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Datasets

Thermodynamical constants

The thermodynamic constants used in our study are provided in Table S1, from Physics and Chemistry
Handbooks.

Constant Value
Kw 10−14

KH 29.41 atm.mol.L−1

K1 4.45 ⋅ 10−7

K2 4.69 ⋅ 10−11

KY 10−6.2

Table S1. Thermodynamic constants used for computations. For a temperature of 298 K.

For simplicity, we neglect the effects of temperature variations since it would shift their values by a few
percents only.

Cell physicochemical environment

We use the typical ionic atmospheres and membrane potential for intra/extra media [1], similar to our
experiments, and reported in Table S2.

Parameter Intracellular Value Extracellular Value
pH⋆ 7.2 7.4
E⋆

m −60 mV –
[K+]

⋆

140 mM 4 mM
[Na+]

⋆

10 mM 140 mM
[Cl−]

⋆

20 mM 100 mM

Table S2. Steady-state ionic atmospheres. These values correspond to our electrophysiological
experiments.

Kinetic parameters

The constants for AE2, Na/K-ATPase, and monocarboxylates transporters are obtained from the litera-
ture cited in the text.
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The equation used in this study for the Na+/H+ exchanger NHE–1 is derived from [2]. Briefly, initital
rates of transport for NHE–1 were measured in cells clamped at various intracellular pH values using
fast kinetics of 22Na+ and/or Li+ uptake. NHE–1 initial rates were calculated as the cariporide (10
µM)-sensitive Na+ or Li+ accumulation per well divided by the corresponding protein concentration. The
maximum rate for NHE–1 was measured as the rate of Na+/H+ exchange at saturating external cation
concentration for an intracellular pH of 5.2, per mg of cellular proteins. Data were compiled using Mi-
crosoft Excel software and fitted using the Sigmaplot 2001 program (Jandel), the experimental points
corresponding to the compilation of at least five independent experiments, with each experimental point
determined at least in duplicate.

Na/K-ATPase currents: voltage and sodium dependencies

We used the litterature data (see below) to model the ionic currents delivered by Na/K-ATPase. Indeed,
in our model, Na/K-ATPase is a current generator that helps regulating the membrane potential Em by
replacing 3 internal Na+ by 2 external K+. Accordingly, since the external concentrations are fixed, we
assessed the variations of this current with respect to both Em and the internal [Na+].
A first work [3] deeply investigated the Na/K-ATPase current INaK with respect to the membrane potential.
We fitted the accompanying figures of this work with the reduced potential ζm = FEm/(RT ) to obtain
an enzymatic sigmoidal shape

INaK ∝ 1 + tanh ((0.39 ± 0.02) ζm + (1.28 ± 0.03)) (1)

where the standard errors are indicated and with a correlation coefficient is greater than 0.999. Since
Na/K-ATPase is an ubiquitous protein, we assume that this expression is verified for any cell type.
Obviously, we need to explicit the variation of INaK with [Na+] since a Na+ depletion will stop the activity
of Na/K-ATPase. We directly use the thermodynamical results of a second work [4] which states a
Michaelian-like activity with a sodium affinity constant KNaK ≃ 10 − 15mM.
As as consequence, we combined those two results to produce a voltage-dependant Michaelis-Menten
kinetics as

∂t [Na
+
] = −3 × VNaK

1 + tanh (0.39ζm + 1.28)

2

[Na+]

KNaK + [Na+]
(2)

where VNaK is the catalytic rate for the resting membrane potential.

Electrophysiological studies of CCL39 cells

Materials and Methods

Whole CCL39 cell currents recorded at room temperature were sampled at 2.5 kHz and filtered at 1 kHz.
The cells were held at -50 mV, and 400 ms pulses varying from -100 to +100 mV were applied in 20 mV
increments.
Cl− currents recordings were performed using a pipette solution containing (in mM): 145 NMDGCl, 10
HEPES (pH 7.4), 5 MgATP, 5 EGTA (Πos= 290 mOsm/kg H2O). The bath solution contained (in mM)
: 140 NMDGCl, 10 HEPES (pH 7.4), 5 MgATP, 5 EGTA and 50 Mannitol (Πos= 320 mOsm/kg H2O).
To study K+, conductances pipette solution contained (in mM): 140 K-gluconate, 10 HEPES (pH 7.4),
10 EGTA, 1 CaCl2 (free calcium concentration of 10 nM) and 1 MgATP (Πos= 290 mOsm/kg H2O).
The bath solutions contained (in mM): 145 NaCl or 145 K-gluconate, 10 HEPES (pH 7.4), 5 glucose, 1
CaCl2, 1 MgCl2 and mannitol (Πos= 320-330 mOsm/kg H2O).
Na+ conductances recordings were performed using pipette solution containing (in mM) : 145 Na-gluconate,
10 HEPES, 5 EGTA (Πos= 300 mOsm/kg H2O, pH 7.4). The bath solution contained (in mM) 145 Na-
gluconate, 10 HEPES, 1 MgCl2, 1 CaCl2 (Πos= 300 mOsm/kg H2O, pH 7.4).
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Figure S1. I/V curves for K+, Na+ and Cl− in CCL39 cells. The symbols ●, ◾ and ◆ represent
respectively the K+, Na+ and Cl− currents. The K+ currents are divided by 10 to allow its presentation on
the same scales as the Cl− and Na+ currents. The solid curves are the fit results from the permeabilities.

