
1 
 

tRanslatome: an R/Bioconductor 
package to portray translational control 

 
Toma Tebaldi <t.tebaldi@unitn.it>,  

Erik Dassi <erik.dassi@unitn.it>,  

Galena Kostoska <kostoska.galena@unitn.it>,  

Gabriella Viero <viero@fbk.eu>,  

Alessandro Quattrone <alessandro.quattrone@unitn.it>,  

 

 

 

 

 

 

 

Contents 
 

1. Introduction  

2. First worked example  

2.1. DEGs detection  

2.2. Quality control  

2.3. GO Enrichment  

2.4. GO Comparison  

2.5. Regulatory Enrichment  

2.6. Translational Efficiency  

3. Second worked example 

4. Bibliography  

 

 

 



2 
 

1 Introduction 

One way to achieve a comprehensive estimation of the influence of different layers of control on 

gene expression is to analyze the changes in abundances of molecular intermediates at different 

levels. For example, comparing changes between abundances of mRNAs in active translation with 

respect to the corresponding changes in abundances of total mRNAs (by mean of parallel high-

throughput profiling) we can estimate the influence of translational controls on each transcript. 

The tRanslatome package represents a complete platform for comparing data coming from two 

parallel high-throughput assays, profiling two different levels of gene expression. The package 

focuses on the comparison between the translatome and the transcriptome or the proteome. It 

can be used to compare any variation monitored at two “-omics” levels (e.g. translatome versus 

proteome, translatome versus transcriptome or proteome versus transcriptome). The package 

provides a broad variety of statistical methods covering each step of the standard data analysis 

workflow: detection and comparison of differentially expressed genes (DEGs), detection and 

comparison of enriched biological themes through Gene Ontology (GO) annotation. The package 

provides tools to visually compare/contrast the results. An additional feature lies in the possibility 

to detect enrichment of targets of translational regulators using the experimental annotation 

contained in the AURA database (http://aura.science.unitn.it/). 

2 First Worked example 

The following code illustrates a standard analysis pipeline with tRanslatome. For demonstrating 

tRanslatome in practice we use a dataset coming from (Parent et al., 2007). The dataset is named 

”tRanslatomeSampleData”. In this study, the authors profiled the total and the polysome-bound 

transcripts in differentiated and undifferentiated human HepaRG cells. Therefore this example 

presents two levels of gene expression analysis (transcriptome, labelled as ”tot” and translatome, 

labeled as ”pol”) on cells in two different conditions (undifferentiated, labeled as ”undiff” vs. 

differentiated, labeled as ”diff”). Experiments were done by the authors in biological triplicate, 

labeled as ”a”, ”b” and ”c”. All the steps contained in the code will be explained in more detail in 

the following sections. 

> ##loading the tRanslatome package 

> library(tRanslatome) 

> ##loading the training data set 

> data(tRanslatomeSampleData) 

> translatome.analysis <- newTranslatomeDataset(expressionMatrix, 

+ c("tot.undiff.a", "tot.undiff.b", "tot.undiff.c"), 

+ c("tot.diff.a", "tot.diff.b", "tot.diff.c"), 

+ c("pol.undiff.a", "pol.undiff.b", "pol.undiff.c"), 

+ c("pol.diff.a", "pol.diff.b", "pol.diff.c"), 

+ label.level= c("transcriptome", "translatome"), 

+ label.condition=c("undifferentiated", "differentiated")) 

> ##identification of DEGs with the use of the limma statistical method 

> limma.DEGs <- computeDEGs(translatome.analysis, 

http://aura.science.unitn.it/
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+ 

> ##enrichment analysis of the selected DEGs 

> CCEnrichment <- GOEnrichment(limma.DEGs,ontology="CC", classOfDEGs="up", 

+ 

> ##performing a comparison of the biological themes enriched 

> ##in the two levels of gene expression 

> CCComparison <- GOComparison(CCEnrichment) 

 

2.1 DEGs detection 

The initial core of the package consists of the class holding input data, called TranslatomeDataset. 

Objects of this class can be created through the newTranslatomeDataset() function. This function 

takes as input a normalized data matrix coming from the high throughput experiment with entities 

(genes, transcripts, exons,proteins) in rows and samples (normalized signals coming from 

microarray, next generation sequencing, mass spectrometry) in columns. Since tRanslatome 

doesn’t provide any normalization, signals contained in the data matrix should be normalized 

before, unless the DEGs selection method doesn’t provide also a normalization step, as in the case 

of edgeR and DEseq. In our worked example microarray data were previously quantile normalized. 
 

