma

2, Assumption 4, and Assumption 2;
∑T̄−1
t=1 p∗A(t)[

∑t
s=1 p

∗
M (s)− fp∗M (t)] = [1− S∗M (T̄ − 1)][1−

S∗A(T̄ − 1)]γ∗ by the expression of γ∗; and 1−SM (T̄ − 1) = [1−S∗M (T̄ − 1)]{S∗A(T̄ − 1) + γ∗[1−
S∗A(T̄ − 1)]} by the law of total probability and the expression of γ∗.

The OLS and IV estimands can be expressed as

∆ols = E[Y | D = 1]− E[Y |M = 1] = YD − YM , (44)

and

∆iv = YD − YM +
[1− S∗A(T̄ − 1)]{1− γ∗ + γ∗S∗M (T̄ − 1)}

S∗A(T̄ − 1)S∗M (T̄ − 1)
[YA − YM ], (45)

where we use that E[D | M = 0] = S∗A(T̄ − 1)S∗M (T̄ − 1)/SM (T̄ − 1), E[D | M = 1] = 0,

E[Y |M = 0] = YA + S∗A(T̄ − 1)S∗M (T̄ − 1)[YD − YA]/SM (T̄ − 1), and SM (T̄ − 1) = [1− S∗A(T̄ −
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1)]{1− γ∗ + γ∗S∗M (T̄ − 1)}+ S∗A(T̄ − 1)S∗M (T̄ − 1). Then,

[1− γ∗]∆ols + γ∗S∗M (T̄ − 1)∆iv

1− γ∗ + γ∗S∗M (T̄ − 1)
= YD − YM +

γ∗[1− S∗A(T̄ − 1)]

S∗A(T̄ − 1)
[YA − YM ] = ∆. (46)

To show that ∆ols ≤ ∆ ≤ ∆iv, it is suffi cient to show that ∆ols ≤ ∆iv, because ∆ is a convex

linear combination of ∆ols and ∆iv. A suffi cient condition for this inequality is that YA ≥ YM .

This result follows from Assumptions 2 and 5 because YA = E[Y ∗(0) | A∗ = 1] and

YM =
[1− S∗M (T̄ − 1)]{S∗A(T̄ − 1)E[Y ∗(0) | A∗ = 0] + γ∗[1− S∗A(T̄ − 1)]E[Y ∗(0) | A∗ = 1]}

1− SM (T̄ − 1)
≤ YA.

(47)

We add back the dependence on f to show the inequality ∆0(x) ≤ ∆1(x). By the previous

result, we need to show that

γ∗0[1− S∗0A(T̄ − 1)]

S∗0A(T̄ − 1)
≤ γ∗1[1− S∗1A(T̄ − 1)]

S∗1A(T̄ − 1)
. (48)

This result follows because by Proposition 1, S∗0A(T̄ − 1) ≥ S∗1A(T̄ − 1) and S∗0M (T̄ − 1) ≤
S∗1M (T̄ − 1), so that using the expression of γ∗f ,

γ∗0[1− S∗0A(T̄ − 1)] =
1− SM (T̄ − 1)− S∗0A(T̄ − 1)

1− S∗0M (T̄ − 1)

≤ 1− SM (T̄ − 1)− S∗1A(T̄ − 1)

1− S∗1M (T̄ − 1)
= γ∗1[1− S∗1A(T̄ − 1)]. (49)

�

A.5 Proof of Theorem 3

By definition of the ATE with F ∗A = f

∆f =
∑
x∈X

P[X = x | A∗ = 0, F ∗A = f ]∆f (x). (50)

Then, by the Bayes rule

P[X = x | A∗ = 0, F ∗A = f ] =
S∗fA(x, T̄ − 1)P[X = x]∑
x∈X S

∗
fA(x, T̄ − 1)P[X = x]

. (51)

�
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B Underreporting and Misreporting

B.1 Underreporting of abortions

We show that underreporting abortions affects the identification of the effects of interest, even

when underreporting is random conditional on characteristics. Let R∗A denote the indicator

for reported abortion. We assume that reporting is independent of potential outcomes and

scheduled weeks conditional on the characteristics X.

