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1 Evaluation of the likelihood function

In Bayesian statistics, the Bayes theorem constitutes a mean to update the belief state about a hypothesis (e.g., the value
of a parameter, or the plausibility of a model) due to new experimental observations. The belief state, before the new data
is available, is conventionally referred to as the prior distribution, whereas the belief state after incorporation of the data is
referred to as the posterior distribution. The posterior distribution is linked to the prior distribution, by the Bayes theorem,
through the likelihood function, which represents the probability of the data given the hypothesis and a normalizing constant,
called the evidence or marginal likelihood.

Assume that a set of observational data Y = [Y1, . . . ,YK ] is available, where the subscript denotes the time point index.
The posterior distribution of a parameter point ρ = {θ,σ,S1, . . . ,SK ]T , given Y, is:

p(ρ|Y) =
p(Y|ρ)p(ρ)

p(Y)
, (1)

where p(Y|ρ) is the likelihood function, p(ρ) is the prior distribution, and p(Y) is the evidence (marginal likelihood). Following
the approach of Overgaard et al., 2005, we computed the likelihood of each parameter point from a quasi-likelihood function,
for which the conditional densities are approximated by Gaussian densities. The likelihood function takes the form:

p(Y|ρ) = p(YK ,YK−1, . . . ,Y1|ρ) =
K∏

k=2

(
p(yk|yk−1,ρ)

)
p(y1,ρ) =

K∏
k=1

e
− 1

2 ϵ
T
k R−1

(k|k−1)
ϵk√

|2πR(k|k−1)|
, (2)

with the residual at time point k: ϵk = Yk −yk|k−1. The predicted output and the corresponding covariance matrix at time
point k, given all available data until time point k − 1, are denoted by:

y(k|k−1) = E[yk|Yk−1,ρ], (3)

and
R(k|k−1) = Var[yk|Yk−1,ρ], (4)

respectively. To compute the likelihood we need to evaluate the terms yk|k−1 and R(k|k−1), with a method capable of
incorporating σ and S1, . . . ,SK . The extended Kalman filter has been used for this purpose (Overgaard et al., 2005), where
the term extended refers to the extended applicability of the Kalman filter to nonlinear models (Kalman, 1960). See Appendix
2 for details about the extended Kalman filter with SDEs, and how the different parameters are incorporated.

For practical purposes we define the following cost function:

E(ρ|Y) = − ln[p(Y|ρ)], (5)

which returns the smallest cost for the most plausible parameter point.

2 The extended Kalman filter

Consider a SDE based model as in Eq. 3 of the main text, with the same output as in Eq. 1 of the main text:

M(θ) =

{
dx(t) = f(x,u,θ)dt+ σdω,

yk = h
(
x(tk)

)
+ ek, ek ∼ N (0,Sk),

(6)

As disussed in Section 1 it is necessary to compute y(k|k−1) and R(k|k−1), where the subscript denotes timepoint k conditioned
on data to time point k−1, to evaluate the cost function for a given parameter point. To do so we use an extended Kalman filter
(EKF) following the approach of Kristensen et al., 2005, which iteratively computes the required entities given a sequence
of experimental data at K time points: Y = [Y1, . . . ,YK]. The EKF starts from an estimate, before any experimental
data is available, of the state x̂1|0 = E[x(t = t0)] and the corresponding covariance P1|0 = Var[x(t = t0)]. For time
points k = 1, . . . ,K an iterative procedure between an update step in which new experimental data is incorporated, and a
prediction step to the next measurement time point, is applied. In the first step of this procedure the predicted response and
the covariance of the response is evaluated at the predicted state variables:

ŷk|k−1 = h(x̂k|k−1), (7)

Rk|k−1 = CkPk|k−1C
T
k + Sk, (8)

where Ck is the Jacobian of h(·) with respect to xk evaluated at x̂k|k−1. In the second step the Kalman gain Kk is computed:

Kk = Pk|k−1C
T
kR

−1
k|k−1, (9)

which is used to update the estimate of xk and Pk incorporating the data at time point k; Yk:

x̂k|k = x̂k|k−1 +Kkϵk, (10)
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Pk|k = Pk|k−1 −KkRk|k−1K
T
k . (11)

In the third step of the EKF the state and covariance is predicted at the next experimental readout time point:

dx̂t|k

dt
= f

(
x̂t|k,u(t), t,θ

)
, (12)

dPt|k

dt
= AtPt|k +Pt|kA

T
t + σtσ

T
t , (13)

where At is the Jacobian of f(·) with respect to xk evaluated at x̂t|k and t ∈ [tk, tk+1]. Eqs. 7- 13 constitute the EKF and
are repeated for all time points to compute xk|k−1 and Pk|k−1, k = 1, . . . ,K.

