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1 Introduction

In this Supplementary Information file we describe in further detail the model

used in Main Text and present some further supporting results and methods.

In Section 2 we discuss the gene expression data, normalization and gene filter-

ing. Section 3 provides technical details concerning the STAMM (State Tran-

sitions using Aggregated Markov Models) methodology as well as empirical

results investigating the robustness of reported results to data perturbation

(additive noise and deletion of entire time-points). Section 4 briefly introduces

the STAMM software used to produce the results. Section 6 describes model

selection approaches to explore the number of model states.

In addition to Table S1 of this manuscript, which contains a list of core

reprogramming genes discussed in the Main Text, three Microsoft Excel files

accompany this document that are referred to in Main Text and SI. These files

contain:

• Table S2: The full list of state-specific signatures for the four states in

the model we discuss in the Main Text, over all genes considered (i.e. all

estimated parameters βij), including the scores associated with profiles

shown in Main Text Fig. 4.

• Table S3: The top ranked gene pairs by their state discriminatory power

score.

• Table S4: Gene Set Enrichment Analysis results for the five profiles dis-

cussed in Main Text and shown in Fig. 4 therein.

We also include in this document the following Supplementary Figures:

• Fig. S1: Examples and brief description of the considered reprogramming

systems.

• Fig. S2: Comparison of fit with parameter λ = 0.1 vs λ = 0.

• Fig. S3: Comparison of the stochastic model with different number of

states fitted to the Samavarchi-Tehrani et al. [1] dataset that is focused

on in the Main Text.

• Fig. S4: Gene ontology terms overrepresented in lists of genes specifically

expressed in each state.

• Fig. S5: Robustness of results reported for the Samavarchi-Tehrani et al.

[1] dataset to data perturbation.
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• Fig. S6: Results using data from Samavarchi-Tehrani et al. [1] in which

time indices were randomly permuted.

• Fig. S7: Comparison of STAMM with gene ranking using differential ex-

pression and temporal change criteria.

• Fig. S8: Fit of four-state model to a dataset due to Mikkelsen et al. [2].

• Fig. S9: Number of states in single-cell mRNA-seq data of inner cell mass

to embryonic stem cell transition correlates with discriminatory power of

gene pairs according to model fitted to Samavarchi-Tehrani et al. [1] data.

• Fig. S10: Effect of gene expression variability and detection thresholds on

cell fraction measurements.

• Fig. S11: State-specific pairs of marker genes.

All computations were carried out in MATLAB R2009b or R2011b. Non-

linear least squares fitting was done using the function lsqnonlin; k-means

clustering using the function kmeans (with 1000 re-starts and remaining set-

tings as default).

2 Gene expression data

We used microarray data previously published by Samavarchi-Tehrani, et al. [1]

(Samavarchi-Tehrani system). The Samavarchi-Tehrani system was based on

reprogramming secondary MEFs by factor expression introduced by piggyBac

transposon. Cultures were grown as polyclonal cultures. Gene expression levels

were assayed at 0, 2, 5, 8, 11, 16, 21 and 30 days using microarrays. We also

used microarray data from a reprogramming system due to Mikkelsen, et al. [2]

(Mikkelsen system). The Mikkelsen system is a primary MEF system infected

with inducible lentiviruses. Gene expression was assayed at 0, 4, 8, 12 and 16

days. A summary of the systems is shown in Fig. S1.

2.1 Normalization

Microarray data was standardized on a per gene basis. For each gene j we used

transformed data yj(t) = (zj(t)− µj)/σj , where zj(t) is the original data (log-

transformed and pre-processed as described in the references) and µj and σj

are the mean expression and standard deviation, respectively, across timepoints

for gene j.
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2.2 Gene filtering

For genome-wide fits to the Samavarchi-Tehrani et al. [1] dataset, we sought to

remove genes that were uninformative with respect to dynamics or expressed

at very low levels (with time-varying profiles therefore likely to be dominated

by noise). We therefore removed genes that were in the bottom quartile of

mean expression and then, from the remaining genes, those genes that were in

the bottom quartile with respect to standard deviation across time. This left a

total of 4383 genes that were used for genome-wide fits.
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3 STAMM: model and estimation

In our model a latent stochastic process is used to describe state transitions at

the single-cell level. Aggregation of these latent processes yields a likelihood

at the level of the cell population that is then used to estimate model param-

eters from cell-population-averaged (i.e. homogenate) time-course data. This

gives information on transition rates, the changing state fractions in the cell

population as a function of time, and state-specific expression signatures. For

simplicity, we describe the model here with reference to stem cell reprogram-

ming and for a model with forward transitions only, as discussed in the Main

Text.

3.1 Markov chain

Transitions at the single-cell level are described by a latent continuous-time

Markov chain whose discrete state space is identified with the cell states of

interest. We assume that the initial population is a homogeneous population of

cells in an initial, MEF state and allow transitions to a second state with mean

rate w1,2 (Fig. 3a). Similarly, transitions occur between the ith and (i + 1)th

states with rate wi,i+1 until a cell reaches the final nth state. The transition

rates determine the probability pi(t) that a cell is in state i at time t (Fig. 3c),

via the master equation (where we define w0,1 = wn,n+1 = 0):

dpi(t)

dt
= wi−1,ipi−1(t)− wi,i+1pi(t). (1)

This model can be solved fully from (1) to give the probabilities pi(t). For

the four-state model that we focus on, we have:

p1(t) = e−w1,2t (2)

p2(t) =
w1,2

w2,3 − w1,2

(
e−w1,2t − e−w2,3t

)
(3)

p3(t) =
w1,2w2,3

w2,3 − w1,2

(
e−w1,2t − e−w3,4t

w3,4 − w1,2
− e−w2,3t − e−w3,4t

w3,4 − w2,3

)
(4)

p4(t) = 1− p1(t)− p2(t)− p3(t). (5)

State-specific gene expression is described by parameters βij that represent

the mean expression level for gene j in state i (“state-specific signatures”). For

a large number of cells, and assuming independence between the latent, cell-

level stochastic processes, we have population-averaged expression xj(t) of gene

j at time t as xj(t) = β1jp1(t) + β2jp2(t) + · · · + βnjpn(t) (here, for simplicity
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observation noise is suppressed, we introduce noise and arrive at the likelihood

below). We observe average expression at discrete times t ∈ {1 . . . T}. Letting

xj = [xj(1) . . . xj(T )]T we can write

xj = Pβj , (6)

where P is a T × n matrix with entries Pti = pi(t), and βj = [β1j . . . βnj ]
T.