In addition to the data matrix, important input parameters are: 

 

 cond.a, cond.b, cond.c, cond.d:  vectors of column names belonging to expression matrix. 

These columns contain the signal intensity data coming from the samples of the: (a) first 

expression level of the control condition (in our example: total RNA, undifferentiated cells); 

(b) first expression level of the treatment condition (in our example: total RNA, 

differentiated cells); (c) second expression level of the control condition (in our example: 

polysomal RNA, undifferentiated cells); (d) second expression level of the treatment 

condition (in our example: polysomal RNA, differentiated cells). 

 label.level, label.condition: character vectors specifying: (a) the names given to the two 

levels. By default levels are named ”1st level” and ”2nd level”, but the user can specify 

others: in our example the two levels are named ”transcriptome” and ”translatome”; (b) 

the names given to the two conditions. By default, these values are ”control” and 

”treated”, but user can specify others: in our example the two levels are named 

”undifferentiated” and ”differentiated”; 

 data.type, character vector specifying the type of data contained in the expression matrix. 

By default it is set to array, the other accepted value is ngs. 

 

Once the object is initialized, the next step is the identification of DEGs. The function performing 

this task is called computeDEGs(). This function takes as input a label specifying the method 

employed in order to detect DEGs and returns a table containing, for each row of the expression 

matrix (genes, transcripts, exons, proteins) the associated fold change, statistical significance and 

classification according to their expression in the two “-omics” levels.  
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In addition to the object of class TranslatomeDataset, important input parameters are: 

 

 method: a label that specifies the statistical method for DEGs detection. This parameter 

can take the following values:  

1. DESeq (Anders and Huber, 2010). This method has been developed for the analysis of 

count data from high-throughput sequencing assays. The test for differential expression 

is based on a model using the negative binomial distribution 

2. edgeR (Robinson et al., 2010). This method is addressed to expression analysis of RNA-

seq and digital gene expression profiles with biological replication. The method uses 

empirical Bayes estimation and exact tests based on the negative binomial distribution. 

It is also useful for differential signal analysis with other types of genome-scale count 

data. 

3. SAM (Tusher et al., 2001). Significance Analysis of Microarrays. This method detects 

differential expression for microarray data, sequencing data, and other data with a 

large number of features (e.g. genes), correlating them with an outcome variable, such 

as a group indicator, quantitative variable or survival time. 

4. t-test (Tian et al., 2005). One of the more common statistical approaches to select 

genes differentially expressed between two groups.  

5. RP (Breitling et al., 2004). RankProd, a non-parametric method for identifying 

differentially expressed (up- or down- regulated) genes based on the estimated 

percentage of false predictions (pfp). The method can combine data sets from different 

origins (meta-analysis) to increase the power of the identification. 

6. limma (Smyth, 2004). Linear models and empirical Bayes methods for assessing 

differential expression in microarray experiments. The methods are also applicable to 

expression data from non-microarray platforms, such as quantitative PCR or RNA-Seq, 

given a suitable matrix of expression values.  

7. ANOTA (Larsson et al., 2011). Method developed to identify differential translation 

between two or more sample classes, i.e. differences in actively translated mRNA levels 

that are independent of underlying differences in cytosolic mRNA levels. The method 

uses partial variances and the random variance model. 

8. TE. Translation Efficiency. TE is traditionally defined as the ratio of polysomal RNA and 

subpolysomal RNA signals (Powley et al., 2009), or the ratio of polysomal RNA and total 

RNA signals. In ribosome footprinting experiments, TE has been defined as the ratio of 

ribosome protected fragments (RPFs) and RNA-seq reads (Ingolia et al., 2011). When 

protein levels are detected, TE is defined as the ratio between protein and transcript 

levels. The TE method first calculates TE as the ratio of the signals of the two “-omics” 

levels provided by the user, then select DEGs according to differences in the TE 

between the treatment condition and the control condition. 

9. none. No statistical method is applied to the analysis, DEGs are selected only according 

to the threshold on the fold change. 
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 significance.threshold, FC.threshold: thresholds on (a) the statistical significance to select 

differentially expressed genes (the default is set to 0.05); (b) the absolute log2 fold change 

to select differentially expressed genes (the default is set to 0). 

 mult.cor: a boolean variable specifying whether the significance threshold is applied on the 

Benjamini-Hochberg multiple test corrected p-values obtained from the DEGs detection 

method. By default it is set to TRUE. 