Assumption 7 (Conditionally random abortion underreporting)

R∗A ⊥⊥ [Y ∗(0), Y ∗(1), T ∗M , T
∗
A] | X a.s.

We denote with tilde all the variables, probabilities and survival functions in the population

with underreporting; for example, p̃A(x, t) := P(T̃A = t | X̃ = x) = P(TA = t | X = x,R∗A = 1).

We assume that women that do not report abortions are not observed in the population of

pregnant teenagers. An implication of this assumption is that there is no misclassification of

types and treatment in the population with underreporting. The source of the bias is that

underreporting has an asymmetric effect depending on whether miscarriage is scheduled before

or after abortion.

The following result shows that the weighted average of the OLS and IV estimands in Theo-

rem 2 does not estimate the conditional ATE with underreporting of abortions. Under Assump-

tion 5, the bias is negative towards the OLS estimand.

Theorem 4 (Conditional ATE with underreporting of abortions) Under Assumptions

1—5, and 7, if F ∗A = f ∈ {0, 1} and P(R∗A = 1 | X) > 0 a.s.,

[1− γ̃∗f (X)]∆̃ols(X) + γ̃∗f (X)S̃∗fM (X, T̄ − 1)∆̃iv(X)

1− γ̃∗f (X) + γ̃∗f (X)S̃∗fM (X, T̄ − 1)
≤ ∆f (X), a.s. (52)

Proof To simplify the notation, we drop the dependence on X and f from all the functions

and assume that there are no ties, that is P(T ∗M = T ∗A | X) = 0 a.s.

Note that µ̃(1) = µ(1) because underreporting does not affect women of birth type, A∗ =

M∗ = 0. However, underreporting might affect µ̃(0) because it alters some of the relationships

between the observed and structural variables in Assumption 1.
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By a similar argument to the proof of Proposition 1, but without using the results of Lemma

2

E[Ỹ ∗(0) | Ã∗ = 0, M̃∗ = 1] (53)

=
[1− S̃M (T̄ − 1)]ỸM − γ̃∗[1− S̃∗M (T̄ − 1)][1− S̃∗A(T̄ − 1)]E[Ỹ ∗(0) | Ã∗ = 1, T̃ ∗M < T̃ ∗A]

S̃∗A(T̄ − 1)[1− S̃∗M (T̄ − 1)]
.

Let

µ̃(0) = µ̃(1)− [1− γ̃∗]∆̃ols + γ̃∗S̃∗M (T̄ − 1)∆̃iv

1− γ̃∗ + γ̃∗S̃∗M (T̄ − 1)
. (54)

By a similar argument to the proof of Theorem 2

µ̃(0) =
[1− S̃M (T̄ − 1)]ỸM − γ̃∗[1− S̃∗M (T̄ − 1)][1− S̃∗A(T̄ − 1)]ỸA

S̃∗A(T̄ − 1)[1− S̃∗M (T̄ − 1)]
(55)

=
γ̃∗[1− S̃∗A(T̄ − 1)]

S̃∗A(T̄ − 1)
{E[Ỹ ∗(0) | Ã∗ = 1, T̃ ∗M < T̃ ∗A]− E[Ỹ ∗(0) | Ã∗ = 1, T̃ ∗M > T ∗A]}

+E[Ỹ ∗(0) | Ã∗ = 0, M̃∗ = 1] ≥ E[Y ∗(0) | A∗ = 0,M∗ = 1] = µ(0),

where in the first equality we use that 1 − S̃M (T̄ − 1) = [1 − S̃∗M (T̄ − 1)]{S̃∗A(T̄ − 1) + γ̃∗[1 −
S̃∗A(T̄ − 1)]}. The second equality follows from ỸA = E[Ỹ ∗(0) | Ã∗ = 1, T̃ ∗M > T̃ ∗A] and the

expression of E[Ỹ ∗(0) | Ã∗ = 0, M̃∗ = 1]. The third inequality follows from the equalities of

events: {Ã∗ = 1, T̃ ∗M > T̃ ∗A} = {A∗ = 1, T ∗M > T ∗A, R
∗
A = 1} and {Ã∗ = 1, T̃ ∗M < T̃ ∗A} = {A∗ =