The initial condition for the pharmacokinetic model were set to Q(0) = 5 and C(0) = 0 and the uncertainty in the initally
conditions P1|0 was estimated by summing up the noise in the Wiener process between the first two experimental sampling
time points:

P1|0 =

∫ t1

t0

eAssσsσ
T
s (e

Ass)T ds, (14)

which follows the proposed approach of Kristensen et al., 2005. In general this estimate may be multiplied by a scaling factor
≥ 1. For the glutamine models we set the initial condition, x1|0, to the experimentally measured values of the state variables.
We also decided to estimate the uncertainty in the initial conditions directly by incorporating an additional parameter ψ so
that P1|0 = ψx1|0, where ψ ∈ [0, 0.2].

A complication for the application of the EKF to the glutamine models is that the compartmental volumes of the two
state variables (external glutamine Q and a single cell C) are very different. In fact, the cell volume is 14 orders of magnitude
smaller than the volume for the external medium. This means that for each iteration of the EKF in which new experimental
data is incorporated and state variable Q is updated, the corresponding change in state variable C is 14 orders of magnitude
as large. This phenomenon can be observed directly in the Jacobian matrix At. For this reason, we initially observed that
all viable parameter points had very low values in σ. This means that the magnitude of the entries of σ cannot be used as
indicators for which parts of the model that may be improved. To get around this problem, we noted that the solution of
the SDE for Q is independent of the SDE for C, since the reaction from Q to C is not reversible. For each parameter point
that is evaluated we then first applied the EKF to the first equation only. In the second step we then applied the EKF to
the full model, but with σ1 = 0, so that the solution for Q is deterministic and the incorporation of each new data point
leads to updates in C only and not in Q. Note that the rest of the parameters are the same both times we run the EKF.
Finally, we used the residuals (and the corresponding variances) for Q from the first time we run the filter together with the
residuals (and the corresponding variances) for C from the second run of the EKF. This efficiently allows us to use σ1 as an
indicator of how the first equation may be improved, which is separated from σ2, as an indicator for the second equation.
Finally, note that this is not an issue for the pharmacokinetic model for which the compartmental volumes are of the same
order of magnitude.

3 Parameter viability criterium

From the cost function E(ρ|Y), we computed a viability threshold E(ρ|Y)v under the assumption of Gaussian distributed
residuals (difference between experimental data and model predictions) (Sunn̊aker et al., 2013). The viability threshold is
based on the existence of a model M∗ and an unknown parameter point θ∗ with the same data generating characteristics as
the underlying biochemical system. Given a set of experimental data generated by the system, the viability threshold equals
the expected likelihood plus α standard deviations (α = 2 in this article):

E(θ,Y,Mi) ≤ ln

(
eα
√

β
2

√
(2πe)β |S|

)
(15)

where parameter point θ is viable in model Mi if Eq. (15) is satisfied, β is the number of data points, and S is the diagonal
covariance matrix for the measurement noise (for details see Sunn̊aker et al. (2013)). If there is risk for overfitting (the
number of parameters is large in comparison to the amount of data points) it may in addition be relevant introduce a lower
log-likelihood threshold equal to the expected log-likelihood minus two standard deviations:

E(θ,Y,Mi) ≥ ln

(
e−α

√
β
2

√
(2πe)β |S|

)
(16)

However, in this article we use the viability cutoff to identify the parameter space regions of high likelihood, so the lower
threshold is not necessary. We were also not able to identify parameter points below the lower threshold for any of the models
analyzed in this article. The viability threshold can alternatively also be computed with bootstrapping of a multivariate
normal distribution with zero mean and the same standard deviation as Y.