 

The function computeDEGs() generates an object of class DEGs, containing the result of the 

differential expression analysis comparing the two “-omics” levels. DEGs can then be later 

retrieved with the accessory getDEGs function. 

 

One way to visualize the results obtained by the computeDEGs() function is to use the 

Scatterplot() method on the object of class DEGs, generating a plot in logarithmic scale where 

each biological feature (gene, transcript, exon, protein) is represented as a dot whose position is 

uniquely determined by its fold change (FC) in the first expression level (on the x-axis), and in the 

second expression level (on the y-axis). The scatterplot generated from the analysis of the worked 

example is displayed in Figure 1. The two expression levels are names ”transcriptome” and 

”translatome”. 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1: tRanslatome provides the method Scatterplot(), drawing a scatterplot in which each gene is 
mapped  according  to its  fold change at the first level (on the x- axis)  and  the  fold change  at  the second 
level (on the y-axis).   The  track  parameter was set  to c("GAB1","FMR1","EGR1").  We adopt a color code 
to label different classes of DEGs:  blue for genes differentially expressed only at the first level; yellow for 
genes differentially expressed only at the second level, green for genes changing homodirectionally, red for 
genes with opposite changes. 
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This plot, as all the graphical outputs of tRanslatome, can be saved in various formats: jpeg (jpeg), 

postscript (postscript), pdf (pdf), or simply displayed on the screen (on screen, the default option).  

If the expression matrix is annotated with row names, specific rows can be tracked in the plot by 

specifying a character vector of gene names (the “track” parameter). The corresponding dot will 

be explicitly highlighted in the scatterplot. By default, the track parameter is empty. 

A color code is adopted in the scatterplot to label different classes of DEGs: blue for genes 

differentially expressed only at the first level, yellow for genes differentially expressed only at the 

second level, green for genes showing concordant changes in the two “-omics” levels, red for 

genes changing with opposite directions in the two levels. The Spearman’s Correlation Coefficient 

between the fold changes of all the genes and between the fold changes of all the DEGs is also 

displayed. 

 

Another way to visualize the results obtained from the computeDEGs() function is to use the 

Histogram() method, showing a histogram with the number of biological features differentially 

expressed (up-regulated or down-regulated) in each level. 

The user can set the parameter plottype to specify whether the histogram should be (a) a brief 

”summary” of the results, showing the number of genes up and down regulated in the first and 

the second “-omics” level (displayed in Figure 2 for the working example); (b) a ”detailed” 

histogram presenting the distribution of all the classes of DEGs resulting from the comparison of 

the two “-omics” levels (displayed in Figure 3 for the working example). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
Figure  2:  Summary  histogram  of the identified differentially  expressed genes (DEGs). The histogram 
shows the distribution of up-regulated  (in black) and down-regulated  (in gray) genes in  the two expression 
levels, transcriptome and translatome in our example. 
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Figure 3: Detailed histogram of the identified differentially expressed genes (DEGs).  The histogram displays 

the number of genes up or down regulated only in the first expression level (”up/-” or ”down/-”, in blue 

tones), only in  the second expression level (”-/up” or ”-/down”, in yellow tones), in both  expression levels 

with  the same trend  (”up/up” or ”down/down”,  in green tones),  in both expression levels with opposite 

directions (”up/down” or ”down/up”, in red tones). 

 

 

 

2.2 Quality control 

tRanslatome enables the generation of additional graphics helping the user to perform some basic 

quality controls on the data and the results of the identification of DEGs.  

The MA-plots show in logarithmic scale the relationship between the average log2 signal intensity 

(A) and the log2 fold change (M) for each gene. The general assumption of genome-wide profiles is 

that most of the genes don’t change between the two conditions under comparison. If this is not 

the case and the result is not justified by any biological consideration, an alternative normalization 

method should be applied.  

tRanslatome enables the generation of MA-plots within the MAplot() method, which can be 

applied to any object of class DEGs. The MA-plot of the worked example is displayed in Figure 4. 