3.2 Parameter estimation

We estimated parameters wi,i+1 and βij using a `1-penalized estimator related

to the maximum a posteriori or MAP estimator for the Bayesian model de-

scribed below. Specifically, for each gene j the likelihood was penalized by

λ
∑n

i=1 βij , where λ is a tuning parameter used to control the extent of penal-

ization. Non-linear least squares was used to maximise the resulting penalized

likelihood. Setting λ to a small positive value regularizes estimation, reducing

estimator variance (i.e. improving stability). Here, we set λ = 0.1 via cross-

validation. Specifically, at each iteration one time-point was held out, and the

entire procedure repeated for several candidate values of λ in the range 0.01

to 0.3. The λ with lowest overall cross-validation error was chosen. Compar-

ing results reported with the unpenalized (λ = 0) case (i.e. a standard least

squares fit), we found good agreement, showing that the penalty was not overly

influential (Fig. S2).

To fit wi,i+1 and βij for large sets of genes, we focused first on a small subset

of k1 genes that collectively captured observed classes of expression dynamics

and fit parameters only for these genes. The subset was chosen by clustering

the time-course data for the reprogramming-associated genes listed in Table S1

into k1 clusters (we used K-means clustering with k1 = 7 clusters; increasing k1

did not significantly improve the K-means objective function). The gene with

profile closest to each cluster centroid was chosen as a representative for that

cluster. We then estimated parameters wi,i+1 and βij for the k1 representative

genes. Noting that, conditional on rates wi,i+1, eq. (1) from the Main Text is

independent between genes j, we used rates estimated from the k1 represen-

tative genes to sequentially fit the remaining genes by nonlinear least squares

(estimated rates did not depend strongly on k1, nor on the precise subset of

representative genes). Following this procedure we fit a total of 4383 genes (see

section 2 for gene filtering procedure; βij ’s are listed in Table S3).
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3.3 Robustness to data perturbation

We checked robustness to data perturbation in two ways: (i) a parametric

approach using additive Gaussian noise and (ii) deletion of entire time-points.

In each case, data were perturbed over several iterations. At each iteration, a

perturbed dataset was created, as described below, and the models were fitted

to the perturbed data. Then, results obtained across iterations were compared

to assess robustness.

3.3.1 Additive noise

Here, data was perturbed by addition of (zero-mean, Gaussian) noise. At each

iteration, noise was added to create a perturbed dataset, and models fitted to

the perturbed data. Then, results were compared between iterations to assess

robustness. Specifically, we re-estimated model parameters using the following

perturbed dataset

y′j(t) = yj(t) + η (7)

where yj(t) denote the original (log-transformed and standardized) data and

η ∼ N(0, σ2) with σ = 0.2. We repeated this procedure over ten iterations.

Fig. S5a shows results obtained for the four-state model for the Samavarchi-

Tehrani et al. [1] dataset. Results appear robust to additive noise.

3.3.2 Deletion of time-points

We tested robustness against deletion of an entire time-point from the time-

course data. At each iteration, all data for one time-point from the Samavarchi-

Tehrani et al. [1] data was removed, and the models fitted to the remaining

data. Since the time-course comprises a total of 8 time points, such deletion

represented a dramatic perturbation, with 1/8 of the data removed at each

iteration. Results are shown in Fig. S5b. We find that while variability is

increased compared with the milder perturbation provided by additive Gaussian

noise, the main results remain robust.

3.3.3 Random permutation of time-points

We also tested the model behavior under random permutation of time points,

i.e. random reordering of time indices for each gene expression value. We pro-

duced a set of randomized data where for each random sample time indices were

permuted at random and the entire model was re-fit to the permuted data. Re-

sults are shown in Fig. S6. Model fitting error (i.e. residual sum-of-squares, see

Section 6) for the permuted data is shown alongside the corresponding result
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from the original data (i.e. with correct temporal order, as in Fig. 2a in Main

Text). The condition number of the state signature matrix (a measure of the

distinctness of state signatures, see Section 6 below) for the permuted and orig-

inal data is also shown. We also show results from carrying out Bayesian model

selection, as described in Main Text and below, on the permuted data. We

find that both model fit and distinctness of state signatures are systematically

worse under permutation of time indices. While Bayesian model selection ap-

plied to the original data showed clear evidence of intermediate states (Fig. 2c,

Main Text), this is completely lost in the case of permuted data. These findings

suggest that our simple model of transition dynamics captures real temporal

structure in the data.
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4 Using the STAMM software

The analysis presented in the Main Text was produced using a tool called

STAMM (State Transitions using Aggregated Markov Models) implemented in

MATLAB. STAMM enables the identification of cellular state transitions in

time-course genomic data, the determination of state-specific expression signa-

tures and offers a number of ways of analyzing the fitted model. Model fitting

was carried out as described above and in Methods. STAMM was used to rank

pulse and switch genes (for the reprogramming study presented in Main Text)

as described in Methods.

