Supplementary information

Microarray studies:

U87-MG cells were stably transduced with a control plasmid or with a plasmid carrying the complete coding sequence of the CNS-specific ECM proteoglycan brevican (Genbank #BC010571). Transduced cells were cultured for two weeks and checked for expression of full-length and processed fragments of brevican before further testing (21). Control and brevican-expressing cells were gently resuspended and dissociated in DPBS, transferred to fresh culture medium and plated on poly-L-lysine- or fibronectin-coated 60-mm culture dishes at a total density of 5.10⁵ cells/dish. After three hours, non-adhered cells were washed and the remaining cells were quickly frozen on ethanol/dry ice and further processed in Trizol (Invitrogen) to prepare total RNA. Details of cell transduction, cell adhesion experiments and further analysis of protein expression in those cells have been previously described (21). Increased cell adhesion was observed to correlate directly with increased cell motility on the same substrate (21).

Quality of the extracted RNA was verified by capillary electrophoresis (Bioanalyzer 2100, Agilent). RNA samples were processed for hybridization to U133(+) 2.0 genechips (Affimetrix), that cover the complete human genome. Microarrays were performed in duplicate for each experimental condition (cell type X substrate). RNA hybridization, image scanning and data analysis were performed at the Functional Genomics Core Facility of Nationwide Children's Hospital (Columbus, Ohio).

Supplementary Fig. 1: Fibulin-3 is upregulated by combined effect of brevican and fibronectin. A) Experimental design followed to identify altered mRNA expression in response to neural (brevican) and mesenchymal (fibronectin) ECM components. Colored boxes (4 conditions in duplicate) represent potential microarray results for probesets upregulated in substrate-dependent (row 1), brevican-dependent (row 2) or brevican/substrate-dependent (row 3) manners. Using this assay, fibulin-3 was the only ECM-related transcript overexpressed in a brevican- and fibronectindependent manner (Suppl. Table I). B) Validation of fibulin-3 expression in U87-MG cells processed as indicated above, using qRT-PCR. Results indicate relative expression (Delta-Delta Ct) of fibulin-3 mRNA over baseline values (control cells on PLL substrate = 1). GAPDH was used as normalizing reference. *PLL*, poly-L-lysine; *FN*, fibronectin. Suppl Fig. 1

SUPPLEMENTARY TABLE I

TARY GENES UPREGULATED BY BREVICAN AND FIBRONECTIN IN GLIOMA CELLS

Bcan= brevican FN= fibronectin PLL= poly-L-Lysine

The table indicates transcripts that were upregulated in a brevican- and fibronectin-dependent manner

Mean values for each condition (brevican vs control cells, plated on FN or PLL) were normalized to the baseline values of control cells plated on PLL

Probesets were included in the table below when they matched the following conditions (see Suppl Fig. 1A)							
	Bcan(FN) / Control(FN) >2.00						
AND	Bcan(PLL) / Control (PLL) >0.75 and <1.25						
AND	Control(FN) / Control(PLL) >0.75 and <1.25						

