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Abstract:

Background - Atrial fibrillation (AF) is the most common sustained cardiac arrhythmia in adults. 

We hypothesized that gain-of-function KCNQ1 mutations previously associated with familial AF 

have distinct pharmacological properties that may enable targeted inhibition.

Methods and Results - Wild-type (WT) KCNQ1 or the familial AF mutation KCNQ1-S140G 

were heterologously co-expressed with KCNE1 to enable electrophysiological recording of the 

slow delayed rectifier current (IKs) and investigation of pharmacological effects of the IKs

selective blocker HMR-1556. Co-expression of KCNQ1-S140G with KCNE1 generated 

potassium currents (S140G-IKs) that exhibited greater sensitivity to HMR-1556 than WT-IKs.

Enhanced HMR-1556 sensitivity was also observed for another gain-of-function AF mutation,

KCNQ1-V141M. Heteromeric expression of KCNE1 with both KCNQ1-WT and KCNQ1-

S140G generated currents (HET-IKs) with gain-of-function features including larger amplitude, a 

constitutively active component, hyperpolarized voltage dependence of activation, and extremely 

slow deactivation. A low concentration of HMR-1556, which had little effect on WT-IKs but was 

capable of inhibiting the mutant channel, reduced both instantaneous and steady-state HET-IKs to 

levels that were not significantly different from WT-IKs and attenuated use-dependent 

accumulation of the current. In cultured adult rabbit left atrial myocytes, expression of S140G-IKs

shortened action potential duration (APD) compared to WT-IKs. Application of HMR-1556 

mitigated S140G-IKs -induced APD shortening and did not alter APD in cells expressing WT-IKs. 

Conclusions - The enhanced sensitivity of KCNQ1 gain-of-function mutations for HMR-1556 

suggests the possibility of selective therapeutic targeting and, therefore, our data illustrates a 

potential proof-of-principal for genotype-specific treatment of this heritable arrhythmia.
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Introduction 

Atrial fibrillation (AF) is the most common cardiac arrhythmia in adults. The prevalence of AF 

rises exponentially with age, and because of the aging population, the number of persons with 

AF in the United States is projected to increase to 12 million by 2050.1 Importantly, AF confers a 

6-fold increased risk for thromboembolic disease including stroke, predisposes to heart failure 

and is associated with premature death.2 The incremental healthcare costs directly related to the 

diagnosis and management of AF in the United States have been estimated at $6 billion.3   

Most often, AF occurs within the context of structural heart disease with onset past the 

age of 65 years. However, an estimated 10-30% of AF, designated as lone AF, arises in the 

absence of overt heart disease and has a younger age of onset.4-7 Genetic predisposition to AF 

has been demonstrated in populations8,9 and in families with monogenic forms of the disease.10

AF-associated mutations have been identified in potassium channels,11-16 sodium channels,17-19

and other genes.20 The mutation KCNQ1-S140G was the first identified mutation and remains 

the best-studied genetic variant associated with autosomal dominant AF.11,21-23

KCNQ1 encodes a pore-forming voltage-gated potassium channel (Kv7.1 or KCNQ1) 

that combines with the auxiliary subunit KCNE1 to generate the slow component of the delayed 

rectifier potassium current (IKs), critical for cardiac action potential repolarization. Co-expression 

of KCNQ1-S140G with KCNE1 (S140G-IKs) demonstrated a gain-of-function with larger and 

more instantaneous current activation.11,23 A similar gain-of-function effect occurs with the AF-

associated mutation KCNQ1-V141M.12 These in vitro data are consistent with the notion that 

increased repolarizing potassium current evoked by these mutations cause shortening of atrial 

action potentials in myocytes and an abbreviated effective refractory period in atrial tissues, 

resulting in an increased probability of reentry circuits and AF.23
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We hypothesized that KCNQ1 gain-of-function mutations have pharmacological 

properties distinct from the WT channel that may enable selective inhibition of mutant channel 

complexes. Pharmacological targeting of this gain-of-function behavior would be predicted to 