Here we describe in brief the use of the STAMM tool. The software is

easily adaptable to other datasets; instructions are provided with the software

download available at mukherjeelab.nki.nl/CODE/STAMM.zip.

The basic procedure for using the software is as follows:

1. Read time course data into a MATLAB structure as detailed in README.txt.

2. Run stammClusterGenes to identify core expression profiles for initial

fitting.

3. Run stammFitCluster to fit the core genes to data and then use the pa-

rameters obtained from those genes to fit the remaining genes.

4. Use stammPlotFit to display the fitted model against data.

An example session follows:

>> mkdir ’results’

>> data = stammPrepareSamavarchiTehraniData(’s-t.csv’,1,5);

Per gene normalization

Gene set size: 85

>> stammClusterGenes(data,7,’results/cluster.mat’);

Cluster 1:

Gdf3 Tdgf1 Sall4 Utf1 Esrrb Gata4 Nanog Ctnnbl1 Slc2a1 Ctcf Dnmt3b Ezh2

Csnk2a1 Dnmt1 Prmt7 Cdc20 Mad2l1 Ccnf Fgf4 Bub1 Hprt1 Suz12 Eed Phc1

Cluster 2:

Inadl Cdh1 Epcam Ocln Crb3 Esrp1 Cldn3 Cldn4 Cldn7 Terf1 Alpl Prdm1

Kdm1 Nr0b1 Nacc1 Zfp248 Rnf2 Tcf3

Cluster 3:

Cldn11 Cdkn2a Fut4 Gsk3b Ccnd1

Cluster 4:

Cdh2 Ncam1 Thy1 Tgfb1 Col5a2 Nes Notch1

Cluster 5:

Zeb1 Zeb2 Snai2 Snai1 Cdkn2b Stat3 Lifr

Cluster 6:

Tgfb2 Bmi1 Jag1
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Cluster 7:

Zfp42 Lin28 Dnmt3l Dppa4 Pecam1 Tcf7 Klf2 Dazl Dppa2 Dppa3 Nodal Lefty1

Tcl1 Dppa5a Tbx3 Myst4 Nr6a1 Fgf5 Trim28 Klf5 Rest

Representative cluster genes: Gdf3 Cdh1 Ccnd1 Col5a2 Zeb1 Bmi1 Dppa4

>> stammFitCluster(data,’stammIps4StateFwd’,100,’results/cluster.mat’,’test’,0);

Fitting 7 genes from clustering (78 remaining):

Gdf3 Cdh1 Ccnd1 Col5a2 Zeb1 Bmi1 Dppa4

RSS = 6.612584

Fitting Lifr (77 remaining): RSS = 3.189699

Fitting Cldn11 (76 remaining): RSS = 4.163793

Fitting Inadl (75 remaining): RSS = 0.622107

Fitting Fut4 (74 remaining): RSS = 2.557118

Fitting Nr0b1 (73 remaining): RSS = 0.654309

Fitting Terf1 (72 remaining): RSS = 0.787887

Fitting Rnf2 (71 remaining): RSS = 0.968732

Fitting Cldn7 (70 remaining): RSS = 0.746953

Fitting Suz12 (69 remaining): RSS = 1.388244

Fitting Ocln (68 remaining): RSS = 0.748871

Fitting Myst4 (67 remaining): RSS = 2.643615

Fitting Crb3 (66 remaining): RSS = 0.519120

Fitting Epcam (65 remaining): RSS = 0.269488

Fitting Csnk2a1 (64 remaining): RSS = 1.305327

Fitting Dnmt3b (63 remaining): RSS = 1.177557

Fitting Ctnnbl1 (62 remaining): RSS = 0.542358

Fitting Sall4 (61 remaining): RSS = 0.285649

Fitting Esrp1 (60 remaining): RSS = 0.246314

Fitting Cdc20 (59 remaining): RSS = 0.783199

Fitting Alpl (58 remaining): RSS = 0.249918

Fitting Cldn3 (57 remaining): RSS = 0.920376

Fitting Cldn4 (56 remaining): RSS = 0.301463

Fitting Nanog (55 remaining): RSS = 0.057316

Fitting Zfp248 (54 remaining): RSS = 0.948551

Fitting Phc1 (53 remaining): RSS = 0.375057

Fitting Fgf4 (52 remaining): RSS = 1.666604

Fitting Nacc1 (51 remaining): RSS = 1.159014

Fitting Tdgf1 (50 remaining): RSS = 0.158517

Fitting Tgfb2 (49 remaining): RSS = 1.409963

Fitting Prdm1 (48 remaining): RSS = 2.013728

Fitting Esrrb (47 remaining): RSS = 0.479687

Fitting Cdh2 (46 remaining): RSS = 1.322494

Fitting Nr6a1 (45 remaining): RSS = 2.763035

Fitting Slc2a1 (44 remaining): RSS = 2.235182

Fitting Cdkn2a (43 remaining): RSS = 2.898367

Fitting Kdm1 (42 remaining): RSS = 0.529218

Fitting Mad2l1 (41 remaining): RSS = 1.042570

Fitting Ezh2 (40 remaining): RSS = 0.787894

Fitting Tcf3 (39 remaining): RSS = 4.034229

Fitting Utf1 (38 remaining): RSS = 0.308563

Fitting Ctcf (37 remaining): RSS = 0.883446

Fitting Prmt7 (36 remaining): RSS = 0.443753

Fitting Zfp42 (35 remaining): RSS = 1.407661

Fitting Ncam1 (34 remaining): RSS = 0.950230

Fitting Lefty1 (33 remaining): RSS = 1.467478
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Fitting Nodal (32 remaining): RSS = 2.315962