The upper panel in Figure 4 refers to the first expression level (transcriptome), whereas the lower 

panel refers to the second expression level (translatome). DEGs in each level are colored in blue 

and yellow, respectively. 
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Figure 4: MA plots are displayed for the first expression level (transcriptome, in the upper panel, with DEGs 

labeled in blue) and the second expression level (translatome, in the lower panel, with DEGs labeled in 

yellow). 

 

 

In tRanslatome there is also a method to visualize the relationship between the FC of the selected 

DEGs with respect to the standard deviation of their signals across the replicates. The SDplot() 

method plots, for each expression level, the standard deviation of the genes against their 

logarithmic fold change. The set of input parameters is exactly the same as in  MAplot().  

The SD plot of the worked example is displayed in Figure 5. The upper panel in Figure 5 refers to 

the first expression level (the transcriptome in the worked example), whereas the lower panel 

refers to the second expression level (the translatome in the worked example). 

Alternatively, the relationship between the logarithmic fold change and the coefficient of variation 

(CV) of each gene can across the replicates can be visualized with the method CVplot(). The CV 

plot of the worked example is displayed in Figure 6. The upper panel in Figure 6 refers to the first 

expression level (the transcriptome in the worked example), whereas the lower panel refers to the 

second expression level (the translatome in the worked example). 
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Figure 5: SD plots are displayed for the first expression level (transcriptome, in the upper panel, with DEGs 

labeled in blue) and the second expression level (translatome, in the lower panel, with DEGs labeled in 

yellow). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6: CV plots are displayed for the first expression level (transcriptome, in the upper panel, with DEGs 

labeled in blue) and the second expression level (translatome, in the lower panel, with DEGs labeled in 

yellow). 
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2.3 GO Enrichment 

The Gene Ontology (GO) project provides a standardized controlled vocabulary to describe gene 

product attributes in all organisms (Ashburner et al., 2000). GO consists of three hierarchically 

structured vocabularies (ontologies) describing gene products in terms of their associated 

biological processes (BP), cellular components (CC) and molecular functions (MF). One of the most 

frequent applications of the GO to the results of high-throughput experiments is the enrichment 

analysis, i.e. the identification of GO terms that are significantly over-represented in a given set of 

differentially expressed genes. The analysis of ontological enrichments helps to understand the 

possible functional characteristics associated to a given list of DEGs, suggesting the occurrence of 

common mechanisms of regulation coordinating the biological system under examination. 

tRanslatome offers different alternatives to perform the GO enrichment analysis of DEGs in any of 

the two “-omics” levels, by identifying the overrepresented GO terms in the lists of DEGs returned 

from the computeDEGs() function. 

GOEnrichment() is a function in tRanslatome which identifies GO terms significantly enriched in 

the two lists of DEGs corresponding to the two “-omics” levels under analysis. The enrichment 

analysis can be performed on the whole set of GO ontologies (by default), or restricted to one 

single ontology (either molecular function, cellular component or biological process). Moreover, 

the enrichment analysis can be performed on different classes of DEGs: only up-regulated genes, 

only down-regulated genes or the union of up-regulated and down-regulated genes (i.e., the 

whole set of DEGs).  

 

The function GOEnrichment() takes as input an object of class DEGs. In addition, important input 

parameters are: 

 

 test.method. A character string specifying the statistical method to calculate the enrich- 

ment. By default it is set to classic (meaning that the enrichment is measured with the 

classic Fisher exact test). This parameter can be set to elim, weight, weight01 or 

parentchild. All these methods are implemented in the topGO Bioconductor package 

(http://www.bioconductor.org/packages/release/bioc/html/topGO.html). These alternative 

testing methods account for the topology of the GO graph, providing solutions to eliminate 

local similarities and dependencies between GO terms (Alexa et al., 2006). 

 test.threshold. The significance threshold to select over-represented terms. The default is 

se to 0.05. 

 mult.cor. A boolean variable specifying whether the significance threshold is applied on the 

Benjamini-Hochberg multiple test corrected p-values obtained from the enrichment 

method. By default it is set to TRUE. 

 

The output of the function GOEnrichment() is an object of class GOsets, containing the results of 

the enrichment analysis in tabular form. 

 

http://www.bioconductor.org/packages/release/bioc/html/topGO.html
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The method Radar() can be applied to any object of class GOsets in order to display the most 

enriched GO terms in the first and in the second expression level in a radar plot display. The radar 

plot is useful to visualize differential enrichment of certain GO terms in the two lists of DEGs 

associated to the two “-omics” levels. The radar plot resulting from the GO Cellular Component 

analysis of the worked example is displayed in Figure 7. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7: The nine top enriched cellular component GO terms are displayed in form of a radar plot.  