			Bcan	Control	Bcan			GO	GO	GO
Probeset	Gene Symbo	Description	FN	FN	PLL	Gene ID	Cytoband	BIOLOGICAL PROCESS	MOLECULAR FUNCTION	CELLULAR COMPONENT
240994_at	BRE	brain and reproductive organ-expressed (TNFRSF1A modulator)	5.710	1.004	1.560	9577	2p23.2	carbohydrate metabolic pro	peroxisome targeting seque	nuclear ubiquitin ligase comp
1553874_a_at	ZSCAN10	zinc finger and SCAN domain containing 10 (previous ZNF206)	5.389	2.126	1.076	84891	16p13.3	transcription /// regulation of	nucleic acid binding /// DNA	intracellular /// nucleus
1561616_a_at	DNAH6	dynein, axonemal, heavy polypeptide 6	4.136	1.313	1.069	1768 // 20	2p11.2	microtubule-based moveme	nucleotide binding /// motor	microtubule /// dynein comple
240262_at	CTNNA1	catenin (cadherin-associated protein), alpha 1, 102kDa	3.809	1.164	0.979	1495	5q31	cell adhesion /// cell adhesio	structural molecule activity /	cytoplasm /// cytoskeleton ///
228440_at	PET112L	pet112-like (yeast)	3.493	1.459	0.942	5188	4q27-28	translation /// translation	translation factor activity, nu	mitochondrion /// mitochondrie
36554_at	ASMTL	acetylserotonin O-methyltransferase-like	3.454	1.128	0.791	8623	Xp22.3; Yp1	melatonin biosynthetic proc	O-methyltransferase activity	
237194_at	TSPAN5	tetraspanin-5 (transmembrane 4 superfamily member 9)	3.423	1.618	1.111	10098	4q23			membrane /// integral to mem
221892_at	H6PD	hexose-6-phosphate dehydrogenase (glucose 1-dehydrogenase)	3.175	1.511	1.012	9563	1p36	carbohydrate metabolic pro	catalytic activity /// glucose-6	endoplasmic reticulum /// end
216797_at		Homo sapiens cDNA: FLJ23194 fis, clone REC00490	3.103	1.438	1.235					
1569206_at	TCP11L2	t-complex 11 (mouse) like 2 (hypothetical protein MGC40368)	3.052	1.144	1.007	255394	12q23.3			
232770_at	TUSC3	tumor suppressor candidate 3	2.954	1.044	1.389	7991	8p22	protein amino acid N-linked	dolichyl-diphosphooligosacc	endoplasmic reticulum /// end
1556122_at	RAB11B	RAB11B, member RAS oncogene family	2.893	1.257	0.981	9230	19p13.2	regulation of transcription, I	nucleotide binding /// GTPas	intracellular /// plasma membi
228486_at	SLC44A1	CDw92: solute carrier family 44, member 1	2.890	1.227	0.998	23446	9q31.2	transport /// choline transpo	choline transmembrane tran	membrane /// integral to mem
1553959_a_at	B3GALT6	UDP-gal:betagal beta 1,3-galactosyltransferase polypeptide 6	2.829	1.206	0.885	126792	1p36.33	glycosaminoglycan biosynth	galactosyltransferase activit	Golgi apparatus /// Golgi med
