A systems approach to designing next generation vaccines: combining α -

galactose modified antigens with nanoparticle platforms

Yashdeep Phanse¹, Brenda R. Carrillo-Conde², Amanda E. Ramer-Tait^{1,5}, Scott Broderick³, Chang Sun Kong³, Krishna Rajan³, Ramon Flick⁴, Robert B. Mandell^{4,6}, Balaji Narasimhan² and Michael J. Wannemuehler¹

¹Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA 50011

²Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50011

³Department of Materials Science and Engineering, Iowa State University, Ames, IA 50011

⁴BioProtection Systems Corporation, a subsidiary of NewLink Genetics Corporation, Ames, IA 50010

⁵Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE 68583

⁶Current address: Boehringer Ingelheim, Ames, IA 50010

SI Figure 1. Western blot analysis of unmodified F1-V and α Gal-modified F1-V confirmed attachment of α Gal epitopes. Unmodified F1-V (lane 2) or α Gal-F1-V (lane 3) were separated by sodium dodecyl sulfate–polyacrylamide gel electrophoresis (SDS-PAGE) then detected by Western blotting using anti- α Gal sera. Lane 1: molecular size standards. Label on the left indicates the expected size of α Gal-F1-V.

SI Figure 2. Anti-LcrV IgG (H+L) antibody titers. Titers were determined by end-point ELISA 42 days after vaccination. Data are presented as the mean \pm SEM of four independent experiments. Treatments identified with different letters are significantly different from one another (p ≤ 0.05).

SI Figure 3. PCA plot of the loadings, which describes the variables, such as antibody titer, antibody avidity, T cell proliferation, and epitope recognition, utilized to draw inferences about optimal vaccine formulations.