1, T ∗M < T ∗A, R
∗
A = 1} so that

E[Ỹ ∗(0) | Ã∗ = 1, T̃ ∗M < T̃ ∗A]− E[Ỹ ∗(0) | Ã∗ = 1, T̃ ∗M > T ∗A] = 0, (56)

by Assumptions 2 and 7; and {Ã∗ = 0, M̃∗ = 1} = {A∗ = 0,M∗ = 1} ∪ {A∗ = 1,M∗ = 1, T ∗M <

T ∗A, R
∗
A = 0} so that

E[Ỹ ∗(0) | Ã∗ = 0, M̃∗ = 1] ≥ E[Y ∗(0) | A∗ = 0,M∗ = 1], (57)

by Assumptions 5 and 7. The last equality follows from definition of µ(0).

The conclusion of the theorem then follows from

[1− γ̃∗]∆̃ols + γ̃∗S̃∗M (T̄ − 1)∆̃iv

1− γ̃∗ + γ̃∗S̃∗M (T̄ − 1)
= µ̃(1)− µ̃(0) ≤ µ(1)− µ(0) = ∆. (58)

�
The effect of underreporting abortions on the overall ATE is diffi cult to sign, unless there

is no heterogeneity in the conditional ATEs, i.e., ∆(X) = ∆ a.s. In this case underreporting
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introduces negative bias in the estimator of the overall ATE.

B.2 Reporting abortions as miscarriages

We show that misreporting abortions as miscarriages affects the identification of the effects of

interest, even if the misreporting is random conditional on characteristics. Let R∗AM denote the

indicator for abortion reported as miscarriage. We assume that misreporting is independent of

potential outcomes and scheduled weeks conditional on the characteristics X.

Assumption 8 (Conditionally random misreporting of abortion as miscarriage)

R∗AM ⊥⊥ [Y ∗(0), Y ∗(1), T ∗M , T
∗
A] | X a.s.

We denote again with tilde all the probabilities and survival functions in the population

with misreporting. In this case the analysis is slightly more complicated because misreporting

produces misclassification of types.

The following result shows that the weighted average of the OLS and IV estimands in The-

orem 2 underestimates the conditional ATE under Assumption 5.

Theorem 5 (Conditional ATE with misreporting of abortions as miscarriages) Under

Assumptions 1—5, and 8, if F ∗A = f ∈ {0, 1} and P(R∗AM = 1 | X) < 1 a.s.,

[1− γ̃∗f (X)]∆̃ols(X) + γ̃∗f (X)S̃∗fM (X, T̄ − 1)∆̃iv(X)

1− γ̃∗f (X) + γ̃∗f (X)S̃∗fM (X, T̄ − 1)
≤ ∆f (X), a.s. (59)

Proof To simplify the notation, we drop the dependence on X and f from all the functions

and assume that there are no ties, P(T ∗M = T ∗A | X) = 0 a.s.

Note that µ̃(1) = µ(1) because misreporting does not produce misclassification of treatment,

D̃ = D, so that it does not affect women of birth type, A∗ = M∗ = 0. However, misreporting

might affect µ̃(0) because it alters some of the relationships between the observed and structural

variables in Assumption 1, and introduces misclassification of types.

