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Schematic illustrations of the experimental observations 
 
 
 
 

 
 
 

Figure S1. Three different distribution patterns of GFR in sub-clones of MCF7 cells transfected 
with GFR (HER2 or EGFR) [1, 2]. 
 
 
 

 
Figure S2. E2 reversibly modifies the bimodal distribution of GFR in a GFR-transfected MCF7 
subclone [1, 2]. E2 withdrawal switches on GFR expression within weeks, whereas E2 addition 
takes months to switch off GFR expression [1, 2]. 
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Figure S3. E2 withdrawal can up-regulate GFR expression within 5 weeks in GFR-transfected 
MCF7 cells, but fails to do so in wild type MCF7 cells [1, 2]. 
 
 
 
 

 
Figure S4. Transient ER overexpression in MCF7 cells can switch on the GFR pathway and 
promote E2-independent growth [3]. 
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Materials and Methods 
 
Model Implementation 
 
We postulate a highly condensed model of the interaction between ER and GFR (Fig. 1A in 
manuscript). The protein level of GFR is down-regulated by E2:ER complex. After E2 
withdrawal, GFR expression is released from inhibition, and its downstream kinases activate E2-
independent ER-P. ER-P can activate and stabilize the GFR pathway, creating a positive feedback 
loop. In addition, GFR further activates transcription factors such as NFκB, promoting a series of 
epigenetic changes contributing to increased GFR expression and establishing another positive 
feedback loop. For simplicity, we combine the epigenetic factors contributing to GFR expression 
into the quantity ‘EPI’. ‘E2ER’ and ‘ERP’ are used to represent E2:ER and ER-P.  
 
The wiring diagram in Fig. 1A was translated into ordinary differential equations (ODEs) to 
enable simulation and analysis. In these equations, the levels of GFR, EPI, E2ER and ERP are 
represented by italicized variables: GFR, EPI, E2ER and ERP. The rates of change for E2ER and 
ERP are considered fast compared to the rates for GFR and EPI, so for simplicity only GFR and 
EPI are described by differential equations. E2ER and ERP are assumed to be proportional to 
ERT, a parameter we use to vary the total level of ER in the cell. Note that E2-binding and 
phosphorylation of ER are not necessarily mutually exclusive. Moreover, we assume that GFR 
and EPI have a dynamical range of about 10-fold, so on a log10 scale they vary between 0 and 1. 
Since our model is phenomenological in nature, we do not use standard reaction rate equations. 
Rather, we apply a formalism that allows us to capture complex dependencies in a simple manner 
[4]. The model equations are: 
 
dEPI
dt

= γ EPI ⋅ H WEPI( )− EPI( )         (S1) 

dGFR
dt

= γ GFR ⋅ H WGFR( )−GFR( )         (S2) 

E2ER = H WE2ER( ) ⋅ERT               (S3) 
ERP = H WERP( ) ⋅ERT            (S4) 
where 

H W( ) = 1
1+ e−W

          (S5) 

WEPI =ωEPI +ωEPI,GFR ⋅GFR          (S6) 
WGFR =ωGFR +ωGFR,EPI ⋅EPI +ωGFR,E2ER ⋅E2ER +ωGFR,ERP ⋅ERP +ωGFR,GFRover ⋅GFRover    (S7) 
WE2ER =ωE2ER +ωE2ER,E2 ⋅E2          (S8) 
WERP =ωERP +ωERP,GFR ⋅GFR          (S9) 
 