225453_x_at	CCDC124	coiled-coil domain containing 124 (hypothetical protein BC013949)	2.786	1.077	1.083	115098	19p13.11			
239899_at	RNF145	ring finger protein 145 (hypothetical protein FLJ31951)	2.599	0.984	1.012	153830	5q33.3		protein binding /// zinc ion bi	membrane /// integral to mem
63305_at	PKNOX2	PBX/knotted 1 homeobox 2	2.582	1.326	0.977	63876	chr 11	regulation of transcription, I	DNA binding /// DNA binding	nucleus /// cytoplasm /// actin
1566785_x_at	NSF	N-ethylmaleimide-sensitive factor	2.531	1.094	1.023	728806	17q21.31-q2		nucleotide binding /// ATP bi	
201842_s_at	EFEMP1	EGF-containing fibulin-like extracellular matrix protein 1	2.479	0.982	0.900	2202	2p16	visual perception	calcium ion binding /// protei	extracellular region /// protein
221133_s_at	CLDN18	claudin 18	2.376	0.876	1.243	51208	3q22.3	calcium-independent cell-ce	structural molecule activity /	plasma membrane /// tight jur
56256_at	SIDT2	SID1 transmembrane family, member 2	2.346	0.877	1.007	51092	11q23.3			membrane /// integral to mem
244391_at	TSEN2	tRNA splicing endonuclease 2 homolog (S. cerevisiae)	2.219	0.987	1.085	80746	3p25.1	tRNA splicing /// mRNA pro	tRNA-intron endonuclease a	tRNA-intron endonuclease co
204944_at	PTPRG	protein tyrosine phosphatase, receptor type, G	2.161	1.081	0.957	5793	3p21-p14	protein amino acid dephosp	carbonate dehydratase activ	integral to plasma membrane
1568365_at	KIFAP3	kinesin-associated protein 3	2.104	0.993	0.918	22920	1q24.2	protein complex assembly /	binding /// protein binding ///	endoplasmic reticulum /// kine
1558943_x_at	ZNF765	zinc finger protein 765 (hypothetical protein BC001610)	2.092	0.967	1.093	91661	19q13.41	regulation of transcription, I	nucleic acid binding /// zinc i	intracellular
209964_s_at	ATXN7	ataxin 7	2.090	0.862	1.154	6314	3p21.1-p12	transcription /// regulation of	protein binding /// zinc ion bi	intracellular /// nucleus /// nuc
201151_s_at	MBNL1	muscleblind-like (Drosophila)	2.083	0.999	0.888	4154	3q25	in utero embryonic developi	nucleic acid binding /// RNA	nucleus /// nucleus /// cytopla:
222171_s_at	PKNOX2	PBX/knotted 1 homeobox 2	2.073	0.704	1.392	63876	chr 11	regulation of transcription, I	DNA binding /// DNA binding	nucleus /// cytoplasm /// actin
229366_at	CRBN	cereblon	2.009	0.992	0.975	51185	3p26.3	ATP-dependent proteolysis	ATP-dependent peptidase a	cytoplasm /// membrane
221477_s_at	SOD2	superoxide dismutase 2, mitochondrial	2.005	0.906	1.047	79099	6q25.3	response to superoxide /// r	superoxide dismutase activi	mitochondrion /// mitochondri
				I	I					