Results

The resulting experimental currents (averaged over 8 trials for each ion) are reported on Figure S1, where
the K+ currents are divided per ten. Cell capacitance was typically in the range of 5 to 10 pF, leading to
a surface capacitance of about 1µF.cm−2 (in good agreement with the literature data [5]).
We estimate the ionic permeabilities as follow. Let X be a chemical species with a cytosolic concentration
[X], an outer concentration [X]out and an algebraic charge zX. If we consider that X flows through the
surface S of the cell membrane which is polarized by an electric field Em, or ζm = FEm/(RT ), and with
a permeability PX(ζm) then the resulting outward electrical current is

IX(ζm) = −zXFSPX(ζm)Ψ (zXζm) ([X]out − [X] ezXζm) (3)

with Ψ(u) = u (eu − 1)
−1

. From the n measures for each species represented on Figure S1, we perform a
general least square fit by using

χ2
X =

n

∑
i=1

[I(ζi) + zXFSPX(ζi)Ψ (zXζi) ([X]out − [X] ezXζi)]
2
. (4)

Within the range of observed intensities, we experimentally found that the permeabilities match quite
satisfactorily the form

SPX(ζm) = ÃXe
B̃Xζm + C̃X (5)

with C̃Na+ = C̃Cl− = 0 and C̃K+ /= 0 due to the greater variability of IK+ . The minimization of χ2
X with

respect to the corresponding coefficients provides the following coefficients and their standard error, with
a correlation coefficient greater than 0.998:

SPK+(ζm)/(µm
3.s−1) = (3.70 ± 0.70) e(0.43±0.05) ζm + (1.5 ± 0.5)

SPNa+(ζm)/(µm
3.s−1) = (1.36 ± 0.03) e(0.05±0.01)ζm

SPCl−(ζm)/(µm
3.s−1) = (1.19 ± 0.02) e(0.06±0.01))ζm

(6)

and the corresponding fitted intensities are shown on Figure S1. The permeabilities found here are
compatible with values found in other studies [6, 7].
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Methods

Obtaining an analytical expression of the pH dynamics

As seen in the manuscript, let us assume that the protic subsystem is defined by only five species (by
neglecting CO2−3 ), namely

Ð→
[X] =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

[H+]

[HO−]

[HCO−3]

[HY]

[Y−]

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (7)

We have three equilibria leading to

Γ⃗ =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

Kw − [H+] [HO−]

K ′

1ΠCO2 − [H+] [HO−]

KY [HY] − [H+] [Y−]

⎤
⎥
⎥
⎥
⎥
⎥
⎦

, ∂tΓ⃗ =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

0
K ′

1∂tΠCO2

0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

(8)

with a stoichiometric coefficients matrix

ν =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

1 1 0 0 0
1 0 1 0 0
1 0 0 −1 1

⎤
⎥
⎥
⎥
⎥
⎥
⎦

. (9)

The following formal computation can be perform manually or using a symbolic mathematical software
like maxima (see http://maxima.sourceforge.net) to get

Φ =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

− [HO−] − [H+] 0 0 0
−[HCO−3] 0 −[H+] 0 0
−[Y] 0 0 KY −[H+]

⎤
⎥
⎥
⎥
⎥
⎥
⎦

. (10)

The relaxed variations of concentrations writes

∂t
Ð→
[X] = (I5 − ν

T (ΦνT)
−1

Φ)

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−ρNHE

0
−ρAE

0
0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

− νT (ΦνT)
−1
∂tΓ⃗ (11)

from which the variation of [H+] can be extracted once the other protic concentrations are substituted
by their equilibrium values

∂t [H
+
] = Θ ([H+] ,Y0)((ρAE − ρNHE) +

K ′

1

[H+]
∂tΠCO2) (12)

with

Θ ([H+] ,Y0) =
[H+]

2

[H+]
2
+K ′

1ΠCO2 +Kw + Y0KY (
[H+]

[H+] +KY

)

2
. (13)