By the same argument as in the proof of Theorem 4

µ̃(0) =
γ̃∗[1− S̃∗A(T̄ − 1)]

S̃∗A(T̄ − 1)
{E[Ỹ ∗(0) | Ã∗ = 1, T̃ ∗M < T̃ ∗A]− E[Ỹ ∗(0) | Ã∗ = 1, T̃ ∗M > T ∗A]}

+E[Ỹ ∗(0) | Ã∗ = 0, M̃∗ = 1] ≥ E[Y ∗(0) | A∗ = 0,M∗ = 1] = µ(0), (60)
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where the second inequality follows from the equalities of events: {Ã∗ = 1, T̃ ∗M > T̃ ∗A} = {A∗ =

1, T ∗M > T ∗A, R
∗
AM = 0} and {Ã∗ = 1, T̃ ∗M < T̃ ∗A} = {A∗ = 1, T ∗M < T ∗A, R

∗
AM = 0} so that

E[Ỹ ∗(0) | Ã∗ = 1, T̃ ∗M < T̃ ∗A]− E[Ỹ ∗(0) | Ã∗ = 1, T̃ ∗M > T ∗A] = 0, (61)

by Assumptions 2 and 8; and {Ã∗ = 0, M̃∗ = 1} = {A∗ = 0,M∗ = 1} ∪ {A∗ = 1, R∗AM = 1} so
that

E[Ỹ ∗(0) | Ã∗ = 0, M̃∗ = 1] ≥ E[Y ∗(0) | A∗ = 0,M∗ = 1], (62)

by Assumptions 5 and 8. The last equality follows from definition of µ(0).

The conclusion of the theorem then follows from

[1− γ̃∗]∆̃ols + γ̃∗S̃∗M (T̄ − 1)∆̃iv

1− γ̃∗ + γ̃∗S̃∗M (T̄ − 1)
= µ̃(1)− µ̃(0) ≤ µ(1)− µ(0) = ∆. (63)

�
The effect of misreporting on the overall ATE is diffi cult to sign, unless there is no het-

erogeneity in the conditional ATEs, i.e., ∆(X) = ∆ a.s. In this case misreporting introduces

negative bias in the estimator of the overall ATE.

B.3 Underreporting of miscarriages

We show that underreporting miscarriages does not affect the identification of the conditional

ATEs, provided that underreporting is random conditional on characteristics. Let R∗M denote

the indicator for reported miscarriage. We assume that reporting is independent of potential

outcomes and scheduled weeks conditional on the characteristics X.

Assumption 9 (Conditionally random miscarriage underreporting)

R∗M ⊥⊥ [Y ∗(0), Y ∗(1), T ∗M , T
∗
A] | X a.s.

We denote with tilde all the variables, probabilities and survival functions in the population

with underreporting; for example, p̃M (x, t) := P(T̃M = t | X̃ = x) = P(TM = t | X = x,R∗M =

1). We assume that women that do not report miscarriages are not observed in the population

of pregnant teenagers. An implication of this assumption is that there is no misclassification of

types and treatment in the population with underreporting.

The following result shows that the conditional ATE is identified by the weighted average of

the OLS and IV estimands of Theorem 2 with underreporting of miscarriages.
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Theorem 6 (Conditional ATE with underreporting of miscarriages) Under Assumptions

1—4, and 9, if F ∗A = f ∈ {0, 1} and P(R∗M = 1 | X) > 0 a.s.,

[1− γ̃∗f (X)]∆̃ols(X) + γ̃∗f (X)S̃∗fM (X, T̄ − 1)∆̃iv(X)

1− γ̃∗f (X) + γ̃∗f (X)S̃∗fM (X, T̄ − 1)
= ∆f (X), a.s. (64)

Proof To simplify the notation, we drop the dependence on X and f from all the functions

and assume that there are no ties, P(T ∗M = T ∗A | X) = 0 a.s.

Note that µ̃(1) = µ(1) because underreporting does not affect women of birth type, A∗ =

M∗ = 0. However, underreporting might affect µ̃(0) because it alters some of the relationships

between the observed and structural variables in Assumption 1.

