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Prediction of RNA Secondary Structure
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ABSTRACT Calculations of the free energy required
to close single-strand loops by formation of a base pair in
double-helical nucleic acids are reported. These results
can be used to estimate the free energy of particular
secondary structures for a given RNA molecule under
conditions of high-salt concentration.

A problem fundamental to physical biochemistry is the extent
to which the spatial and orientational constraint imposed by
catenation on two chemically reactive groups affects the
equilibrium constant for the reaction (1-6). In particular,
this problem presents itself in connection with RN'A secondary
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Fic. 1. (a) and (b) are two possible secondary structures of the
initiation sequence for the A protein in R17 viral RNA (7), and
and (c) and (d) are possible secondary structures of the initiation
sequence for the coat protein from the same RNA (7). Regions
labeled I-IV are, respectively: intact helix, internal loop, hairpin
loop, and bulge loop.
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structure. Consider the possible structures for the two sites
of attachment to ribosomes of R17 RNA (7) shown in Fig. 1,
which illustrates four conformations in which a sequence of
nucleotides can be found: 1. the intact helix, II. the internal
loop, III. the hairpin loop, and IV. the bulge. Two bases that
pair to close a hairpin loop, for example, are connected by the
backbone chain, and this constraint must influence the free
energy of the base-pairing reaction.

Tinoco, Uhlenbeck, and Levine (8) have made substantial
progress toward evaluating the free energy of RNA secondary
structures in terms of the basic structural types I-IV shown
in Fig. 1. Each such conformation is assumed to contribute
an additive free-energy term to the molecular free-energy,
a supposition that can be valid only at high-salt concentra-
tion, where the electrostatic interactions are of short range
(4). A main weakness in their approach is the calculation of
the free energy of single-strand loops formed in structures of
type II-IV. In particular, they set for the free energy, AG,
of loop closure

AG@ = — 23RT [B — 1.51og (m + 1)] 1)

where m is the number of unbonded bases and B is a constant.
Eq. (1) applies to a freely-jointed Gaussian chain (1); we
earlier discussed its inadequacy for predicting loop free-
energies (3).

We developed (3) a general formalism for computing ring-
closure probabilities, using structural information about
the backbone to calculate the distribution function for one
base around the other. Our present purpose is to extend our
earlier work by evaluating the angular part of the distribu-
tion and by taking account of the lack of spherical symmetry
of the spatial part of the short-chain distribution function.
On this basis, we calculate size-dependent closure free-
energies for loops of types II-IV, and use these results to
evaluate the free energies of typical RNA structures.

THEORY

The free-energy increase on closure of the various types of
loops could be evaluated if we knew the equilibrium constant,
K, associated with each reaction. K depends on the probability
that the two reacting units are in the correct spatial arrange-
ment relative to one another, as well as on the “intrinsic”
equilibrium constant, Ko, for bond formation when the units
are within the required spatial limits. Suppose that unit (a)
(Fig. 2) is at the origin of a fixed coordinate system, and that
unit (b), which has its own coordinate system rigidly attached,
must be within a volume év at R* in order to react. Reaction
also requires that (b) is at an orientation specified by 6,*,
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65*, and 6;* within the angular interval dwda. [$w is a solid
angle and S« is the rotational interval about the z axis in the
system of (b).] We can write that

K = S(R*) 6VA(01*, 01*, 03*)5(05&Ko, (2)

where S(R) and A (6, 8,, 05) are, respectively, the spatial and
angular parts of the two-particle distribution function.

In general, K, cannot be calculated theoretically. Instead,
we use an experimental value of K for closing a loop of a
given size, and calculate the variation in K with loop size by
computing the distribution functions S and A as functions of

chain size.
THE DISTRIBUTION FUNCTIONS

Finding adequate distribution functions is generally a
formidable mathematical problem. For short chains, how-
ever, it can be accurately solved numerically by Monte
Carlo (sampling) techniques (3). A model for the rotational
freedom of the backbone bonds was chosen from crystallo-
graphic data (9). It has the feature that an exact calculation
accurately predicts the experimentally determined radius of
gyration of poly(U) (10). The model ignores changes in
chain stiffness as the result of base stacking.

S(R) was determined by calculation of the probability of
particular positions R of the phosphorous atom in one
nucleotide relative to the phosphorous in the other nucleotide
of the base pair; R* is the relative position in the double helix.
For positions in which the phosphorous was within év around
R*, the angular function A was evaluated for the distribution
of orientations of the 0 (5’) — P bond, relative to its orienta-
tion in the double helix. Note that rotation about the 0
(5") — P bond is independent of chain length. Hence, we
need not concern ourselves with the third angular variable,
da. We also found that A quickly approaches the value pre-
dicted for a uniform distribution of bond orientations (/s =,
when da is neglected). The small deviations of A from the
uniform value were estimated for loops larger than seven
nucleotides by interpolation from the linear plot of log A
versus the reciprocal of loop size, including the calculated
values for smaller loops and the point at A = 1/, x for infinite
loop size. (This plot was not linear, however, for small loops
in the bulge defect.)