decrease AF susceptibility in persons with this dominant mutant allele. We tested this hypothesis 

using the chromanol 293B derivative HMR-1556, a highly specific IKs blocker when used at low 

concentrations. Here we present evidence that S140G-IKs and V141M-IKs exhibit enhanced 

sensitivity to HMR-1556 due to an additional high affinity state. Using a concentration that 

predominantly inhibits the high affinity state, HMR-1556 effectively suppressed S140G-IKs

amplitudes to levels not different from WT-IKs, attenuated the use-dependent accumulation of 

current without significant effects on WT-IKs, and mitigated action potential shortening in 

cultured adult rabbit left atrial myocytes without affecting WT-IKs action potential duration. 

These data suggest a potential opportunity for genotype-specific treatment of familial AF.

Methods

Voltage clamp experiments were performed in Chinese hamster ovary (CHO) cells transiently 

transfected with plasmids containing potassium channel subunits (KCNQ1, KCNE1) constructed 

in plasmids co-expressing a transfection marker (dsRedMST, eGFP, or CD8). Recordings were 

done in the absence or presence of HMR-1556. Current clamp recordings were performed with 

cultured adult rabbit left atrial myocytes infected with adenoviruses encoding WT or mutant 

KCNQ1 subunits in combination with a separate adenovirus encoding KCNE1. Action potentials 

were elicited from transduced myocytes using whole cell patch clamp 48-72 hours post-isolation

in the absence or presence of HMR-1556.  

Differences between two groups were assessed using unpaired Student’s t test. When 

comparing more than two groups, one-way ANOVA followed by a Tukey post hoc test was 
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performed on values obtained for a given membrane voltage. Statistical tests were performed 

using SigmaStat 2.03 (Systat Software, Inc., Chicago, IL). Significance levels are reported as 

two-sided p-values.

A complete description of all experimental methods is presented in the Supplementary 

Material. 

Results 

S140G-IKs exhibits enhanced sensitivity to HMR-1556 

We tested whether heterologously expressed IKs channel complexes consisting of either wildtype 

(WT) or mutant (S140G) KCNQ1 subunits in combination with the auxiliary subunit KCNE1 are

inhibited by HMR-1556. Whole-cell recordings of CHO cells transfected with S140G and 

KCNE1 (S140G-IKs) demonstrated nearly instantaneous activation of outward current in contrast 

to the slowly activating current observed in cells expressing WT-IKs (Figure 1A, B). Because 

KCNQ1-S140G mutation-positive subjects were reported to be heterozygous in familial AF and 

because WT and mutant KCNQ1 subunits can co-assemble in heteromeric channels, we 

examined channel complexes consisting of both WT and mutant subunits co-expressed with 

KCNE1 (HET-IKs), which exhibited larger amplitudes with a large fraction of instantaneous 

current (Figure 1C). Superfusion of 1μM HMR-1556 completely and rapidly inhibited all

channel complexes activated by low frequency pulsing (10 s interpulse duration) to +40 mV 

(Figure 1D-F). However, inhibition of S140G-IKs and HET-IKs was more pronounced than WT-

IKs at lower concentrations.

We assessed concentration-response relationships for WT-IKs, S140G-IKs, and HET-IKs to 

determine whether the channel complexes have different affinities for HMR-1556 (Figure 2). 

Cells expressing WT-IKs exhibited a concentration-response curve that was fit by the Hill 
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equation yielding an IC50 of 214nM and Hill coefficient of 1.2. By contrast, S140G-IKs exhibited 

a complex concentration-response that suggested two affinity states. The IC50 of the high affinity 

state was 3.7nM, whereas the lower affinity state had an IC50 of 97.7nM. Both states were 

significantly different from the IC50 for WT-IKs (p<0.001). Hill coefficients for the high (2.2) and 

low (2.5) affinity states on S140G-IKs suggested positive cooperative binding of the drug. The 

gating kinetics of the current sensitive to 30nM HMR-1556, a concentration near the crux 

between the two affinity states on the concentration-response curve, was not overtly different 

than drug-insensitive current (Figure S1) suggesting that the two affinity states do not emerge 

from distinct populations of channels. The HET-IKs complex demonstrated an intermediate 

pharmacologic phenotype with a complex concentration-response curve. The high affinity state 

had an IC50 of 5.1nM (Hill coefficient 1.7) whereas the low affinity state IC50 was 240nM (Hill 

coefficient 2.4). 