However, this threshold is not valid in SDE based models, since we cannot expect the difference between model predictions
and the experimenal data to be Gaussian distributed due to the inherent model stochasticity (system noise). The system noise
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causes the model to produce different predictions each time the model is simulated, and the predicted trajectories of state
variables are correlated over time. Since the measurement data is given, the distribution of the residuals (at the observation
time points) will therefore not be Gaussian distributed, but biased by the particular simulation results. For the SDE models
we therefore used other heuristic approaches to compute a viability threshold. In the case of the PK/PD models we used
a Metropolis Monte-Carlo algorithm, which was run until the generated parameter values reached a stationary distribution.
We then set the viability threshold equal to the mean of the stationary distribution plus two standard deviations. For the
glutamine transport models this turned out to be impractical since the standard deviations of the stationary distribution
was very small, which resulted in that only a region very close to the most likely parameter point was explored. Instead, we
defined a viability threshold for which the difference in likelihood to the most likely parameter point is large. The viability
threshold is chosen so that the contribution of inviable parameter points in the inference process is close to negligible.

It is also informative to study the form of the viable space and in particular the projection of the viable parameter space to
the σ parameters, as the viability threshold is successively lowered. This procedure helped us to quantify the improvements
due to incorporation of model extensions, since the simpler models and corresponding likelihood values can be obtained
through elimination of some of the model parameters, for the models investigated in this paper. Therefore the viable space
of the simpler model will be a subspace of the viable space of the improved model when the viability threshold is sufficiently
low.

4 Parameter sampling method

For the exploration of the parameter space we employ the method described by Zamora-Sillero et al., 2011, which is based on
an out-of-equlibrium Metropolis Monte-Carlo algorithm, in combination with a refined search of the identified regions using
ellipsoid expansions. Starting from a parameter point within the parameter bounds, new points are successively drawn from
a Gaussian distribution, and accepted either if the negative log-likelihood value of the new point xnew is smaller than the
previous point xold, or otherwise compared to the Boltzmann distribution

exp(−β(xold − xnew)) > r, (17)

where r is a random variable drawn from a uniform distribution on the unit interval, and β ∈ R+ corresponds to the
thermodynamic beta (β = 1/(kBT ), where kB is the Boltzmann constant and T is the temperature). To increase the rate of
convergence of the sampling algorithm the covariance matrix of the Gaussian distribution is increased if the acceptance rate
of new parameter points is high, and decreased if the acceptance rate is low. The identified viable regions are then explored
in greater detail by successively expanding ellipsoids to cover the viable parameter region. As a rule of thumb the number
of ellipsoids is equal to the dimension of the parameter space. Finally, the viable regions characterized in the first two steps
are uniformly sampled, and these parameter points are used to make model predictions and to compare models.

5 Pharmacokinetic model - Setting

Simulation time is set to t ∈ [0, 300] (min) and the parameter values are set toQ(t = 0) = 5 mg, C(t = 0) = 0 mg/L, CL = 0.05
L/min, V = 5 l, Vmax = 0.1 mg/min, and KM = 0.5 mg as in (Kristensen et al., 2005). The proportional measurement
error model takes the form yk = Ck(1 + 0.01ek), ek ∼ N (0, 1), k = 1, . . . ,K. A modest measurement error (e.g., ẽ = 0.01ek)
means that the following approximation holds: ỹk = log(yk) = log(Ck(1+ ẽk)) = log(Ck)+ log(1+ ẽk) ≈ log(Ck)+ ẽk, where
ẽk ∼ N (0, Sk) and a Maclaurin expansion to the first term was used in the last step. The N = 20 artificial experimental
data are generated at time points: 1, 2, 4, 6, 8, 10, 15, 20, 30, 40, 50, 60, 70, 80, 90, 100, 150, 200, 250, and 300 (min).

The pharmacokinetic ODE models take the form:(
dQ
dC

)
=

(
1 0
0 1

V

)(
−1 0
1 −1

)(
r1
r2

)
dt+

(
σ1 0

− 1
V σ1 σ2

)(
dω1

t

dω2
t

)
. (18)

where the reactions in the linear model take the form: r1 = kAQ and r2 = CLC. For the nonlinear SDE model reaction r2
is the same and: r1 = VmaxQ

KM+Q .