LOOP-CLOSURE FREE ENERGIES

The free energy, AG, for formation of the first base-pair that
closes a loop can be expressed in terms of the experimental
free-energy change, AG., for the reference reaction:

S*A*

AG = AGret — RT In { A *M}, 3)
where S* and A* are the values of the distribution functions
at the coordinates corresponding to base-pair formation.

As a reference reaction for hairpin- and internal-loop
formation, we chose the formation of a hairpin loop of 4
unbonded bases by oligo(dT-dA) molecules (11). The equilib-
rium constant for formation of the first base-pair to close the
loop has been estimated at 3 X 10~ (4, 11). Table 1 shows
ring-closure free energies calculated on this basis. A notable
feature of the results is the definite thermodynamic preference
for internal loops over hairpin loops of the same size. The
reason lies in chain stiffness: to nucleate a hairpin loop, a
stiff chain must turn back on itself, whereas the two chains
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Fia. 2. The mutual orientation of two residues, (a) and (b),
that are in position to be joined by a bond, including the permis-
sible variation év and éw in the spatial and angular positions of (b)
in the coordinate system, fixed relative to (a). a is the permissible
rotation about the 2’ axis.

in an internal loop can form a base pair even when both are
in an extended conformation. Another interesting feature is
the appearance of a most-favorable ring size (minimum free-
energy) with five bases unbonded. Our earlier results (3)
did not show this character because we neglected A and
assumed spherical symmetry of S.

The reference reaction for bulge formation must be dif-
ferent from that for the other two reactions, since one assumes
in this case that the new base-pair stacks on the existing
adjacent helix. According to a recent experimental estimate
(Fink, T. R., and D. M. Crothers, in preparation) the free
energy of formation of a base-pair adjacent to a bulge defect
with one base looped out of the double helix is 2.8 keal/mol,
plus the free energy of formation of that base pair in the
perfect helix. This latter term depends on whether the pair
is A-U, G-C, or G-U; we assume values of —1.2 keal,
—2.4 keal, and 0 keal for each of these (8). Table 1 shows free
energies for closure of various-sized bulge loops, calculated
on this basis.

EMPIRICAL TESTS OF THE THEORY

There are presently two experimental tests of our method of
relating free-energy changes for different base-pairing reac-
tions. One is to use the reference equilibrium constant for
formation of the hairpin loop to calculate the bimolecular
nucleation constant for formation of the first bond between
two separate strands. We have described (3) the formalism
for this comparison. Using our present values for the distribu-
tion functions S* and 4*, we calculate 8s = 1.7 X 10—2M !
(AG° = 2.5 kcal at 25°C) for the bimolecular equilibrium
constant, compared with a range of values from 4 X 10—¢ to
3 X 1073 M1 (AG° = 4.7-3.5 keal at 25°C) reported for oligo-
mers that contain A-U base pairs (12). Considering the ex-

perimental inaccuracy in the equilibrium constant for both

hairpin-helix nucleation and bimoleculdr nucleation, we con-
sider the agreement between theory and experiment ac-
ceptable.

We can also use the theory to calculate the free energy of
formation of a one-base bulge by using the base-pairing
reaction in the perfect double helix as the reference reaction.
On this basis, we calculate that the contribution of the bulge
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TaBLE 1. Free energy of formation of the first base pair to close loops in RNA
No. of bases
unbonded S*sv A*sw S*svA*w AG (kcal/mol)
1. Hairpin loop (bw/47x = 0.016) 4 0.037 0.040 1.48 X 103 3.43
5 0.05 0.033 1.65 X 10— 3.37
6 0.04 0.030 1.2 X 1072 3.6
7 0.03 (0.026) 0.78 X 10 3 3.8
8 — — 0.62 X 10 3.9
9 0.02 (0.023) 0.46 X 10 4.1
2. Internal loop (dw/4x = 0.016) (equal 2 0.471 0.027 1.9 X102 1.9
number of bases on each strand) 4 0.33 0.024 1.2 X 102 2.2
6 0.20 (0.022) 6.6 X 10— 2.5
8 0.10 (0.021) 3.2 X103 3.0
AU G-C G-U
3. Bulge loop (5w/47 = 0.02) 1 0. 0.18 2.3 X102 1.6 0.4 2.8
2 0. 0.06 2.4 X103 2.7 1.5 3.9
4 0. 0.018 3.2 X 10— 3.8 2.6 5.0
6 0. 0.019 2.5 X 10 4.1 2.9 5.3
8 0. (0.019) 1.5 X 104 4.4 3.2 5.6

Free energies are calculated for T =

25°C in high-salt concentration (about 1 M Nat). v has a 0.6-nm radius. Values of 4*5w in

parentheses were determined from interpolation, as described in the text. Statistical error limits on S*sv and A *sw are 109, or less, corre-

sponding to an error of less than 0.15 keal in AG.

loop is 1.7 keal for one base and 3.0 keal for two bases looped
out, compared with the experimental estimate of 2.8 keal
for one base. Since we are pushing the theory severely by
applying it to the perfect helix, we consider that this agree-
ment is also reasonable.