Enrichment p-value for the first expression level (the transcriptome in the worked example) are labeled in 

blue, whereas the enrichment p-values for the second expression level (the translatome in the worked 

example) are labeled in yellow. 

 

The Radar() method takes as input an object of class GOsets,  a label specifying the ontology of 

interest (either CC, BP or MF), and the number of top enriched GO terms that will be represented 

on the plot for the two “-omics” levels. By default the value is set to 5 for both the levels. 
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A second way to display and compare GO enrichment results is provided by the method 

Heatmap(), taking the same input parameters as the Radar() method. The heatmap resulting from 

the GO Cellular Component analysis of the worked example is displayed in Figure 8. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8: Heatmap of the top enriched GO Cellular Component terms for each expression level, 

transcriptome and translatome in the worked example. The color scale is based on the -log10 transformed 

enrichment p-value. Black cells are associated to not significant enrichments. GO terms are clustered 

according to the enrichment p-values across the two “-omics” levels. 
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2.4 GO Comparison 

 

In order to further compare the functional enrichments associated to the two “-omics” levels, the 

function GOComparison() takes as input an object of class GOsets and returns as output an object 

of class GOsims, containing a variety of tables with comparisons between the lists of enriched GO 

terms. The comparison include the calculation of semantic similarity scores between the two lists 

of enriched terms, using the Wang method (Wang et al., 2007) implemented in the GOSemSim 

Bioconductor package (http://www.bioconductor.org/packages/2.12/bioc/html/GOSemSim.html). 

The function has only one input parameter, an object of class GOsets. The output contains the 

comparison of the enriched terms (named “identity comparison”) and the semantic similarity 

measure between the GO terms enriched in the two expression levels under analysis (names 

“semantic similarity comparison”). 

 

The results of GOComparison can be displayed with the method IdentityPlot(), displaying in a 

barplot the number of GO terms showing enrichment in both expression levels or only in one 

expression level. The result of the method, applied to the worked example, is shown in Figure 9. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9: Barplot of the number of GO terms (CC, MF and BP) showing significant enrichment in both 

expression levels (transcriptome and translatome in the worked example, in green),  only in the first level (in 

blue), only at the second level (in yellow). 

http://www.bioconductor.org/packages/2.12/bioc/html/GOSemSim.html
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The method SimilarityPlot(), applied to an object of class GOsims, displays a barplot with the 

semantic similarity values between the two lists of enriched GO terms, associated to the two “-

omics” levels. Semantic similarity values range from 0 to 1. The result of the method, applied to 

the worked example, is shown in Figure 10. 

 

 

  

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

Figure 10: Barplot of the average semantic similarity values between GO terms (CC, MF and BP) significantly 

enriched in the first or in the second expression level (transcriptome and translatome in the worked 

example).  

 

 

2.5 Regulatory Enrichment 

RegulatoryEnrichment() is a function which, given as input an object of class DEGs, identifies 

overrepresented post-transcriptional regulators (such as RNA-binding proteins, microRNA) 

possibly coordinating the differential expression of their target DEGs. The default analysis is based 

on a dataset of experimentally determined post-transcriptional interactions, extracted from the 

AURA database (http://aura.science.unitn.it). The user can also specify a custom dataset  of 

annotations onto which the same analysis can be performed. Moreover, the function can identify 

enriched regulators for separate classes of DEGs: only up-regulated genes, only down-regulated 

genes or their union. The method works by using two lists of genes: the first containing all the 

genes targeted by each of the post-transcriptional regulators, and the second containing the 

number of regulated and non-regulated genes for each of these post-transcriptional regulators in 

the background gene set (the whole genome). The function computes a Fisher enrichment p-value 

http://aura.science.unitn.it/
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indicating whether a significant group of genes in the DEGs list is likely to be regulated by these 

post-transcriptional regulators. The output of the function is an object of class EnrichedSets, 

containing the results of the enrichment analysis. Both the methods Radar() and Heatmap(), 

previously introduced in section 2.3, can be applied also to objects of class EnrichedSets in order 

to show the top enriched regulatory elements associated to  the two “-omics” levels. 