There were also substantial differences in the kinetics of HMR-1556 inhibition.

Specifically, on- and off-rates observed for suppression of S140G-IKs were significantly slower 

than WT-IKs (Figure S2). The dramatically slower off-rate for S140G-IKs suggested a stronger

interaction between HMR-1556 and the channel consistent with our finding that the mutant 

subunit confers an enhanced affinity for the drug. The intermediate phenotype of HET-IKs

exhibited an on-rate comparable to WT-IKs but a significantly slower off-rate that was more 

similar to S140G-IKs. This enhanced sensitivity suggested an opportunity to selectively suppress 

the mutant current with minimal effects on WT-IKs.  

V141M-IKs exhibits enhanced sensitivity to HMR-1556 

We also determined the pharmacologic effects of HMR-1556 on another previously reported 

gain-of-function KCNQ1 mutation, V141M, associated with early onset AF.12 V141M-IKs

ityy states do not ememmmeeree

ratedddd aan n iniiintetett rmrmededddiaiaiaiatttete 

o s

0 (

e

on and off rates obser ed for s ppression of S140G Ir ere significantl slo

ogigigicccc phphphphenennnotootypppeeee with a complex concentrararatititt on-response ee curvrvrvrve.e  The high affinity

0 offf f 5.1nM (Hilll coeooeffficccieieieent 1111 77.7) wwwhereeeas thhe lolololow w w w afaafa finnnittty sttatte IIIICCC50 wwwwaasa 22440nMnMnM (

2.44).)). 

ere were also susususubsbbb tantiiiall l dididifffffferences iiin thhhe kkkiiini ettiiics offff HMHMHMMRRR-1-1-1-1555555556 66 iniii hihihibibibibititiiionononon.

dd fofff tte bob ded ffo isi ff S1S14040GG IIr isi ififiic tltl lsl



DOI: 10.1161/CIRCEP.113.000439

7

exhibited enhanced sensitivity to HMR-1556 and a complex IC50 binding curve with values 

similar to S140G-IKs (Figure 3). The off-rate was significantly slower than WT-IKs (Figure S2). 

These data demonstrate that increased HMR-1556 sensitivity was not specific to S140G-IKs. All 

further experiments were conducted with S140G-IKs as a prototypic familial AF mutation. 

Properties of heteromeric S140G-IKs and WT-IKs

We elucidated the functional properties of HET-IKs. Compared to WT-IKs, cells expressing HET-

IKs exhibited larger amplitudes with a large fraction of instantaneous current between 80 and 

20 mV (Figure S3). At more positive voltage steps ( 20 to +60 mV), HET-IKs exhibits both 

time-dependent and constitutive activation with significantly greater current density than WT-IKs

(Figure S3). The voltage dependence of activation was shifted significantly in the hyperpolarized 

direction for HET-IKs (V1/2: HET-IKs, 1.4±8.1 mV; WT-IKs, 30.1±9.3 mV; p<0.001) without any 

difference in slope factor (Figure S3). The time course of deactivation was extremely slow for 

HET-IKs as compared to WT-IKs (Figure S3).  

During repetitive depolarization to +40 mV with a short recovery period, both WT-IKs

and HET-IKs exhibited a use-dependent accumulation of instantaneous and steady-state current 

over time, but HET-IKs current density was significantly greater than WT-IKs at each successive 

pulse (Figure S4). The ratio of instantaneous to steady-state current at the end of this protocol, a 

proxy for the degree of constitutive activation, was much greater for HET-IKs (84±3%) than WT-

IKs (38±4%; p<0.001). These findings illustrate the dynamic nature of IKs and further emphasize 

the biophysical consequences of the gain-of-function mutation, KCNQ1-S140G. 