By the same argument as in the proof of Theorem 4

µ̃(0) =
γ̃∗[1− S̃∗A(T̄ − 1)]

S̃∗A(T̄ − 1)
{E[Ỹ ∗(0) | Ã∗ = 1, T̃ ∗M < T̃ ∗A]− E[Ỹ ∗(0) | Ã∗ = 1, T̃ ∗M > T ∗A]}

+E[Ỹ ∗(0) | Ã∗ = 0, M̃∗ = 1] = E[Y ∗(0) | A∗ = 0,M∗ = 1, R∗M = 1] = µ(0), (65)

where the second equality follows from the equalities of events: {Ã∗ = 1, T̃ ∗M > T̃ ∗A} = {A∗ =

1, T ∗M > T ∗A} and {Ã∗ = 1, T̃ ∗M < T̃ ∗A} = {A∗ = 1, T ∗M < T ∗A, R
∗
M = 1} so that

E[Ỹ ∗(0) | Ã∗ = 1, T̃ ∗M < T̃ ∗A]− E[Ỹ ∗(0) | Ã∗ = 1, T̃ ∗M > T ∗A] = 0, (66)

by Assumption 9; and {Ã∗ = 0, M̃∗ = 1} = {A∗ = 0,M∗ = 1, R∗M = 1} so that

E[Ỹ ∗(0) | Ã∗ = 0, M̃∗ = 1] = E[Y ∗(0) | A∗ = 0,M∗ = 1, R∗M = 1]. (67)

The last equality follows from Assumption 9.

The conclusion of the theorem then follows from

[1− γ̃∗]∆̃ols + γ̃∗S̃∗M (T̄ − 1)∆̃iv

1− γ̃∗ + γ̃∗S̃∗M (T̄ − 1)
= µ̃(1)− µ̃(0) = µ(1)− µ(0) = ∆. (68)

�
The effect of underreporting miscarriages on the overall ATE is diffi cult to sign, unless there

is no heterogeneity in the conditional ATEs, i.e., ∆(X) = ∆ a.s. In this case underreporting

does not affect the probability limit of the estimator of the overall ATE.
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C Multiple Teen Pregnancies

Let D2 be an indicator for women who gave birth from a second teen pregnancy. We assume that

this treatment indicator is independent of potential outcomes and miscarriage type in the first

pregnancy for women who did not give birth in the first pregnancy. The treatment that defines

potential outcomes is giving birth in either the first or second teen pregnancy, i.e. max(D,D2).

Assumption 10 (Conditionally random birth from second pregnancy)

D2 ⊥⊥ [Y ∗(1), Y ∗(0),M∗] | X,A∗, D = 0.

This assumption imposes that, for women with characteristicsX who did not give birth in the

first pregnancy, the event of giving birth in a second pregnancy is independent of potential out-

comes and miscarriage type. It permits, however, the probability of giving birth in a second preg-

nancy to be different for abortion and non-abortion types. Let π∗f (X,A∗) = E[D2 | X,A∗, D = 0]

be the probability of giving birth from a second teen pregnancy for women who did not give

birth in the first pregnancy, with characteristics X, and of abortion type A∗, when F ∗A = f .21

The following Lemma adapts Lemma 2 to multiple teen pregnancies. We focus on the case

where Assumption 4 holds. A similar analysis applies without imposing this assumption, but

the notation is more cumbersome.

Lemma 3 (Moment conditions) Under Assumptions 1—4, and 10, if F ∗A = f ∈ {0, 1},

E[D2 |M = 1, X][1− SM (X, T̄ − 1)][1− S∗fM (X, T̄ − 1)]−1

= S∗fA(X, T̄ − 1)π∗f (X, 0) + γ∗f (X)[1− S∗fA(X, T̄ − 1)]π∗f (X, 1) (69)

E[D2 | A = 1, X] = π∗f (X, 1), (70)

E[Y |M = 1, X][1− SM (X, T̄ − 1)][1− S∗fM (X, T̄ − 1)]−1

= S∗fA(X, T̄ − 1){π∗f (X, 0)E[Y ∗(1) | A∗ = 0, X] + [1− π∗f (X, 0)]E[Y ∗(0) | A∗ = 0, X]}