SUPPLEMENTARY TABLE II

EFEMP1

ONCOMINE STUDIES

Gene Symbol:

t= (average signal in tumor - average signal in control) / standard deviation (control vs. tumor)

t<0 and p<0.05 --> EFEMP1 significantly decreased in tumor tissue t>0 and p< 0.05 --> EFEMP1 significantly increased in tumor tissue

Study	TISSUE	STUDY IDENTIFICATION	YEAR	# CONTROL SAMPLES	# TUMOR SAMPLES	t test value	p value	REPORTER	PLATFORM	OBSERVATIONS	LINK TO ORIGINAL STUDY
1	BLADDER	Blaveri Bladder 2	2005	3	81	-2.268	0.144	AA875933	Stanford microarravs		Bladder cancer outcome and subtyp
2	BLADDER	Dyrskjot_Bladder_3	2004	14	40	-1.537	0.133	201842_s_at	Affymetrix U133		Gene expression in the urinary blad
3	BLADDER	Sanchez-Carbayo_Bladder_2	2006	48	109	-10.229	9.00E-19	201843_s_at	Affymetrix U133		Defining molecular profiles of poor c
4	BRAIN	Bredel_Brain_2	2005	4	31	6.424	3.20E-07	IMAGE:1492230	IMAGE Consortium	normal brain vs glioblastoma	Functional network analysis reveals
	BRAIN	Bredel_Brain_2	2005	4	8	3.757	0.004	IMAGE:1492230	IMAGE Consortium	normal brain vs oligodendroglioma	Functional network analysis reveals
	BRAIN	Bredel_Brain_2	2005	4	5	2.64	0.056	IMAGE:1492230	IMAGE Consortium	normal brain vs astrocytic tumor	Functional network analysis reveals
5	BRAIN	Bredel_Brain_3	2005	4	6	2.318	0.065	IMAGE:1492230	IMAGE Consortium	normal brain vs anapl. oligo.	Functional network analysis reveals
6	BRAIN	French_Brain	2005	6	27	1.426	0.186	228421_s_at	Affymetrix U133	normal brain vs anapl. oligo. and astro.	Gene expression profiles associated
7	BRAIN	Gutmann_Brain	2002	3	8	0.495	0.648	32551_at	Affymetrix U95	normal white matter vs pilocytic astro	Comparative gene expression profile
8	BRAIN	Liang_Brain	2005	3	30	6.878	6.70E-04	AA875933	Stanford microarrays	normal brain vs astrocytoma	Gene expression profiling reveals m
9	BRAIN	Rickman_Brain	2001	6	45	0.84	0.43	U03877_at	Affymetrix HuGeneFL	normal brain vs astrocytoma	Distinctive molecular profiles of high
10	BRAIN	Shai_Brain	2003	7	25	3.526	0.002	32551_at	Affymetrix U95	normal brain vs glioblastoma	Gene expression profiling identifies
11	BRAIN	Sun_Brain	2006	23	77	8.238	5.30E-12	201842_s_at	Affymetrix U133	normal brain vs glioblastoma	Neuronal and glioma-derived stem (
	BRAIN	Sun_Brain	2006	23	50	-0.919	0.361	201841_s_at	Affymetrix U133	normal brain vs oligodendroglioma	Neuronal and glioma-derived stem c
	BRAIN	Sun_Brain	2006	23	26	5.162	7.10E-06	201842_s_at	Affymetrix U133	normal brain vs astrocytoma	Neuronal and glioma-derived stem c
	BRAIN	Sun_Brain	2006	23	50	2.537	0.013	201842_s_at	Affymetrix 0133	normai brain vs oligodendrogiloma	Neuronal and glioma-derived stem c
12	BREAST	Finak_Breast	2008	6	53	12.336	6.90E-09	A_23_P501007	Agilent HG 44k	Outlier data, under revision at Oncomine	Stromal gene expression predicts cl
13	BREAST	Karnoub_Breast	2007	15	7	-4.317	4.10E-04	201843_s_at	Affymetrix U133		Mesenchymal stem cells within tumo
14	BREAST	Radvanyi_Breast	2005	9	47	-1.07	0.311	AA301867	Stanford microarrays		The gene associated with trichorhine
15	BREAST	Richardson_Breast_2	2006	7	40	0.657	0.515	228421_s_at	Affymetrix U133		X chromosomal abnormalities in bas
	BREAST	Richardson_Breast_2	2006	7	40	-7.825	8.10E-10	201843_s_at	Affymetrix U133	same study as #15, different probe	X chromosomal abnormalities in bas
16	BREAST	Turashvili_Breast	2007	5	5	0.65	0.535	228421_s_at	Affymetrix U133	breast ductal tissue vs invasive ductal carcinoma	Novel markers for differentiation of le
	BREAST	Turashvili_Breast	2007	5	5	-2.215	0.0065	201843_s_at	Affymetrix U133	breast lobular tissue vs inv. lobular carcinoma	Novel markers for differentiation of le