We explored each of the parameters in the different models in the region [−4, 4] (log-scale), with the viability condition
established by an initial run of the Metropolis Monte Carlo algorithm. The theoretical viability threshold for ODE models,
given the artificial data, is: E(ρ|Y)v = −57.40 (we obtained E(ρ|Y)v = −53.51 with the MCMC approach for the MM
model). For the linear SDE model the viability threshold of the cost function: E(ρ|Y)v = −12.86, which corresponds
to the mean of the stationary distribution obtained in the Monte Carlo exploration plus two standard deviations (mean:
⟨E(ρ|Y)⟩ = −16.84, std: σE(ρ|Y) = 1.99). The viable parameter points for the linear SDE model are shown in Fig. S2. The
viability threshold for the MM model was established with the same procedure; E(ρ|Y)v = −53.51 (⟨E(ρ|Y)⟩ = −60.14 and
σE(ρ|Y) = 3.31). For the MM-model with CL = 1 the viability threshold is: 11.56 (⟨E(ρ|Y)⟩ = 9.25 and σE(ρ|Y) = 1.15).
Finally, we also analyzed the model for another data set with yk = Ck(1 + 0.1ek), which gives very similar results Fig. S3.
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6 Experimental setting

6.1 Cultivation

Experiments were performed with the prototrophic Saccharomyces cerevisiae strain YSBN6 [MATa FY3 ho::HphMX4]
(Canelas et al., 2010). Cells were taken from a frozen glycerol stock and plated on a YPD agar plate. A preculture
was prepared by inoculating a single colony of S. cerevisiae YSBN6 into a 500 mL shakeflask containing 50 mL of liquid
yeast minimal mineral medium supplemented with 20 g/L of glucose and incubated at 30◦C in a rotary shaker at 300 rpm
for 24 hours. From precultures we inoculated 25 mL of medium in a 500 mL shakeflask to a starting optical density at 600
nm (OD600) of 0.03 – 0.08 for the glutamine depletion experiment.

All cultivations were done in Yeast minimal medium based on the approach of Blank and Sauer, 2004 with minor
modifications. The base medium contained the following components (per Liter): 5g K2SO4, 3g KH2PO4, 0.5g MgSO4•7H2O,
15mg EDTA, 4.5mg ZnSO4•7H2O, 0.3mg CoCl2•6H2O, 1.0mg MnCl2•4H2O, 0.3mg CuSO4•5H2O, 4.5mg CaCl2•2H2O,
3.0mg FeSO4•7H2O, 0.4mg NaMoO4•2H2O, 1.0mg H3BO3, 0.1mg KI, 0.05mg biotin, 1.0mg calcium pantothenate, 1.0mg
nicotinic acid, 25mg inositol, 1.0mg pyridoxine, 0.2mg p-aminobenzoic acid, 1.0mg thiamin, and 10 mM potassium hydrogen
phthalate buffer (pH 5). The base medium was supplemented with 20 g/L D-glucose and 1 g/L of L-glutamine for precultures
and with 20 g/L D-glucose, 500 mg/L of L-glutamine, and 250 mg/L L-proline for the glutamine to proline downshift
experiment.

6.2 Glutamine to proline down-shift experiment (Gln→Pro)

Throughout independent triplicate experiments we monitored cell growth (OD600), extracellular concentrations of glutamine,
proline, glucose and ethanol, and intracellular concentrations of glutamine (the data of a representative experiment is shown
in Fig. S12). To assess the time of the actual shift from glutamine to proline consumption that we wanted to follow with
higher sampling density, we semi-quantitatively determined relative concentrations of glutamine in the broth by at-line direct
flow injection mass spectrometry analysis on an Agilent LC-qTOF system, allowing readouts within less than 2 minutes after
sampling (Fuhrer et al., 2011). The time at which most glutamine had been consumed and arrived to a plateau of significantly
lower concentration is referred to as the time of shift (t0), and we increased the sampling frequency around this time point.
For the sake of consistency the data time series from the three independent experiments were aligned in time, with t0 as the
reference point. Standard deviations were computed for the temporally aligned glutamine measurements, which are shown
in Fig. 3A (blue dots). Initial concentrations of intracellular glutamine were mapped to literature reported values (Gancedo
and Gancedo, 1973; van Riel,N.A. et al., 2000). At the time of shift, the culture had reached a density of 0.81 ± 0.06 OD600

units and the maximum specific growth rate declined from 0.36 ± 0.01 h−1 before the shift to 0.24 ±0.03 h−1 after the shift,
reflecting the shift nitrogen source quality from glutamine to proline.