+γ∗f (X)[1− S∗fA(X, T̄ − 1)]{π∗f (X, 1)E[Y ∗(1) | A∗ = 1, X]

+[1− π∗f (X, 1)]E[Y ∗(0) | A∗ = 1, X]}, (71)

E[Y | A = 1, X] = π∗f (X, 1)E[Y ∗(1) | A∗ = 1, X] + [1− π∗f (X, 1)]E[Y ∗(0) | A∗ = 1, X], a.s.(72)

Proof The proof is omitted because it follows from similar arguments to the proofs of

Lemma 2 and Theorem 2. �

21We do not impose the restriction that the probability of giving birth in the second pregnancy for abortion
types is zero, π∗f (X, 1) = 0, because in our data we observe that about an eight of teens who terminated their
first pregnancy, gave birth in a second teen pregnancy.
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We show that we can rescale the weighted average of the OLS and IV estimands in Theorem

2 to identify the conditional ATE. The rescaling factor is greater than one and adjusts the

weighted average for the possibility of giving birth in the second pregnancy. It depends only on

the probability of giving birth in the second pregnancy for miscarriage types and is identified

from the data and the competing risk model.

Theorem 7 (Conditional ATE with multiple pregnancies) Under Assumptions 1—4, and

10, if F ∗A = f ∈ {0, 1} and π∗f (X, 0) < 1 a.s.,

∆f (X) =
1

1− π∗f (X, 0)

[1− γ∗f (X)]∆ols(X) + γ∗f (X)S∗fM (X, T̄ − 1)∆iv(X)

1− γ∗f (X) + γ∗f (X)S∗fM (X, T̄ − 1)
, a.s. (73)

where

π∗f (X, 0) =
[1− SM (X, T̄ − 1)]E[D2 |M = 1, X]

S∗fA(X, T̄ − 1)[1− S∗fM (X, T̄ − 1)]
−
γ∗f (X)[1− S∗fA(X, T̄ − 1)]E[D2 | A = 1, X]

S∗fA(X, T̄ − 1)
, a.s.

(74)

Proof We use the same notation as in the proof of Theorem 2.

Note that the possibility of multiple teen pregnancies does not affect the identification of

µ(1), so that µ(1) = YD. For µ(0) = E[Y ∗(0) | A∗ = 0], by Lemma 3

µ(0) =
[1− SM (T̄ − 1)]YM − [1− S∗M (T̄ − 1)]S∗A(T̄ − 1)π∗(0)YD − γ∗[1− S∗M (T̄ − 1)][1− S∗A(T̄ − 1)]YA

[1− S∗M (T̄ − 1)]S∗A(T̄ − 1)[1− π∗(0)]
.

(75)

Substituting the expressions of µ(1) and µ(0),

∆ = µ(1)− µ(0) =
1

1− π∗(0)

{
YD − YM +

γ∗[1− S∗A(T̄ − 1)]

S∗A(T̄ − 1)]
[YA − YM ]

}
. (76)

The result then follows because by the same argument as in Theorem 2

[1− γ∗]∆ols + γ∗S∗M (T̄ − 1)∆iv

1− γ∗ + γ∗S∗M (T̄ − 1)
= YD − YM +

γ∗[1− S∗A(T̄ − 1)]

S∗A(T̄ − 1)
[YA − YM ]. (77)

The expression for π∗(0) follows from solving the first two equations of Lemma 3. �

References

Ashcraft, A., Fernandez-Val, I., and K. Lang (2012), “The Consequences of Teenage Child-

bearing: Consistent Estimates When Abortion Makes Miscarriage Nonrandom,”Economic Jour-

nal.

12



Kalbfleisch, J. D., and R. L. Prentice (2002), The Statistical Analysis of Failure Time Data,

2nd ed. Hoboken, New Jersey: John Wiley.

13