Fitting Gata4 (31 remaining): RSS = 0.539001

Fitting Snai2 (30 remaining): RSS = 1.086668

Fitting Ccnf (29 remaining): RSS = 1.307029

Fitting Bub1 (28 remaining): RSS = 1.236361

Fitting Nes (27 remaining): RSS = 3.861888

Fitting Tgfb1 (26 remaining): RSS = 1.182227

Fitting Dnmt3l (25 remaining): RSS = 0.985564

Fitting Tcl1 (24 remaining): RSS = 0.717098

Fitting Zeb2 (23 remaining): RSS = 0.564076

Fitting Cdkn2b (22 remaining): RSS = 2.406205

Fitting Thy1 (21 remaining): RSS = 1.053211

Fitting Stat3 (20 remaining): RSS = 1.886879

Fitting Pecam1 (19 remaining): RSS = 2.126603

Fitting Snai1 (18 remaining): RSS = 1.165043

Fitting Notch1 (17 remaining): RSS = 2.257409

Fitting Eed (16 remaining): RSS = 1.400365

Fitting Tcf7 (15 remaining): RSS = 2.557572

Fitting Klf5 (14 remaining): RSS = 3.066951

Fitting Gsk3b (13 remaining): RSS = 2.614817

Fitting Dppa2 (12 remaining): RSS = 3.342786

Fitting Dazl (11 remaining): RSS = 3.342786

Fitting Jag1 (10 remaining): RSS = 2.616590

Fitting Lin28 (9 remaining): RSS = 3.342786

Fitting Dppa5a (8 remaining): RSS = 3.342786

Fitting Rest (7 remaining): RSS = 3.601873

Fitting Fgf5 (6 remaining): RSS = 3.342786

Fitting Tbx3 (5 remaining): RSS = 5.417233

Fitting Dppa3 (4 remaining): RSS = 2.657081

Fitting Trim28 (3 remaining): RSS = 1.422620

Fitting Klf2 (2 remaining): RSS = 3.593677

Fitting Dnmt1 (1 remaining): RSS = 0.174330

Fitting Hprt1 (0 remaining): RSS = 2.222912

Total RSS = 133.778416

>> stammPlotFit(data,’results/stammIps4StateFwd.mat’,’results’);
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5 Joint markers of cell state

The state-specific signatures obtained using our approach give an unbiased,

genome-wide way to identify potential marker genes that could define individual

states and help in the design of experiments aimed at isolating them. While

cellular states have often been characterised by single genes, several genes taken

together may represent more robust markers to discriminate distinct cell state.

Thus, rather than considering only the top genes in the profile of each state,

as listed in Table S2, to enable state identification by joint markers, we ranked

pairs of genes by their ability to discriminate the four states (scored by the sum

of the differences in gene expressions for each possible combination of two states,

as discussed below). Examples are shown in Fig. S11. These joint markers

suggest strategies by which to purify cell states using single-cell approaches

with appropriate gene-specific reporters or cell-surface antibodies. A full list of

gene pairs with state discriminatory scores and state-specific expression levels

is provided in Table S3 as a resource for the design of such experiments.

5.1 Discriminatory score for marker gene pairs.

To quantify how well a given pair of genes (i, j) discriminates between states

we used a score di,j that was calculated as the sum of pairwise distances

between the gene expression signatures for each state: for n states, di,j =∑n
k=1

∑n
l=1 |βki − βlj |. Note that, since the data are standardized (see Sup-

plementary Information), the score is not dependent on scale. A list of the

top discriminatory pairs, with corresponding scores di,j and state-specific sig-

natures, is given in Table S3.
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6 Number of model states

To explore number of model states, we looked at both simple empirical mea-

sures, including fit-to-data and distinctness of state signatures, as well as results

from a Bayesian model selection procedure.

6.1 Fit-to-data and distinctness of state signatures

The sum of squared error (also known as “residual sum-of-squares” or RSS) for

T timepoints and n genes is

RSS =

T∑
i=1

n∑
j=1

(yj(ti)− ŷj(ti))2, (8)

where yj is the observed (log-transformed) expression level of gene j and ŷj the

corresponding output of the fitted model. Smaller RSS indicates a closer fit

between the model and the data to which the model is fitted.

When models with many parameters are fitted to finite data, “over-fitting”

may occur, leading to a situation where a low sum-of-squares (i.e. a good

fit) does not necessarily mean good predictive power. In the present setting,

over-fitting may occur, for example, by introduction of artifactual states. Such

states increase the number of model parameters and may improve fit (to the data

using which model parameters are estimated) but may not improve explanatory

or predictive power. In addition to fit-to-data, we therefore also looked at

the distinctness of state signatures. This was done by considering the mutual

(linear) dependence of state signatures as quantified by the condition number

of the matrix B formed by taking fitted state signatures βij as entries. The

condition number is a standard quantity in numerical linear algebra and is

defined as C = max(si)/min(si), where si are the singular values of B. If the

expression signatures are non-distinct, the condition number will be larger.

6.2 Statistical model selection

As outlined in the Main Text and Methods therein, we used a Bayesian model

selection procedure to explore number of model states. Since models with more

states also have more parameters, to objectively choose between models, it is

important to account for model complexity [3]. In Bayesian inference, uncer-

tainty with respect to an unknown of interest is described via a probability

distribution over the unknown, conditional on the data; this distribution is
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known as the posterior probability distribution. In model selection, the poste-

rior probability distribution is over a set of models that are under consideration.

The relevant calculations take account of both fit-to-data and model complex-

ity. This is important when choosing between models that differ with respect

to model complexity (loosely, number of free parameters), as is the case here.

Here, the number of states, n, defines the models of interest; we seek to obtain

a posterior distribution over n given the time-course data.

6.2.1 Bayesian formulation

In what follows the dependence on model parameters is important; we therefore

write the matrix P of state occupancy probabilities explicitly as a function P (w)

of transition rates w. Taking logs in (6) and making the noise model explicit

we have yj = log(xj) = log(P (w)βj) + εj , εj ∼ N (0, σ2j I), where N denotes a

Normal density, σ2j denotes gene-specific variance and I is the identity matrix.