If the enzymatic rate can be expressed from [H+] only, then the equation (12) is sufficient to simulate the
exact evolution of [H+]. In that case, a further formal work shall similarly provide a single differential
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equation which would take into account CO2−3 or other protic species (for example lactate and lactic acid).
Moreover, the chemical damping Θ can be factorized into

Θ ([H+] ,Y0) =
[H+]

2

[H+]
2
+K ′

1ΠCO2 +Kw

1

1 + βYY0
(14)

with

βY =
KY

[H+]
2
+K ′

1ΠCO2 +Kw

(
[H+]

[H+] +KY

)

2

. (15)

This factor, as described in the manuscript, is a kinetic buffer effect: the presence of the buffer doesn’t
affect the stationary pH, but damps the pH variations.

Natural Overshoot

Pertubative framework

From the algebraic analysis of the protic chemical system, we can show that the evolution of the proton
concentration h, relatively to the steady state concentration h⋆, is always of the form

∂th = F (h − h⋆) +Q(h)G(t). (16)

We have the following properties.

• F is a control function imposed by the enzymatic regulation system. We assume that F (x) has a
unique root in 0, such that F (0) = 0. In addition, this steady point is assumed to be linearly stable:
F ′(0) < 0.

• G is an external perturbation function, so that its integral from the beginning of the perturbation
to the end of the perturbation is zero, and its value at the end of the perturbation is zero as well:
it can be seen as the quantity of protons that are ”injected” by the experimenter then ”removed”
in the same quantity by the cell.

• Q is a chemical dampening function which characterizes the protic system. Physically, we have Q > 0
or Q < 0 but never Q = 0, which would mean that the system can both amplify and counteract the
perturbation.

Conservation Laws

Let us make a simple perturbation starting from h⋆ at t0, going to h1 at t1 and coming back to h⋆ at t2,
with the possible situation where t2 → +∞. So far, we do not make any assumption about the form of G
but at the end of the perturbation we have

∫

t2

t0
G(u)du = 0. (17)

and we compute

∫

t1

t0
G(u)du = Γ = −∫

t2

t1
G(u)du. (18)

Since Q /= 0, we can rewrite (16) as

∂th

Q(h)
=
F (h − h⋆)

Q(h)
+G(t) (19)
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and integrate it on the two time ranges. From t0 to t1 we obtain

∫

t1

t0

∂th

Q(h)
dt = ∫

h1

h⋆

dh

Q(h)
= Λ (20)

and finally

Λ = ∫

t1

t0

F (h − h⋆)

Q(h)
dt + Γ. (21)

Similarly from t1 to t2 we obtain

∫

h⋆

h1

dh

Q(h)
= −Λ = ∫

t2

t1

F (h − h⋆)

Q(h)
dt − Γ (22)

so we always have

∫

t1

t0

F (h − h⋆)

Q(h)
dt + ∫

t2

t1

F (h − h⋆)

Q(h)
dt = 0 (23)

Answer to a simple perturbation

We make the following perturbation

{
G(t0 → t1) > 0
G(t1 → t2) < 0

(24)

respecting the condition (17). Let us assume that Q > 0 since we can change the sign of Q and G to
produce the same result. The integration of (16) shows that h is increasing from h⋆ to h1 between t0 and
t1. Accordingly, the first integral of the relation (23) is negative since, by assumption, F ((h − h⋆) > 0) < 0.
Consequently, the second integral of the relation (23) must be positive. This is possible only if, somewhere
between t1 and t2, we have F > 0. In other words, somewhere between t1 and t2, we have h < h⋆: the pH
returns to the steady state value by overshooting, which is what is observed experimentally.
All this demonstration holds if we change the sign of G or Q, which will simply change the sign of h−h⋆.

Parametrized perturbation

In the extended specific case where φ represents an external intensive perturbation, φ′ = ∂tφ and the
variation of the proton concentration h is

∂th = F (h − h⋆(φ(t))) +Q(h)φ′(t), (25)

we obtain

∫

t1

t0

F (h − h⋆(φ(t))

Q(h)
dt + ∫

t2

t1

F (h − h⋆(φ(t)))

Q(h)
dt = 0 (26)

and the previous proof is still valid if h⋆ is a non decreasing function of φ.