Selective inhibition of HET-IKs with HMR-1556 

Given the enhanced sensitivity of S140G-IKs to HMR-1556, we hypothesized that HET-IKs could 

be selectively suppressed by using a concentration HMR-1556 that predominantly inhibits the 
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high affinity state. To test this hypothesis, we applied 20nM HMR-1556 or vehicle to 

heterologously expressed channels and assessed the effects of drug on gating kinetics and current 

amplitudes.

Vehicle had no effects on the behavior of WT-IKs and HET-IKs (Figure 4A,B). Further, 

20nM HMR-1556 had no appreciable effect on current levels or gating behavior of WT-IKs

(Figure 4C), but the drug exerted notable effects on HET-IKs including suppression of both 

instantaneous and steady-state current amplitude and attenuation of use-dependent current 

accumulation (Figure 4D). The effects of 20nM HMR-1556 on WT-IKs and HET-IKs are 

quantified in Figure 5A-D. Importantly, 20nM HMR-1556 did not inhibit WT-IKs, but did reduce

the amplitude of HET-IKs to levels that were not significantly different (p=0.32) from WT-IKs.

Additionally, the ratio of instantaneous to steady-state current for HET-IKs was also modified by 

the drug to a value that was not significantly different from WT-IKs (p=0.06, Figure 5E). These 

findings demonstrated the selective suppression of HET-IKs and the normalization of this mutant 

current to WT-IKs levels.

HMR-1556 mitigates S140G-IKs-induced atrial action potential duration shortening

We examined the effects of HMR-1556 on action potentials in cultured adult rabbit left atrial 

myocytes expressing WT-IKs or S140G-IKs channel complexes.  Action potentials were elicited at 

1 Hz during whole-cell current clamp recording of adenovirus transduced atrial myocytes (Figure 

S5).  Expression of S140G-IKs in left atrial myocytes hyperpolarized the resting membrane 

potential and significantly reduced 90% action potential duration (APD90) compared to WT-IKs

expression (APD90: WT-IKs, 177.4±21.0 msec; S140G-IKs, 68.9±19.2 msec; p<0.001) (Figure 

6A). Application of 1μM HMR-1556 did not alter APD90 of WT-IKs expressing myocytes 

(185.2±27.3 msec, p=0.59), whereas application of 1μM HMR-1556 significantly lengthened
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APD90 of S140G-IKs expressing myocytes (117.1±12.7 msec, p<0.04) (Figure 6B). These 

findings illustrate that HMR-1556 can selectively suppress S140G-IKs effects on atrial action 

potential duration without altering action potentials in myocytes expressing WT-IKs.   

Discussion

The discovery of mutations in familial AF illustrated the contribution of specific genetic factors 

to AF susceptibility and suggested molecular mechanisms for some heritable forms of this 

common arrhythmia. For gain-of-function KCNQ1 mutations in particular, we sought to exploit 

this knowledge to explore a potential targeted therapy. Specifically, we hypothesized that 

KCNQ1 mutations predisposing to AF encode potassium channels with distinct pharmacological 

properties that could render them susceptible to selective inhibition. Genotype-specific therapies 

for inherited arrhythmia syndromes such as congenital long-QT syndrome and catecholaminergic 

polymorphic ventricular tachycardia are emerging.24,25 Further, a precedent for mutation-specific 

pharmacology of a rare, inherited disorder was established by the approval of ivacaftor for 

treatment of cystic fibrosis caused by CFTR-G551D.26

In this study, we investigated the utility of the selective and high affinity IKs blocker 

HMR-1556 to inhibit gain-of-function KCNQ1 mutations S140G and V141M. Chromanol 293B 

was the first identified selective IKs blocker, which exerts its effect at low micromolar 

concentrations.27 The chromanol derivative HMR-1556 was developed to increase potency and 

improve the selectivity of IKs inhibition.28 This derivative was initially demonstrated to have an 