Let Mn denote the model with n states and y = {yj} denote observed

data for all genes. Taking a flat prior over models P (Mn) ∝ 1, the posterior

probability over models is P (Mn | y) ∝ p(y | Mn). The quantity p(y | Mn) is

known as the marginal likelihood and gives a score for each model that takes

account of both fit-to-data and model complexity. Collecting together all model

parameters as θ = ({βj}, {σ2j }, w), the marginal likelihood is

p(y |Mn) =

∫
p(y | θ,Mn)p(θ |Mn) dθ. (9)

We assume prior independence between the transition rates and gene-level

parameters (βj , σ
2
j ); this corresponds to the assumption that knowing tran-

sition rates does not a priori give information about the state signatures or

gene-level variances. The parameter priors are σj ∼ InverseGamma(aj , bj),

βij ∼ Exponential(κ) and wi,i+1 = Gamma(α1, α2). To reflect the approximate

timescale of reprogramming transitions we set α1 = 2, α2 = 0.15; this corre-

sponds to a prior mean transition time of ≈ 6.7 days. For a moderate level of

shrinkage we set κ = 2; noise hyperparameters aj , bj were set to (i) give prior

expected signal to noise ratio (SNR) equal to d, i.e. Eσj [Sj/σj ] = d, where

Sj denotes the mean of the (absolute log-transformed) data for gene j, i.e.

Sj = 1
T

∑
t |yj(t)| and (ii) assign equal prior mass to SNRs greater and smaller

than the prior mean d. Larger d corresponds to an assumption of lower noise

and favours more complex models a priori; to avoid bias in favour of multiple

states we therefore set d conservatively to 20. We investigated sensitivity to

hyper-parameters and found that hyper-parameter specification was influential,
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as expected in a small sample size setting, but that results across a range of

values (κ, d) were consistent with one or two intermediate states (i.e. n = 3, 4).

6.2.2 Markov chain Monte Carlo sampling

Markov chain Monte Carlo (MCMC) algorithms are widely used to numerically

solve integrals and play a key role in computational Bayesian statistics. Here,

we used a MCMC approach to obtain the posterior distribution over number of

states. This involves calculating the marginal likelihood, which is obtained by

solving the integral in (9). Since the dimension of θ can be large, convergence of

standard samplers may be poor [4]. Lack of convergence can then lead to results

that are artefacts of algorithm initial conditions and very poor approximations

to the true posterior distribution. We therefore used a recent Monte Carlo

scheme which combines population MCMC with thermodynamic integration,

shown by [5] to produce low variance, low bias estimators. We briefly introduce

the method here, as used in the present application, and refer the interested

reader to [5, 6] for further technical details. The following material assumes

familiarity with basic ideas in Bayesian statistics.

The marginal likelihood is p(y|Mn). For notational simplicity in the follow-

ing we leave conditioning on the model Mn implicit throughout, referring to

the marginal likelihood as p(y). As above, all model parameters are collected

together as θ = ({βj}, {σ2j }, w).

Tempering here refers to the bridging between the prior and posterior dis-

tributions, via a parameter γ:

pγ(θ) ∝ p(y|θ)γp(θ). (10)

Assuming existence of the densities, pγ defines a path in the space of distribu-

tions which connects the prior p0 to the posterior p1. Through physical analogy,

γ is sometimes referred to as an “inverse temperature” parameter, and controls

the tempering schedule. Simulated tempering exploits the observation that

log p(y) =

∫ 1

0
Eθ|y,γ log p(y|θ)dγ (11)

where the expectation here is with respect to the “power posterior” pγ(θ) [5].

In practice this integral is evaluated using a fine discretisation of 0 = γ1 < γ2 <

· · · < γN = 1. Discretisation sacrifices the unbiased property of the extimator,

with the precise choice of discretisation known to effect both the bias and the

variance of the estimator, as discussed in detail by [5]. For our scheme we took

γi = (i/N)c (we used c = 5, N = 30).
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For the statistical model which we consider, it is not possible to obtain the

integrand Eθ|y,γ log p(y|θ) in closed form; rather this must also be estimated.

A naive strategy would be to construct independent estimators

Êθ|y,γi log p(y|θ) ≈ 1

M

M∑
m=1

log p(y|θ(m)
i ) (12)

for each temperature threshold 1 ≤ i ≤ N using samples {θ(m)
i }∞m=1 obtained

from pγi(θ). However this strategy is likely to fail at low temperatures i ≈ N

since the power posterior pγi(θ) can become highly nontrivial (with multiple

modes), precluding standard sampling schemes.

The solution which we entertain is known as population MCMC. Here a

population of particles {θ1, . . . ,θN} are allowed to evolve (under a “transi-

tion kernel”) in such a way as to generate sequences of values {θ(n)1 , . . . ,θ
(n)
N }

with marginal stationary distributions pγi(θ). However, in contrast to the in-

dependent estimation of Eqn. 12, population MCMC allows for the sharing of

information across temperatures γi. Such information sharing has been demon-

strated empirically to improve convergence of marginal distributions in this

setting [6].

The choice of transition kernel influences the rate of convergence to the

marginal likelihood. Within our population MCMC scheme, we distinguish

between “local” (within temperature) updates and “global” (between temper-

ature) updates. Our local updates were based on a Metropolis-within-Gibbs

scheme [7], which may provide improved convergence compared to a naive

Metropolis-Hastings approach. In addition to superior mixing, such a strategy

is also computationally favourable because the Metropolis acceptance proba-

bilities for σj and βj contain only terms relevant to a single gene j. For the

interested reader we briefly summarise the details of our local transition kernel.