 

2.6 Translational Efficiency 

 
As already specified in the previous sections, tRanslatome allows the user to select the TE method 

when using the computeDEGs() function. The concept of translation efficiency has been associated 

to multiple interpretations in different publications, according to the experimental procedure. 

When performing polysomal profiling, TE is traditionally defined as the ratio of polysomal RNA and 

subpolysomal RNA signals (e.g. Powley et al., 2009), or the ratio of polysomal RNA and total RNA 

signals. With the development of ribosome footprinting, TE has been defined as the ratio of 

ribosome protected fragments (RPFs) and RNA-seq reads (Ingolia et al., 2011). When protein levels 

are detected, TE is defined as the ratio between protein and transcript levels, or, in a kinetic 

context, as the number of proteins produced per mRNA per hour (Schwanhäusser et al, 2011). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11: Scatterplot of translational efficiencies (TEs). Choosing the TE method in the computeDEGs 

function, tRanslatome calculates and displays the translational efficiencies of each gene. In this example, 

TEs are defined as the ratio of polysomal and total signals. The scatterplot displays each gene according to 

its translational efficiency in the first condition (the control condition in this example, represented on the x- 
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axis) and the translational efficiency in the second condition (the treatment condition, represented on the y-

axis). As with the other DEGs selection methods, we adopt a color code to label different classes of DEGs: 

blue for genes with a TE significantly different from 1 only in the control condition; yellow for genes with TE 

significantly different from 1 only in the treatment condition, green for genes with a TE significantly 

different from 1 in both the conditions, red for genes whose TE changes antidirectionally between the two 

conditions. 

 

In tRanslatome, TE is intended as any ratio between two reading levels. The TE method first 

calculates TE as the ratio of the signals of the two “-omics” levels provided by the user, then select 

DEGs according to differences in the TE between the treatment condition and the control 

condition. After choosing the TE method, all results are centered around the TE values, not the 

fold change values. The scatterplot resulting from the TE method applied to the worked example 

are displayed in Figure 11.  

 

3 Second worked example 

The second worked example shows how transcriptome and proteome data can be compared 

between two different human cell lines, HeLa and MCF7. The dataset used for this example is 

taken from (Stevens and Brown, 2013). In this work, the authors study the transcript levels and the 

protein levels in five different human cell lines. This worked example presents two levels of gene 

expression analysis (the transcriptome and the proteome) on two different cell lines (HeLa, 

labeled as ”HeLA” vs. MCF7, labeled as ”MCF7”). This dataset provides only one replicate, 

therefore DEGs are selected applying exclusively a threshold on the log2 fold change and choosing 

“none” as DEGs selection method. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 12: figure resulting from the method Scatterplot(), applied to the second worked example. Each gene 
is mapped  according  to its  fold change at the first level (on the x- axis)  and  the  fold change  at  the 
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second level (on the y-axis).   The  track  parameter was set  to c("GAB1","FMR1","EGR1").  We adopt a color 
code to label different classes of DEGs:  blue for genes differentially expressed only at the first level; yellow 
for genes differentially expressed only at the second level, green for genes changing homodirectionally, red 
for genes with opposite changes. 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 13: Detailed histogram of the identified differentially expressed genes (DEGs).  The histogram 

displays the number of genes up or down regulated only in the transcriptome (”up/-” or ”down/-”, in blue 

tones), only in  the proteome (”-/up” or ”-/down”, in yellow tones), in both  expression levels with  the same 

trend  (”up/up” or ”down/down”,  in green tones),  in both expression levels with opposite directions 

(”up/down” or ”down/up”, in red tones). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 14: MA plots are displayed for the first expression level (the transcriptome, in the upper panel, with 

DEGs labeled in blue) and the second expression level (the proteome, in the lower panel, with DEGs labeled 

in yellow). 
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Figure 15: Heatmap of the top enriched GO Biological Process terms for each expression level, transcriptome 

and proteome in the worked example. The color scale is based on the -log10 transformed enrichment p-

value. Black cells are associated to not significant enrichments. GO terms are clustered according to the 

enrichment p-values across the two “-omics” levels. 
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Figure 16: Heatmap of the top enriched AURA post-transcriptional regulatory elements for each expression 

level, transcriptome and proteome in the worked example. The color scale is based on the -log10 

transformed enrichment p-value. Black cells are associated to not significant enrichments. Regulatory 

elements are clustered according to the enrichment p-values across the two “-omics” levels. 
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