6.3 Metabolite quantification

Intracellular glutamine concentrations were determined by LC-MS/MS as described by Buescher et al., 2010 and extracellular
concentrations of glucose and ethanol were determined by HPLC as described elsewhere (Heer and Sauer, 2008). Extracel-
lular concentrations of glutamine and proline were determined by GC-MS after derivatization. For this purpose, cells were
separated by centrifugation and the supernatant was derivatized according to an adapted protocol from Zamboni et al., 2009.
Specifically, 10 µL of broth supernatant was mixed with 10 µL internal standard (0.5 µM norvaline, 0.5 µM glutarate )
(Buescher et al., 2009), this mixture was dried to complete dryness in a vacuum centrifuge and then resuspended in 20 µL
dry DMF (Sigma-Aldrich). Derivatization was accomplished by incubation at 85◦C for 1h upon addition of 20 µL of TBDMS
(N-(tert-butyldimethylsilyl)-N-methyl-trifluoroacetamide with 1% tert-butyldimethyl-chlorosilane, Sigma-Aldrich). Specific
fragments for glutamine and proline (m/z: 431 and 258, respectively) were recorded using a 6890N GC system (Agilent
Technologies) combined with a 5875 Inert XL MS system (Agilent Technologies) in electron impact mode and a scan range
between 150 amu and 550 amu. Quantification was achieved by using external standards consisting of the pure substance
obtained from Sigma.

7 Alternative models for glutamine transport

The symbols and parameter bounds in the glutamine uptake models are presented in Table 1.

7.1 Michaelis-Menten transport model

The model based on Michaelis-Menten (MM) kinetics, and referred to as the MM model, is defined as:

Q̇ = −U 1

Vf

V T1
max Q

KT1

M +Q
,

Ċ =
1

Vc

V T1
max Q

KT1

M +Q
−D C,

(19)
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where Q is the glutamine concentration in the medium and C is the glutamine concentration in the cells, and Q(0) = 0.0073
and C(0) = 7.2910−3 based on estimates from the experimental data. Vf and Vc refer to the flask and the cell volume,
respectively. U is an input function for the number of cells (see Fig. S4). The structural parameter D is the glutamine
consumption by the cell, V T1

max is the maximum rate of glutamine transport andKT1

M is the concentration of external glutamine
for which the transport rate is half-maximal. We found viable parameter points by running several instances of the local
optimization algorithm. The viable parameter space was then characterized (Fig. S5).

Although we could find viable parameter points for the MM model, the residuals of the extracellular glutamine concen-
tration are correlated over time (i.e., the model predicts a too low concentration of external glutamine at most time points,
see Fig. 3A of the main text. To investigate if, and how, the model could be improved we reformulated the ODEs-based
model into a model based on SDEs:

dQ =

(
−U 1

Vf

V T1
max Q

KT1

M +Q

)
dt+ σ1dω1,

dC =

(
1

Vc

V T1
max Q

KT1

M +Q
−D C

)
dt+ σ2dω2,

(20)

where ω1 and ω2 are Wiener processes. We next explored the parameter space of the MM model (the investigated parameters
are defined in Table 2). The projection of the viable parameters into σ is shown in Fig. 3B of the main text. While the
distribution of viable parameter values for σ2 shows that the second equation sufficiently well describes the correct reaction
mechanism, the distribution of viable values for σ1 shows that equation one may be improved.

In order to investigate how the MM model may be improved we created an extended version of the model. In this model
we have included an additional reaction mechanism for the transport of glutamine into the cells, with a reaction rate that is
proportional to Q. The full extended model takes the form:

dQ =
−U
Vf

(
V T1
max Q

KT1

M +Q
+KWQ

)
dt+ σ1dω1,

dC =

(
1

Vc

(
V T1
max Q

KT1

M +Q
+KWQ

)
−D C

)
dt+ σ2dω2,

dW = σ3dω3,

(21)

where ω3 is a Wiener process, and W (0) = 0. The variable K has the property that K = 0 at t = 0 and that K = 1 when
Q < τa. Note that the experimental data indicates that Q decreases over time. The unknown parameter τa is estimated
together with the structural parameters and σ. The EKF is used to predict the value of state variable W over time, which
indicates the form of the additional hypothetical reaction mechanism. The parameter space of this model was explored and
the result is shown in Fig. 4A of the main text. Interestingly the method predicts that W stays small until t ∼ 15 − 20
and then increases rapidly as glutamine is depleted in the external medium. We also observed a gradual increase in W
the for the last 100 minutes. To incorporate these observations in the model inference process we propose the regulated
Michaelis-Menten model, which is described in the next section.