The parameter set is partitioned as

θ = {σ1, β1, . . . , σn, βn, w}, (13)

and this partition defines an order for the Gibbs sampler. For all proposal

distributions (independently of temperature) we took

log(σ∗j )|σj ,y ∼ N(log(σj), λ
2
1S

2
j ) (14)

log(β∗j )|βj ∼ N(log(βj), λ
2
2In) (15)

log(w∗)|w ∼ N(log(w), λ23In−1), (16)
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where superscript ∗ denotes proposed parameter value. Symmetry of the pro-

posal distribution is computationally advantageous, since we do not need to

evaluate proposal densities in the Metropolis acceptance ratio. The λ’s are

scale parameters that control the proposal; these were set so as to yield average

acceptance rates of approximately 30% over all possible temperatures (specifi-

cally, we set λ1 = λ2 = λ3 = 1).

For the global update, we followed [5] by selecting adjacent temperatures

γi, γi+1 and proposing an exchange θ
(m+1)
i := θ

(m)
i+1 and vice versa θ

(m+1)
i+1 :=

θ
(m)
i , which is accepted or rejected according to a Metropolis-Hastings step.

This information sharing between temperatures enables an unconstrained ex-

ploration of the state space at high temperatures γ ≈ 0 to enter into the proposal

mechanism for the (more important) low temperature sampler. We observed

that this exchange, which is unparametrised, was accepted approximately 90%

of the time at high temperatures and approximately 50% of the time at low

temperatures.

We performed Bayesian model selection using the k1 genes chosen by k-

means clustering. Our full transition kernel alternated evenly between local

and global updates, with 10,000 iterations of both update performed in total

(2,000 were discarded as burn-in). Monte Carlo convergence was checked using

multiple runs with different random seeds; error estimates shown in the main

text represent this between-run variation.

7 Gene ontologies

We ranked genes for each state by the ratio of expression in that particular

state over the mean expression across all states. For each state, we passed the

names of the genes with a ratio greater than or equal to 2 to the Bingo software

to obtain a over-representation p-value [8].

We discarded all genes with p > 0.01 (corresponding to a 99% significance

level). We then calculated the pairwise sum of differences between the p-values

of each state and discarded genes whose sum was below 0.001. This served to

remove those terms which were over-represented in all states and therefore not

state-specific.

In Fig. S4 we show an list of GO terms where we have further trimmed the

list by discarding terms with fewer than 200 and greater than 800 descendants,

to avoid overly specific or general terms. The rows of terms were then sorted

into clusters by k-means.
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8 Applications to other systems

8.1 Gene expression time-course data due to Mikkelsen et al.

Our main results were obtained from analysis of gene expression time-course

data due to Samavarchi-Tehrani et al. [1] (Samavarchi-Tehrani system). We

also fitted the models to data from a primary MEF-based reprogramming sys-

tem due to Mikkelsen et al. [2] (referred to as Mikkelsen; see Fig. S8 for results).

Fitting to core reprogramming genes (as listed in Table S1, excluding 18 genes

not present in the Mikkelsen data) gave qualitatively similar results to those

obtained from Samavarchi-Tehrani, suggesting that the hypothesis of a small

number of intermediate states may hold also for this system. However, the

Mikkelsen dataset has only 5 time points and further data will be needed to

fully investigate this notion. Nonetheless, our results suggest that despite the

fact that the two reprogramming systems differ in many details, some key as-

pects of the transitions we discuss may be common to these and possibly other

systems. That is, while different systems have different starting points (or initial

locations in gene expression space), it is possible that they must pass through

similar transitions and intermediate states to reach the iPSC state.

8.2 Single-cell mRNA-seq data due to Tang et al.

We reasoned that some aspects of the cell-state transitions described in the Main

Text might be general not only to reprogramming systems but to the attainment

of pluripotency more generally. To explore the notion of common pathways

towards pluripotency we also analyzed single-cell, genome-wide mRNA-seq data

pertaining to embryonic stem cell (ESC) establishment [9]. These assays are

carried out as the inner cell mass (ICM) is explanted and propagated in vitro

to derive pluripotent ESCs.

The mRNA-seq data from [9] is an integer count of mRNA fragments. For

each pair of genes, genome-wide, the number of states (off/off, on/off, off/on,

on/on; we call a gene off if no mRNA fragments of that gene are found, otherwise

we call the gene on) occupied by the individual cells is counted to give an

indication of the number of discrete states in the population.

Since these data comprise single-cell expression levels they allow us to di-

rectly observe whether individual cells are in transcriptionally distinct states.

For every gene pair (i, j) across the genome we counted the number of states

ni,j observed in the corresponding single-cell ICM-ESC data. For each such

gene pair, our reprogramming analysis yields a score di,j that quantifies the

ability of the pair to discriminate model states (see Methods of the Main Text
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for details). We therefore sought to ask whether gene pairs predicted to be

state-specific in reprogramming also showed evidence of multiple states in the

ICM-ESC data. Fig. S9 shows number of states ni,j , as observed in single-cell

ICM-ESC data, as a function of discriminatory rank under scores di,j from

the Samavarchi-Tehrani reprogramming model. We see significant enrichment:

gene pairs predicted to be state-specific during reprogramming are also likely

to show multiple states during the ICM-ESC transition (p < 10−6 under per-

mutation test). While the biology of establishing ESCs from the ICM is clearly

distinct from direct reprogramming, the ESC end state has a number of broad

similarities with the iPSC state [10]. These results suggest that some aspects

of the transitions in each case may rely on similar mechanisms.

8.3 Single-cell data due to Buganim et al.

Single-cell gene expression data were obtained from Buganim et al. [11], data

were as described in the reference. Data were clustered using the R package

mclust with default settings. Individual cells were assigned to reprogramming

states on the basis of Euclidean distance between single-cell expression profiles

and state signatures.