IC50 of 120 nM against IKs expressed in Xenopus oocytes with little effect on other recombinant 

potassium channels at 10 μM consistent with a high level of specificity.28 In isolated canine 

ventricular myocytes, HMR-1556 inhibits IKs with a nanomolar IC50 whereas inhibition of other 

ionic currents (e.g., IKr, IK1, Ito, ICa,L) required much higher concentrations.29  
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Consistent with our hypothesis, we observed that S140G-IKs exhibits enhanced sensitivity 

to HMR-1556. This enhancement was correlated with the emergence of an additional high 

affinity state, which was also observed with V141M-IKs. Importantly, using a concentration that 

predominantly inhibits the high affinity state, we demonstrated that HMR-1556 effectively 

suppressed HET-IKs amplitude to a level that was not significantly different from WT-IKs.

Further, this drug concentration attenuated the use-dependent accumulation of HET-IKs that 

occurs during repetitive pulsing. Importantly, we demonstrated that HMR-1556 can mitigate the 

S140G-IKs induced APD shortening in cultured adult rabbit atrial myocytes without affecting 

action potentials in myocytes expressing WT-IKs. These findings offer evidence supporting the 

potential for genotype-specific therapy of familial AF.   

The potential utility of HMR-1556 or a similarly acting drug in the setting of familial AF 

should be considered in the context of the liabilities of inhibiting IKs in tissues other than atria. 

Reduction of IKs in ventricular muscle carries the risk of reduced repolarization reserve and 

predisposition to reentrant arrhythmia as in type 1 congenital long-QT syndrome. In anesthetized 

dogs receiving continuous intravenous infusions of HMR-1556, there was significant QTc 

prolongation and reproducible triggering of torsades de points with an isoproterenol bolus.30

Prolongation of QTc during HMR-1556 exposure is accentuated in dogs by co-administration of 

the IKr blocker dofetilide.31 In Langendorff-perfused rabbit hearts, HMR-1556 alone was not 

sufficient to prolong monophasic action potential duration (APD) but co-administration of either 

dofetilide alone or dofetilide with veratridine caused significant lengthening of APD.32,33 These 

reports emphasize the potential proarrhythmic effects of high concentration HMR-1556 or of 

concurrent IKs and IKr inhibition. Fortunately, our data indicate that selective inhibition of 

S140G-IKs can be achieved at HMR-1556 concentrations that do not suppress WT-IKs. 
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Ototoxicity is another potential concern with HMR-1556. Because IKs expressed in the 

stria vascularis of inner ear is important in the generation of the K+ rich cochlear endolymph, 

disruption of IKs has the potential to impair hearing as observed in autosomal recessive Jervell-

Lange-Nielson syndrome associated with KCNQ1 or KCNE1 mutations.34-36 Indeed, high 

concentrations of HMR-1556 exert a reversible ototoxicity in cats.37 Again, our data suggest that 

there is a potential concentration range that may be free of inner ear adverse effects.  

 In summary, the AF-associated mutations KCNQ1-S140G and KCNQ1-V141M confer 

enhanced sensitivity to HMR-1556 in the context of the IKs channel complex. At a concentration 

that predominantly suppresses current by interacting with a novel high affinity state expressed by 

the S140G mutant, HMR-1556 normalized current amplitudes to levels that are not significantly 

different from WT-IKs, and attenuated the use-dependent accumulation of current. In cultured 

adult rabbit atrial myocytes, HMR-1556 mitigated the shortened APD induced by S140G-IKs

expression. Our demonstration of selective targeting of this gain-of-function mutation provides a 

potential proof-of-principal for genotype-specific treatment of familial AF.
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Figure Legends:

Figure 1. S140G-IKs and HET-IKs exhibit enhanced sensitivity to HMR-1556. A, B and C,

Representative current recordings from cells expressing WT-IKs (A),  S140G-IKs (B), or HET-IKs