7.2 Regulated Michaelis-Menten Model

Two of the four glutamine permeases in yeast, Gap1 and Gnp1, are reported to be under NCR control (Risinger et al., 2006;
Schreve et al., 1998). From the results of the experiments by Risinger et al., 2006, we constructed an exponential model,
g(t), for the NCR adaptation (Fig. S7). The regulated Michaelis-Menten (rMM) model takes the form:

Q̇ = −U 1

Vf

(
V T1
max Q

KT1

M +Q
+ g(t) K

V T2
max Q

KT2

M +Q

)
,

Ċ =
1

Vc

(
V T1
max Q

KT1

M +Q
+ g(t) K

V T2
max Q

KT2

M +Q

)
−D C,

(22)

where the parameters also used in the MM model have the same interpretation as here; V T2
max refers to the maximum rate

of glutamine transport by the second permease, and KT2

M is the concentration of external glutamine for which the transport
rate is half-maximal.

7.3 Extensions of the rMM model

Given the literature evidence of the presence of four different glutamine permeases (Gap1 (Risinger et al., 2006), Gnp1 (Zhu
et al., 1996), Agp1 (Schreve et al., 1998) and Dip5 (Regenberg et al., 1998)), we extended the rMM model to three or four
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MM terms. We defined model e1rMM as:

Q̇ = −U 1

Vf

(
V T1
max Q

KT1

M +Q
+ g(t) K

V T2
max Q

KT2

M +Q
+

V T3
max Q

KT3

M +Q

)
,

Ċ =
1

Vc

(
V T1
max Q

KT1

M +Q
+ g(t) K

V T2
max Q

KT2

M +Q
+

V T3
max Q

KT3

M +Q

)
−D C,

(23)

and e2rMM as:

Q̇ = −U 1

Vf

(
V T1
max Q

KT1

M +Q
+ g(t) K

V T2
max Q

KT2

M +Q
+

V T3
max Q

KT3

M +Q
+ g(t) K

V T4
max Q

KT4

M +Q

)
,

Ċ =
1

Vc

(
V T1
max Q

KT1

M +Q
+ g(t) K

V T2
max Q

KT2

M +Q
+

V T3
max Q

KT3

M +Q
+ g(t) K

V T4
max Q

KT4

M +Q

)
−D C.

(24)

where the parameters shared with the rMM model have the same interpretation in e1rMM and e2rMM. The parameters V T3
max

and V T4
max represent the maximum rate of glutamine transport reactions by the third and fourth permeases, respectively. KT3

M

and KT4

M are the the concentrations of external glutamine for which the corresponding transport rates are half-maximal.

8 Gap1 regulation

Risinger et al., 2006, conducted quantitative experiments to investigate the reversible inactivation of the permease Gap1.
Measurements were produced for an experiment in which the activity of Gap1 was monitored after amino acid depletion from
the medium. The data from this experiment was used to fit a model for g(t) (Fig. S7):

g(t) = 1− C0e
−kt, (25)

where t denotes time (min), C0 was set to 1, and k was estimated to be k = 0.0188.
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SI Tables

Table 1: List of symbols used for the models.

Symbol Description Units

t Time. min

t0 or t = 0 Time at which the metabolic shift starts. min

State variables

Q Concentration of glutamine in the media. M

C Concentration of glutamine in an average cell. M

U Number of cells (Supplementary Data, Figure 4). cell

Model parameters

τa Concentration threshold for activation of the regulated term. mol · L−1

D Consumption rate of Q in the cell. min−1

V Ti
max Maximum transport rate (i = 1, . . . , 4). mol · L−1· min−1

KTi

M Concentration of external glutamine at which transport rate is half-maximal (i = 1, . . . , 4). mol · L−1

Constants

Vf Volume of the flask. L

Vc Volume of the cell. L
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Table 2: Model parameter ranges explored.

Parameter Range Motivation

τa (1×10−5,1×10−2) It has been observed that 1 mM of glycine stops Gap1 activity (Risinger et al., 2006).
We explored a range of three orders of magnitude accounting for variability on amino
acid response and because lowest measure values for Q, lay on the 1×10−4 M range .