9 Gene Set Enrichment Analysis

Gene set analysis was carried out using the Gene Set Enrichment Analysis

tool (http://www.broadinstitute.org/gsea/msigdb/). Key pluripotency-

related gene lists that were significantly enriched (hypergeometric p-value p ≤
1.35× e−6) in the top 200 genes under the S3 switch ranking included (i) those

constituting the PluriNet protein-protein network shared by pluripotent cells

(gene set name “MUELLER PLURINET”) and (ii) a set of genes overexpressed

in multiple profiling studies of human embryonic stem cells (gene set “BENPO-

RATH ES 1”). Gene lists (i) and (ii) were highly significant for the top 200

genes under the S4 switch ranking (p < e−15); additionally a gene set comprising

a core ESC-like gene module (gene set “WONG EMBRYONIC STEM CELL CORE”)

was also highly significant (p < e−15). Full details of gene lists are presented in

Table S4.
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Figure S1: Three different reprogramming systems. Secondary and primary
MEF systems are distinguished by the production of chimaera from which
the starting colony is derived in the secondary system. B-cells are more ho-
mogeneous than MEFs systems, since all B-cells have gone through lineage-
commitment. In the Main Text, we focus on time-course data from a secondary
MEF system due to Samavarchi-Tehrani et al. [1], as well as data from a pri-
mary MEF system due to Mikkelsen et al. [2] for comparison. An example of
a reprogramming system based on B-cells is discussed in Hanna et al. [12].

Bmi1 Dppa4 Zeb1 Ccnd1 Cdh1 Gdf3 Col5a2
Lifr Cldn11 Inadl Fut4 Nr0b1 Terf1 Rnf2

Cldn7 Suz12 Ocln Myst4 Crb3 Epcam Csnk2a1
Dnmt3b Ctnnbl1 Sall4 Esrp1 Cdc20 Alpl Cldn3
Cldn4 Nanog Zfp248 Phc1 Fgf4 Nacc1 Tdgf1
Tgfb2 Prdm1 Esrrb Cdh2 Nr6a1 Slc2a1 Cdkn2a
Kdm1 Mad2l1 Ezh2 Tcf3 Utf1 Ctcf Prmt7
Zfp42 Ncam1 Lefty1 Nodal Gata4 Snai2 Ccnf
Bub1 Nes Tgfb1 Dnmt3l Tcl1 Zeb2 Cdkn2b
Thy1 Stat3 Pecam1 Snail Notch1 Eed Tcf7
Klf5 Gsk3b Dppa2 Dazl Jag1 Lin28 Dppa5a
Rest Fgf5 Tbx3 Dppa3 Trim28 Klf2 Dnmt1

Hprt1

Table S1: The subset of core reprogramming genes considered in the Main
Text. This includes genes discussed in [1], as well as a number of genes that
have been discussed in the reprogramming literature.

21



0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

λ = 0.1

λ
 =

 0

Figure S2: Entries of β matrix from fit with penalty λ = 0 plotted against
those from fit with λ = 0.1. Estimates are in close agreement, indicating the
penalty used in the Main Text (λ = 0.1) was not unduly influential.
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Figure S3: Comparison of fits of the stochastic model with different numbers
of states to the Samavarchi-Tehrani et al. [1] dataset that we focus on in
the Main Text. a, Comparison of fits between four-state model (green) and
two-state model (red) to data (blue with crosses). The two-state model is not
capable of following transient changes in expression and consequently is not
able to fit the data well. b, Gene expression signatures for the five-state model.
States 1 and 2 have overlapped up-regulated expression for a large number of
genes. This indicates that the introduction of a 5th state is due simply to
duplication of states. Nanog, an indicator of pluripotency, is highly expressed
in state 4, but not in state 5. This suggests overfitting where a pluripotent final
state is split into a state with pluripotentcy markers and another state with
lower expression.
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Figure S4: State-specific over-representation of unsupervised selection of gene
ontology terms. Row show different terms and columns indicates the over-
representation within each state. Color temperature indicates significance of
over-representation of term (see p-value color bar). Terms are those remaining
after discarding terms with p-value> 0.01, terms with pairwise sum of p-value
differences across states less than 0.001 and terms with fewer than 200 or greater
than 800 descendants. Remaining rows were then ordered into clusters by k-
means.
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Figure S5: Robustness to data perturbation. Results obtained from data
perturbed by a, additive Gaussian noise and b, deletion of an entire time point
(mean over ten (a) and eight (b) iterations shown as solid line, ± standard
deviation indicated by dotted lines; dataset from Samavarchi-Tehrani et al. [1];
see SI Text for details).
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Figure S6: Random permutation of time points. a, model fitting error, b,
reciprocal condition number and c, Bayesian posterior probability as a func-
tion of number of states. We generated a set of randomized data by random
reordering of time indices and the model was re-fit for each of the permuted
data. Curves (a,b) and box plots (c) shown are over ten samples; in (a,b) dotted
lines indicate means and the shaded area standard deviations, whilst the cor-
responding result for the correct time ordering is shown in red. Both model fit
and distinctness of state signatures are systematically worse under permutation
of time indices. Bayesian model selection applied to the randomly permuted
data show no evidence of intermediate states (c), in contrast with the original
data (Fig. 2c, Main Text). [Dataset from Samavarchi-Tehrani et al. [1]; see SI
Text for details.]
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Figure S7: Comparison of STAMM ranking with other gene ranking analy-
ses. For the pluripotency related genes shown in Main Text Fig. 4, ranking
under STAMM is compared with (a) differential expression (between starting
population and final time point after reprogramming) and two temporal change
criteria, (b) coefficient of variation (calculated through time, per gene) and (c)
dynamic range (calculated over time, per gene). Under STAMM ranking each
gene is among the top 200 genome-wide (shaded in yellow) under the corre-
sponding ranking, i.e., in the top 5% group (see Table S2 for full list and Main
Text and Methods for explanation of switch and pulse profiles), whereas their
ranks under (a), (b) or (c) span the entire range, down to the bottom 5%. Many
of the STAMM genes shown here have been implicated in reprogramming, as
discussed in Main Text. (For full description of STAMM, see Main Text and
Methods; gene rankings carried out using data from Samavarchi-Tehrani et
al. [1]; to ensure a fair comparison, genes were filtered in the same way as for
STAMM; rank shown for differential expression is the highest of rank by up-
and down-regulation.)