	BREAST	Turashvili_Breast	2007	5	5	-0.946	0.384	201843_s_at	Affymetrix U133	same study as #16, different probe	Novel markers for differentiation of le
17	COLON	Hong Colon	2007	10	12	4.039	7.20E-04	201842 s at	Affymetrix U133		A susceptibility gene set for early on
	COLON	Hong_Colon	2007	10	12	-0.931	0.363	228421_s_at	Affymetrix U133	same study as #17, different probe	A susceptibility gene set for early on
18	COLON	Notterman_Colon	2001	18	18	-2.004	0.06	U03877	Affymetrix HuGeneFL		Transcriptional gene expression pro
19	DIGESTIVE	Hao Esophagus	2006	15	5	3,496	0.016	IMAGE:1492230	IMAGE Consortium	esophagus	Gene expression profiling reveals st
20	DIGESTIVE	Hippo Gastric	2002	8	22	-1.705	0.103	U03877 at	Affymetrix HuGeneFL	gastric	Global gene expression analysis of
21	DIGESTIVE	Kimchi Esophagus	2005	8	8	0.514	0.616	201843 s at	Affymetrix U133	esophagus	Progression of Barretts metaplasia t
	DIGESTIVE	Kimchi_Esophagus	2005	8	8	-0.22	0.831	201842_s_at	Affymetrix U133	esophagus, same as #21, different probe	Progression of Barretts metaplasia t
22	HEAD/NECK	Cromer Head-Neck	2004	4	34	-3 529	0.002	32551 at	Affymetrix 1195		Identification of genes associated wi
23	HEAD/NECK	Ginos Head-Neck	2004	13	41	0.788	0.435	201843 s at	Affymetrix U133		Identification of a gene expression s
20	HEAD/NECK	Ginos Head-Neck	2004	13	41	-0.177	0.86	201842 s at	Affymetrix U133	same study as #23, different probe	Identification of a gene expression s
24	HEAD/NECK	Pyeon Multi-cancer	2007	14	42	2.17	0.037	228421 s at	Affymetrix U133		Fundamental differences in cell cvcl
25	HEAD/NECK	Toruner Head-Neck	2004	4	16	-0.304	0.766	201843 s at	Affymetrix U133		Association between gene expression
	HEAD/NECK	Toruner_Head-Neck	2004	4	16	0.258	0.799	201842_s_at	Affymetrix U133	same study as #25, different probe	Association between gene expression
26	LUNG	Beer Luna	2002	10	86	-7.141	9.80E-08	U03877 at	Affvmetrix HuGeneFL		Gene-expression profiles predict su
27	LUNG	Bhattachariee Lung	2001	17	139	-6.293	5.90E-08	32551 at	Affymetrix U95	normal lung vs lung adenocarcinoma	Classification of human lung carcing
	LUNG	Bhattachariee Lung	2001	17	21	-5.649	3.30E-04	32551 at	Affvmetrix U95	normal lung vs squamous cell carcinoma	Classification of human lung carcing
	LUNG	Bhattacharjee_Lung	2001	17	6	-2.291	0.067	32551_at	Affymetrix U95	normal lung vs small cell lung cancer	Classification of human lung carcine
	LUNG	Bhattacharjee_Lung	2001	17	20	-7.977	7.70E-09	32551_at	Affymetrix U95	normal lung vs carcinoid	Classification of human lung carcine
28	LUNG	Garber_Lung	2001	6	40	-5.384	2.30E-05	IMAGE:1492230	IMAGE Consortium	normal lung vs lung adenocarcinoma	Diversity of gene expression in ader
	LUNG	Garber_Lung	2001	6	13	-5.414	6.10E-05	IMAGE:1492230	IMAGE Consortium	normal lung vs squamous cell carcinoma	Diversity of gene expression in ader
	LUNG	Garber_Lung	2001	6	4	-5.398	0.006	IMAGE:1492230	IMAGE Consortium	normal lung vs small cell lung cancer	Diversity of gene expression in ader
	LUNG	Garber_Lung	2001	6	4	-0.274	0.801	IMAGE:1492230	IMAGE Consortium	normal lung vs large cell lung cancer	Diversity of gene expression in ader
29	LUNG	Powell_Lung	2003	11	11	-5.145	1.40E-04	U03877_at	Affymetrix HuGeneFL		Gene expression in lung adenocarci
30	LUNG	Stearman_Lung	2005	19	20	-7.5	3.30E-08	32551_at	Affymetrix U95		Analysis of orthologous gene expres
31	LUNG	Su_Lung	2007	31	31	-5.839	5.20E-07	201843_s_at	Affymetrix U133		Selection of DDX5 as a novel internation