(C). Recordings illustrated in A, B and C were obtained using the activation protocol described 

in the Methods. D, E, and F, Average current densities (current normalized to cell capacitance)

elicited by a 2 s voltage step to +40 mV followed by a 10 s interpulse during application of 

vehicle or various concentration of HMR-1556 from cells expressing WT-IKs (D),  S140G-IKs

(E), or HET-IKs (F). Current density traces in D, E, and F are averages from 9-11 cells.
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Figure 2. HMR-1556 concentration-response curves for WT-IKs S140G-IKs ( ), and HET-

IKs . Solid lines represents fits of the averaged data to either monophasic (WT-IKs) or biphasic 

(S140G-IKs and HET-IKs) Hill function (see Supplemental Material). IC50 values and Hill 

coefficients are provided in the text.  

Figure 3. V141M-IKs exhibits enhanced sensitivity to HMR-1556. A, Representative current 

densities (current normalized to cell capacitance) recorded from cells expressing WT-IKs that 

were elicited by a 2 s voltage step to +40 mV followed by a 10 s interpulse during application of 

vehicle or various concentration of HMR-1556. B, HMR-1556 concentration-response curves for 

V141M-IKs ( ) and WT-IKs -11 cells) to a

biphasic Hill function (see Supplemental Material). For V141M-IKs, the high affinity state had an 

IC50 of 0.72 nM and Hill coefficient of 0.6; the low affinity state had an IC50 of 204 nM and Hill 

coefficient of 1.7.  

Figure 4. Selective inhibition of HET-IKs by HMR-1556. A and B, Effects of vehicle on whole-

cell currents during an activation voltage clamp protocol (middle panel) and during repetitive 

stimulation (right panel) from cells expressing WT-IKs (A) or HET-IKs (B). C and D, Effect of 

HMR-1556 (20 nM) on whole-cell currents during activation (middle panel) and repetitive 

stimulation (right panel) protocols from cells expressing WT-IKs (C) or HET-IKs (D). In A-D,

traces in each row are from the same cell.  

Figure 5. Selective inhibition of HET-IKs by HMR-1556. A, Voltage dependence of 

instantaneous current density for vehicle-treated WT-IKs -treated HET-IKs
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n = 11), HMR-1556 (20 nM) treated WT-IKs -1556 (20 nM) treated HET-

IKs -treated HET-IKs and other groups were significant at 

the p<0.001 level for voltages between 20 and +60 mV. B, Voltage dependence of steady-state 

current density for vehicle or HEM-1556 treated WT-IKs or HET-IKs (symbols defined in A). 

Differences between vehicle-treated HET-IKs and other groups were significant at the p<0.02 

level for voltages between 40 and +60 mV. C, Use dependence of instantaneous current density 

for vehicle or HEM-1556 treated WT-IKs or HET-IKs (symbols defined in A). Differences 

between vehicle-treated HET-IKs and other groups were significant at the p<0.001 level at all 

tested potentials. D, Use dependence of steady-state current density for vehicle or HEM-1556 

treated WT-IKs or HET-IKs (symbols defined in A). Differences between vehicle-treated HET-IKs

and other groups were significant at the p<0.02 level at all tested potentials. In A-D, there were 

no significant differences (p=0.09-0.74) among vehicle-treated WT-IKs, HMR-1556 treated WT-

IKs, and HMR-1556 treated HET-IKs at any voltage. E, Ratios of instantaneous current density to 

steady-state current density. Differences between vehicle-treated WT-IKs (open black bar) or 

HET-IKs (solid black bar) was significant at p<0.001, whereas there was no significant difference 

(p=0.06) between HMR-1556 treated WT-IKs (open red bar) and HET-IKs (solid red bar).

Figure 6. HMR-1556 mitigates atrial action potential shortening by S140G-IKs. Representative 

averages of 10 sequential action potentials from cultured rabbit left atrial myocytes expressing 

either WT-IKs (black line, n=6) or S140G-IKs (blue line, n=6). A, Action potentials elicited after 

application of vehicle. B, Action potentials elicited after application of 1 μM HMR-1556. APD90

values are provided in the text. 
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