PREDICTION OF RNA SECONDARY STRUCTURE

One can in principle predict RNA secondary structure by
showing that a particular base-pairing arrangement has
minimum free energy (8). However, there remain serious
limitations on our ability to assign accurate free energies to
all the interactions. Tinoco et al. (8) discuss some of these
difficulties, and since we presently see no strong reasons to
differ from their compromise choice of the free energy con-
tributed by helical base-pairs, we follow their procedure for
the sake of consistency. This leads to the assignment of
—2.4 keal, —1.2 keal, and 0 kecal for formation of G-C,
A-U, and G-U pairs, respectively. We prefer, however, to
account for the stabilization contributed by base pairs by
counting stacking interactions—pairs at the end of a helix
are involved in one, while those in the middle are involved in
two. An A-U pair adjacent to a G-C pair contributes one
G-C and one A-U stacking interaction, and the free-energy
contribution is — (2.4 4 1.2)/2 keal.

The following rules may be used to estimate the free
energy of an RNA secondary structure at 25°C in about 1 M
salt solution on the basis of our weighting functions for loops
and bulges:

(a) For each continuous helix (which may include bulge
defects) count the number of stacking interactions that in-
volve each kind of base pair. Divide these numbers by two
and multiply them by the free-energy contributions for each
kind of base pair. Add together these contributions from
double-helix formation.

(b) Count the number of bases in mternal and hairpin
loops, and add the corresponding free-energy term from Table
1.

(¢) For bulge defects, add the number under the G-U
column in Table 1, since the stacking interaction due to the
actual adjacent base-pair has been included in rule (a).

For example, for conformation (a) in Fig. 1, there are 9
G-U,4 A-U, and 3 G- C stacking interactions, and a hairpin
loop of 7 bases. Hence, the free energy is —(9 X 0 + 4 X
12 4+ 3 X 2.4)/2 + 3.8, or —2.2 kecal/mol, relative to the
unbonded state. For conformation (b), there are 8 G-U, 8
A-U, and 4 G-C stacking interactions, a hairpin loop of 7
bases, and a bulge defect of one base. Hence, the free energy is
—8X0+9X12+4Xx24)/2+ 38+ 28, 0r —3.0
keal/mol. The two structures differ in free energy by only
0.8 keal, and we therefore predict that both would be present
in substantial amounts at conformational equilibrium.
According to the rules given by Tinoco et al., the two would
differ by about 2.4 kcal/mol, again with (b) the favored form.

The results of this calculation should be sufficient to urge
caution on those who would use such methods to predict
RNA structure. In these molecules, one often finds several
conformations with nearly equal predicted free-energy.
Since the free-energy parameters in the calculation could be
in error by as much as a kilocalorie, erroneous predictions
may clearly be made unless one conformation is of decidely
lower free-energy (5 keal or more) than the others. The only
way we can see to overcome this lack of precision in the
calculation is to refine the parameters by means of extensive
further experiments on the stability of oligonucleotides.

COMPARISON WITH EARLIER RESULTS

According to our results, if other factors are equal the in-
ternal loop is favored over an equal-sized hairpin loop, which
is in turn favored over the bulge loop. (For the bulge, the
free-energy contribution from the loop itself is equal to the
number under the G-U column in Table 1.) This progression
has a reasonable physical basis, since the stiff nucleotide chain
must return progressively closer to its point of origin to form
a base pair when closing an internal-, hairpin-, or bulge-
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loop, respectively. However, our ordering of stabilities is
quite different from that assigned by Tinoco et al. (8), whose
numbers make the bulge loop favored over internal- and
hairpin-loops, the latter two being of equal stability. The
free energy we assign to internal loops differs from their
assignment by about 3 kcal; the difference is about 2 kcal
for hairpin loops. The main source of this disagreement is
that we have not given any weight to the results for melting
high polymers in assigning free energies to small rings. In
our view, the values for large rings (hundreds of nucleotides)
cannot presently be correctly extrapolated to small rings.
On the other hand, our free energies for the bulge loop are
roughly the same as those of Tinoco et al., since we made use
of similar experimental information.

We should note parenthetically that our ordering of in-
ternal loops as preferable to bulge loops is consistent with
the observation of the bulge loop in complexes of copoly-
nucleotides that contain noncomplementary residues (13).
For example, at stoichiometric equivalence between the A
residues in poly(A,U) and the U residues in poly(U), more
base pairs can be formed in structures containing bulge
loops than in those containing internal loops. Application to
such structures of the rules in the previous section leads to a
clear prediction of preference for the bulge- over internal-
loops, as long as the Ty, is not approached.

A second important difference between our results and
those of Tinoco et al. is our observation of a generally stronger
dependence of the free energy on loop .size. (The exception
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is the free-energy minimum for the optimum hairpin-loop.)
In general, closure free-energies for small rings depend more
strongly on ring size than is predicted by Eq. (1) used by
Tinoco et al. (8); that equation is evidently inappropriate to
the present problem.
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