32	LUNG	Wachi_Lung	2005	5	5	-8.213	1.30E-04	201843_s_at	Affymetrix U133		Interactome-transcriptome analysis
33		Chen Liver	2002	7	104	-/ 31	8 80E-04	IMAGE:1/02230	IMAGE Consortium	banian liver disease ve banatecell, carcinema	Gene expression patterns in human
55		Chen_Liver	2002	76	104	-1.083	0.002-04	IMAGE:1492230	IMAGE Consortium	non-tumor liver vs henatocell, carcinoma	Gene expression patterns in human
34		Wurmbach Liver	2002	10	35	2 /35	0.043	2018/3 s at	Affumetrix 11133	non-tumor iver vs nepatoceii. carcinoma	Genome-wide molecular profiles of
54	LIVER		2007	10	55	2.400	0.02	201040_3_4	Anymenix 0100		Schome wide molecular promes of t
35	MELANOMA	Hagg Melanoma	2005	10	22	-5 834	9 80E-06	AA875933	Stanford microarrays		The gene expression signatures of r
36	MELANOMA	Hoek Melanoma	2006	3	18	1 624	0.002.00	201843 s at	Affymetrix U133		Metastatic potential of melanomas d
00	MELANOMA	Hoek Melanoma	2006	3	24	-0 441	0.674	201842 s at	Affymetrix 11133	same study as #36_different probe	Metastatic potential of melanomas d
37	MELANOMA	Talantov Melanoma	2005	25	45	-10.13	2 60F-14	201842 s at	Affymetrix 11133		Novel genes associated with malign
01			2000	20	10	10.10	2.002 11	201012_0_0	7 mymounx o roo		Here genee accounted warmangn
38	OVARY	Hendrix Ovarian	2006	4	41	-13 33	1 80E-12	201842 s at	Affymetrix 11133	ovary vs ovarian serous adenocarcinoma	Fibroblast growth factor 9 has onco
00	OVARY	Hendrix Ovarian	2006	4	37	-13 254	3 20E-12	201842 s at	Affymetrix 11133	ovary vs ovarian endometroid adenocarcinoma	Fibroblast growth factor 9 has onco
	OVARY	Hendrix Ovarian	2006	4	13	-12 011	4 70F-09	201842 s at	Affymetrix U133	ovary vs ovarian mucinous adenocarcinoma	Fibroblast growth factor 9 has onco
	OVARY	Hendrix Ovarian	2006	4	8	-5.43	4 40F-04	201842 s at	Affymetrix U133	ovary vs ovarian clear cell adenocarcinoma	Fibroblast growth factor 9 has onco
39	OVARY	Lancaster Ovarian	2000	3	31	-1.35	0.301	LI03877 at	Affymetrix HuGeneFl	ovary vo ovanan olcar och adonobaromorna	Gene expression patterns that chara
40	OVARY		2004	5	19	-3.81	0.001	32551 at	Affymetrix U95		Selection of potential markers for en
41	OVARY	Welsh Ovarian	2001	4	28	-2 119	0.073	U03877 at	Affymetrix HuGeneFl		Analysis of gene expression profiles
	0.17.11.1		2001		20	2	0.010	eccert_at			
42	PANCREAS	Buchholz Pancreas	2005	6	8	-0 669	0.517	NM 004105	Operon OligoSet 2.0		Transcriptome analysis of microdiss
43	PANCREAS	Grutzmann Pancreas	2003	11	14	-1 764	0.094	201843 s at	Affymetrix 11133		Gene expression profiling of microdi
44	PANCREAS	Ishikawa Pancreas	2005	25	24	-1.396	0.169	201842 s at	Affymetrix 11133		Experimental trial for diagnosis of pa
45	PANCREAS	Logsdon Pancreas	2003	10	10	1 791	0.093	LI03877 at	Affymetrix HuGeneFl		Molecular profiling of pancreatic ade
10	17 ANOTAL/10		2000	10	10	1.701	0.000	000017_00			indicidad proning of panoroado ado
46	PLEURA	Gordon Mesothelioma	2005	5	40	3.385	0.015	201842 s at	Affymetrix U133	mesothelioma	Identification of novel candidate onc
			2000	Ŭ		0.000	0.010	201012_0_4t			
47	PROSTATE	Dhanasekaran Prostate	2001	22	59	-3.138	0.004	IMAGE:1492230	IMAGE Consortium		Delineation of prognostic biomarkers
48	PROSTATE	Dhanasekaran Prostate 2	2004	12	25	-4.553	2.30E-04	IMAGE:1492230	IMAGE Consortium		Molecular profiling of human prostat
49	PROSTATE	Holzbeierlein Prostate	2003	4	23	-1.795	0.155	32551 at	Affymetrix U95		Gene expression analysis of human
50	PROSTATE	LaTulippe Prostate	2002	3	23	-2.242	0.107	32551 at	Affymetrix U95		Comprehensive gene expression an