27



� ��
��

�

�
����

� ��
��

�

�
�	
�

� ��
��

�

�
���
�

� ��
��

�

�
����

� ��
��

�

�
�
���

� ��
��

�

�
�
�
�

� ��
��

�

�
����

� ��
��

�

�
�
���

� ��
��

�

�
���
�

� ��
��

�

�
�	
�

� ��
��

�

�
��
�

� ��
��

�

�
����

� � � �  �� �� �� ��
�

�!�

�!�

�!�

�!�

�!"

�!�

�!#

�! 

�!$

�

�%�	&'&�
�(

�
	
��&
)�


�
�%
�
�
&%
�
&(
�

�	

� �

�
�
��



�%*
	
�
&�
�
�
&&
&	
+
�
�	
(
(
%�
�

�

�%�	&'&�
�(

Figure S8: Fit of a four-state model to a time-course dataset from a primary
MEF-based system due to Mikkelsen et al. [2]. The data comprise five time-
points extending to 16 days. a, Fitting the four-state model discussed in Main
Text to core reprogramming genes (as listed in Table S1, excluding 18 genes
not represented in the Mikkelsen et al. data; genes shown here are those in
Fig. 3d of the Main Text) gives an overall reasonable fit: root sum-of-squared
error (per gene per time-point) is 0.025, compared with 0.017 for the fit to data
from the secondary MEF-based system due to Samavarchi-Tehrani et al. (note
that due to standardization, data standard deviation is equal to unity). The
mean transition times were w12 = 1.28, w23 = 2.63, w34 = 10.0 days, close to
those estimated from the Samavarchi-Tehrani et al. data (see Fig. 3b of Main
Text). b, Estimated state transition dynamics are similar to those found using
the secondary MEF data (see Fig. 3c of the Main Text). This suggests that the
state transition dynamics in the two systems might share similar features.
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Figure S9: Gene pairs that characterize cell states in the reprogramming model
indicate multiple states in single-cell data from an independent embryonic stem
cell (ESC) system. For each gene pair (i, j), the number of states ni,j observed
in single-cell mRNA-seq data, obtained during the derivation of ESCs from the
inner cell mass (ICM; data due to [9]), is shown as a function of rank under
scores di,j from the reprogramming model. For each pair of genes, genome-
wide, ni,j was obtained by counting the number of states (off/off, on/off, off/on,
on/on) that are occupied by individual cells. Blue line shows average number
of states (smoothed with a 50 value moving window) observed in the ICM-ESC
data, as a function of rank under the reprogramming model; black line shows
the corresponding mean number of states for 10000 random permutations of
the ordering of gene pairs, with ± standard deviation indicated by the red
lines. The green line (and left axis) shows scores di,j (smoothed with a 50
value moving window). (Ranking based on state-specific signatures obtained
from fitting four-state model to [1] data; ranking score di,j equal to sum of
pairwise differences in state-specific expression, for each gene across all pairings
of states, as described in Methods; enrichment significant under permutation
test, p < 10−6.
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Figure S10: Effect of gene expression variability and detection thresholds
on cell fraction measurements. a, An illustrative model for stochastic gene
expression. An example exponential distribution with mean µ is shown for
single-cell gene expression. The shaded region marks the cells that would be
counted as positive for the gene under a single-cell assay (e.g. FACS-based) with
detection threshold µ. The substantial fraction of cells in the illustration with
expression lower than µ would not be detected as positive for the gene under
such an assay. b, Using the illustrative model of stochastic gene expression
in (a), and the dynamics of the four-state model discussed in Main Text, the
fraction of cells that would test positive for a gene that is expressed only in the
final state S4 is plotted as a function of time. This is illustrated for detection
thresholds of µ/2 (black), µ (red), 2µ (blue), where µ is the mean expression
signature for Nanog. Under such a scenario, the fraction of cells detected as
positive in a single-cell assay at 30 days may be substantially lower than the
corresponding probability to be in state S4.
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Figure S11: State-specific marker genes. The state-specific signatures ob-
tained using our approach allow unbiased, genome-wide identification of marker
genes by which to define individual states. While cellular states have often
been characterised by single genes, pairs of genes taken together may represent
more robust markers of cell state. a, State-specific transcriptional signatures
from the reprogramming model yield scores di,j that quantify the ability of
gene pairs (i, j) to discriminate model states. Example gene pairs, with good
discriminators in blue and poor discriminators in red. b, State-specific signa-
tures for one example of a highly-ranked gene pair (Cdkn2a/Lifr); the pair are
good discriminators since taken together they show markedly different levels
in the four states: S1 is Cdkn2aLo/LifrLo (i.e., both Cdkn2a and Lifr are low
compared to the average); S2 is Cdkn2aHi/LifrHi (both genes are high); S3 is
Cdkn2aHi/LifrLo; and S4 is Cdkn2aLo/LifrHi. (As a resource for design of single-
cell experiments a full list of gene pairs with state discriminatory scores and
state-specific expression levels is provided in Table S3; see SI text for definition
of discriminatory score di,j .)
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