The parameters γEPI and γGFR determine the rate at which EPI and GFR approach their steady state 
values. H(W) is a sigmoidal function. Wi is the net activation or inhibition of species i (i = EPI, 
GFR, E2ER and ERP), and ωi determines whether species i is ‘on’ or ‘off’ when there is no other 
factor regulating i. 𝜔!,!   indicates the influence of species or stimulus j (j = EPI, GFR, E2ER, ERP, 
GFRover, E2) on species i. A description of the variables used in our model is given in Table S1. 
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The parameter values,  listed in Table S2, were obtained by manually choosing values to fit the 
experimental observations. Initially, the parameters for the deterministic part of the model where 
chosen to obtain a bifurcation diagram as a function of GFRover that exhibited three distinct 
patterns of expression and simultaneously a bifurcation diagram as a function of E2 that allowed 
GFRs to switch on when E2 was withdrawn.  Then the noise parameters where chosen to capture 
the experimentally observed timing of the on and off transitions of GFR. The noise and 
deterministic parameters are not independent and so ultimately all the parameters were adjusted 
in concert to match the experiments.  Since we are modeling this system at a high level of 
abstraction, none of our parameters are directly related to measurable physical rate constants of 
the system, but rather are phenomenological parameters that match the phenotypic performance 
of the system. We used the program XPP-AUT, available freely at 
http://www.math.pitt.edu/~bard/xpp/xpp.html, to simulate the model and draw bifurcation 
diagrams. 
 
Table S1. Model variables and their descriptions. 

Variables Range Description 
EPI [0,1] Epigenetic factors contributing to GFR expression 
GFR [0,1] GFR expression level 
E2ER [0, ERT] E2-dependent E2:ER activity 
ERP [0, ERT] E2-independent ER-P activity 

 
 
Table S2. Model parameters, descriptions, and numerical values.  

Parameters Description Value 
γEPI Rate of EPI reaching its steady state 3×10−4 min-1 
γGFR Rate of GFR reaching its steady state 5×10−2 min-1 
ωEPI Basal inhibition of EPI −1.92 
ωGFR Basal inhibition of GFR −4 
ωE2ER Basal inhibition of E2ER −2.1 
ωERP Basal inhibition of ERP −1.5 
ωEPI,GFR EPI activation by GFR 6 
ωGFR,EPI GFR activation by EPI 5 
ωGFR,E2ER GFR inhibition by E2ER −2 
ωGFR,ERP GFR activation by ERP 1.85 
ωGFR,GFRover GFR activation by GFRover 0.15 
ωE2ER,E2 E2ER activation by E2 3 
ωERP,GFR GFR activation by ERP 3 
E2 E2 level  1 (normal); 0 (E2-depleted) 
ERT Total ER level  1 (normal); >1 (ER-overexpressed) 
GFRover Excess GFR in transfected cells 0 (normal); >0 (GFR-transfected) 
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Stochastic simulation 
 
To account for stochastic effects in the model, noise terms are added to the differential equations 
for EPI and GFR, while the algebraic equations are left unchanged, for simplicity. The Langevin 
equation for variables i (i = EPI or GFR) takes the form:  

  
di
dt

= γ i ⋅ si − i( ) + Fi(t)          (S11) 

where si defines the steady state level of i and Fi(t) is a Gaussian white noise process. The 
equilibrium second moment of the variable i, <(si−i)2>eq = θi, is related to γi and the second 
moment of the noise by a fluctuation-dissipation theorem [5, 6]: 

  
< Fi(t)Fi(t ') >eq= 2 ⋅γ i ⋅θ i ⋅δ (t − t ')        (S12) 

We choose a suitable value for θi and rewrite Eq. 14 as: 

  
di
dt

= γ i ⋅ si − i( ) + 2 ⋅γ i ⋅θ i ⋅ζ i(t)         (S13) 

where ζi(t) is a temporally uncorrelated, statistically independent, Gaussian white noise process 
formally defined by   

ζ i(t) ≡ lim
dt→0

N (0,1 dt)
 with <ζ i (t)ζ i (t ') >= δ (t − t ') .  

The Langevin equations are integrated and propagated by the explicit method: 

  i(t + Δt) = i(t)+ γ i ⋅ si − i( ) ⋅ Δt + 2 ⋅γ i ⋅θ i ⋅ Δt ⋅ηi(t)       (S14) 

where the ηi(t) are independent normal random variables. We used θEPI = 0.0008 and θGFR = 0.01 
to fit the experimental data. The stochastic simulations were performed in Matlab Version 7.9.0. 
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