D (1×10−6,1×100) A preliminary computational exploratory search between 1×10−6 and 1×1014 found
viable values constrained around the 1×10−2 range. Higher values (around 1×105)
resulted on problematic trajectories (data not shown), therefore exploration ranges
were reduced to slower dynamical regimes, consistent with the biological context.

KTi

M (1×10−7,1×10−1) Typical KM values for enzymes have been described to range from 1×10−7 to 1×10−1

M (Berg et al., 2002). We have explored the complete range, except for in specifically
mentioned explorations reduced to the millimolar or micromolar range. In those
cases, the ranges of KM values used are [1×10−4,1×10−2] and [1×10−7,1×10−5],
respectively.

V Ti
max (1×10−15,1×105) Vmax is defined as Vmax ≡ kcatE (E is an enzyme). Typical kcat values can be ob-

tained from measured values of kcat/KM, which range from 1×10−1 to 1×109 M−1s−1,
therefore, kcat takes the range from 1×10−8 to 1 ×108 min−1 (see above for range of
KM values). Typical E concentrations are in the µM range (giving Vmax values in
the range from 1×10−14 to 1×102), and we investigated a broad range of Vmax values
from 1×10−15 to 1×105.

Table 3: Posterior model probabilities for the linear (M1-M4), and the nonlinear (M5-M8), pharmacokinetic models. The
posteriors were computed by uniformly sampling the high-likelihood parameter regions for each model, and with the viability
threshold from the MCMC approach described in section 3.

Model Eliminated parameters Posterior probability

M1 - 0

M2 σ1 0

M3 σ2 0

M4 σ1, σ2 0

M5 - 0.0083

M6 σ1 0.1467

M7 σ2 0.0478

M8 σ1, σ2 0.7971
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Figure 1: Trajectories for the state variables Q (red) and C (blue) for the three states linear pharmacokinetic
model. Blue stars represent the in silico generated data for C.
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Figure 2: Viable parameters of the linear pharmacokinetic model Projection of the uniform distribution of viable
parameter points into V , CL, and kA for the three states linear pharmacokinetic model.
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Figure 3: Viable parameters of the linear and nonlinear pharmacokinetic models. Projection of the uniform
distribution of viable parameter points, with 10% multiplicative measurement noise, projected to σ1 and σ2 for A: the linear
pharmacokinetic model, B: nonlinear pharmacokinetic model.
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Figure 4: Evolution of cell growth during the experiment. Mean and standard deviation (n = 3) is shown. Solid blue
line represents a cubic smoothing spline applied to the data.
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Figure 7: Regulated activity. Black dots represent the relative transport activity of Gap1 after amino acid depletion from
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Figure 9: e1rMM model results. A, Model prediction and experimental data. Both observed dynamics, external and
internal glutamine concentrations (blue and red dots respectively) are well explained by the e1rMM model. Lines represent
the mean and shadowed regions the standard deviation of the trajectories built from the uniformly sampled viable space.
B,The eight dimensional viable space (e1rMM model contains 8 structural parameters) is projected into three dimensions
for visualization purposes. We sampled uniformly n = 662 points within the viable space.The cost value associated to each
parameter point is mapped into a color scale. The best point sampled had a cost value of Emin = −233.48 while the mean
value of the parameter space is ⟨E(ρ|Y )⟩ = −223.20. C-F, Projection of the viable space for each parameter. The same
color mapping as in B applies here to the mean E(ρ|Y ) value of the parameter points laying at each bar of the histograms.
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Figure 10: e2rMM model results. A, Model prediction and experimental data. Both observed dynamics, external and
internal glutamine concentrations (blue and red dots respectively) are well explained by the e2rMM model. Lines represent
the mean and shadowed regions the standard deviation of the trajectories built from the uniformly sampled viable space.
B,The eight dimensional viable space (e2rMM model contains 8 structural parameters) is projected into three dimensions for
visualization purposes. We sampled uniformly n = 1, 187 points within the viable space. The cost value associated to each
parameter point is mapped into a color scale. The best point sampled had a cost value of Emin = −233.81 while the mean
value of the parameter space is ⟨E(ρ|Y )⟩ = −223.54. C-F, Projection of the viable space for each parameter. The same
color mapping as in B applies here to the mean E(ρ|Y ) value of the parameter points located at each bar of the histograms.
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Figure 12: Extracellular metabolite concentrations during a shift from glutamine to proline in batch culture.
The figure shows a representative experimental data from one of the three experimental replicates for the glutamine shift.
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