Results

Simulation

We carried out the simulation of a ΠCO2 step with the same rise than in the ΠCO2 spike of the article: the
pressure is increased from 40 mmHg to 48 mmHg in 1 minute. We use the initial values reported in the
Datasets. We observe the relaxation to a new steady state pH without overshoot. This result is perfectly
coherent with the predicted steady state depicted on Figure 2 (in the manuscript), when ΠCO2 is modified
while the ratio VAE/VNHE remains unchanged.
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Figure S2. Forced acidosis by a simulated ΠCO2 step. (A) The pH returns to its predicted
value,without buffer or with a 60 mM buffer (dashed line). (B) The ionic ratios relative to the initial
values are reported as well, and are converging to some different steady state values (see inset).
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Computing enzymatic constants from steady state values

The equations to be solved to describe the steady state are the following (see the article for the notations,
the exponent ⋆ marks the resting values):

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

0 = λ⋆K+ + λ
⋆

Na+ − λ
⋆

Cl− − ρ
⋆

NaK

0 = λ⋆K+ + 2ρ⋆NaK
0 = λ⋆Na+ − 3ρ⋆NaK + ρ

⋆

NHE

0 = λ⋆Cl− + ρ
⋆

AE

0 = ρ⋆NHE − ρ
⋆

AE

(27)

where each λ terms depends on the membrane potential Em and on the concentrations, and where each
ρ term is associated to an enzymatic catalytic constant and depends on the concentrations as well. As
mentioned in the article, this system is under-determined since the sum of the first three equations minus
the sum of the two last ones is zero. Yet, assuming we know the steady states concentrations, we show
how to compute the enzymatic parameters.
Before proceeding further, we obtain the electric equation

0 =
3

2
λ⋆K+ + λ

⋆

Na+ − λ
⋆

Cl− . (28)

If the permeabilites PK+(Em), PNa+(Em) and PCl−(Em) are experimentally measured (see Datasets), then
there exists only one resting potential E⋆

m. Because of the uncertainty in the experimental measures, E⋆

m

can be tuned by multiplying PK+ (the highest permeability) by a small constant positive coefficient.
From now on, all the λ⋆ terms and E⋆

m are determined.
In particular, we deduce

ρ⋆NaK = −
1

2
λ⋆K+ (29)

and we assess the value of VNaK, the cellular maximum Na+/K+ exchange rate.
Similarly, we note that

ρ⋆AE = −λ⋆Cl− (30)

and we deduce the value of VAE, the cellular maximum Cl−/HCO−3 exchange rate.
Finally, since we know [H+]

⋆

and that we have ρ⋆NHE = ρ⋆AE, we also compute VNHE, the cellular maximum
H+/Na+ exchange rate.

Experimental Adequacy

Figure S3 shows a typical pH recording in Helix snail neurons [8] submitted to a CO2 pulse (Figure 5A
of the original article). According to the authors’ experimental setup, we use the parameters reported in
Table S3.

Parameter Intracellular Value Extracellular Value
pH⋆ 7.35 7.0
E⋆

m −55 mV –
[K+]

⋆

140 mM 4 mM
[Na+]

⋆

10 mM 140 mM
[Cl−]

⋆

20 mM 100 mM

Table S3. Steady-state ionic atmospheres. These values correspond to the Helix snail neurons.
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Figure S3. pH overshoot in Helix snail neurons. (A) Experimental pH overshoot (red line)
following an external ΠCO2 exposure. The internal ΠCO2 increase is computed (blue line) (B)
Corresponding computed ionic ratios, relative to the initial values.

At first, the neuron is exposed to an atmosphere expunged from CO2, so that ΠCO2 is minimal within
the neuron. To maintain an internal pH of 7.35 with a low carbon dioxide pressure, the neuron has a
ratio VAE/VNHE ≃ 0.12 (expected from Figure 2), which confers the cell a high sensitivity to ΠCO2 .

Then a 5% CO2 (ΠCO2 ≃ 38mmHg) is imposed on the cell for a few minutes, before returning to the
initial state.
The model can be used to reconstruct the CO2 pressure build-up within the neuron. We reported the
measured pH on Figure S3A (red line). With an estimated internal ΠCO2 of about 3 mmHg, wer recur-
sively compute a piecewise affine ΠCO2 function by matching the computed pH with the experimental
pH. The corresponding ΠCO2 , without any modification of the model, and is reported on Figure S3A (blue
line). Remarkably, we observe that the computed pressure matches a 5% ΠCO2 jump imposed by the
experiment: considering the experimental uncertainties in the pH curve, the computed ΠCO2 function is
quite satisfactory.
The bicarbonate level in the cell is highly modified (see Figure S3B, black line). Concurrently (as show
on Figure S3B, green line) an important Cl− intake occurs (since AE2 is running at high speed), but it
is counterbalanced by an almost equivalent Na+ entrance (Figure S3B, orange line). Finally, a slight K+

input (Figure S3B, pink line) adds up to produce a not significant 1 mV hyperpolarization during the
whole process.

Interestingly enough, our model offers the possibility to guess some unknown data or functions from
an experimental result, and can be used to reconstruct the ΠCO2 build-up during pH changes in any
cellular system.
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