51	PROSTATE	Liu Prostate	2006	13	44	-5.497	2.90E-05	201842 s at	Affymetrix U133		Sex-determining region Y box 4 is a
52	PROSTATE	Luo Prostate	2001	9	16	-2.463	0.023	IMAGE:1492230	IMAGE Consortium		Human prostate cancer and benign
53	PROSTATE	Luo Prostate 2	2002	15	15	-1.968	0.06	32551 at	Affymetrix U95		Gene expression analysis of prostat
54	PROSTATE	Magee Prostate	2001	4	8	-0.807	0.447	U03877 at	Affymetrix HuGeneFL		Expression profiling reveals hepsin
55	PROSTATE	Nanni Prostate	2006	3	22	0.683	0.557	201842 s at	Affymetrix U133		Epithelial-restricted gene profile of p
56	PROSTATE	Singh Prostate	2002	50	52	-2.711	0.008	32551 at	Affymetrix U95		Gene expression correlates of clinic
57	PROSTATE	Tomlins Prostate	2006	22	30	-0.476	0.637	IMAGE:1492230	IMAGE Consortium		Integrative molecular concept mode
58	PROSTATE	Vanaja Prostate	2003	8	27	0.979	0.347	228421 s at	Affymetrix U133		Transcriptional silencing of zinc fing
	PROSTATE	Vanaja Prostate	2003	8	27	-3.767	0.001	201842 s at	Affymetrix U133	same study as #58, different probe	Transcriptional silencing of zinc fing
59	PROSTATE	Varambally_Prostate	2005	6	7	-3.005	0.025	201842_s_at	Affymetrix U133		Integrative genomic and proteomic a
60	PROSTATE	Wang CellLine	2007	8	8	-4.913	0.001	201843 s at	Affymetrix U133	nmortalized prostate epithelium vs prostate carcinom	Identification of candidate predictive
61	PROSTATE	Welsh Prostate	2001	9	25	-4.04	8.30E-04	32551 at	Affymetrix U95		Analysis of gene expression identifie
62	PROSTATE	Yu_Prostate	2004	23	64	-4.067	2.10E-04	32551_at	Affymetrix U95		Gene expression alterations in pros
								_			
63	RENAL	Boer_Renal	2001	162	160	-1.291	0.199	IMAGE:162112	IMAGE Consortium	kidney vs clear renal cell carcinoma	Identification and classification of dif
	RENAL	Boer Renal	2001	162	160	0.502	0.616	IMAGE:162112	IMAGE Consortium	kidney vs clear renal cell carcinoma	Identification and classification of dif
	RENAL	Boer_Renal	2001	162	16	-0.322	0.755	IMAGE:162112	IMAGE Consortium	kidney vs chromophobe renal cell carcinoma	Identification and classification of dif
	RENAL	Boer_Renal	2001	162	16	0.176	0.871	IMAGE:162112	IMAGE Consortium	kidney vschromophobe renal cell carcinoma	Identification and classification of dif
64	RENAL	Gumz_Renal	2007	10	10	-0.774	0.452	201843_s_at	Affymetrix U133		Secreted frizzled-related protein 1 lo
65	RENAL	Higgins_Renal	2003	3	26	0.382	0.728	IMAGE:1492230	IMAGE Consortium		Gene expression patterns in renal c
66	RENAL	Lenburg_Renal	2003	9	9	0.73	0.477	228421_s_at	Affymetrix U133		Previously unidentified changes in re
	RENAL	Lenburg_Renal	2003	9	9	-0.729	0.483	201842_s_at	Affymetrix U133	same study as #66, different probe	Previously unidentified changes in r
		_							-		
67	SALIV. GLAND	FriersonHF_Salivary-gland	2002	6	16	-2.228	0.041	32551_at	Affymetrix U95		Large scale molecular analysis iden
68	SEMINOMA	Korkola_Seminoma	2006	6	91	17.763	8.10E-31	201842_s_at	Affymetrix U133		Down-regulation of stem cell genes,
69	THYROID	Huang_Thyroid	2001	8	8	-2.491	0.028	32551_at	Affymetrix U95		Gene expression in papillary thyroid
70	TONGUE	Talbot_Lung	2005	26	31	-1.939	0.058	32551_at	Affymetrix U95		Gene expression profiling allows dis
71	UTERUS	Mutter_Endometrium	2001	4	10	-1.316	0.275	U03877_at	Affymetrix HuGeneFL	ormal endometrium vs endometrioid adenocarcinom	Global expression changes of const
72	UTERUS	Pyeon_Multi-cancer	2007	8	20	-2.008	0.056	201843_s_at	Affymetrix U133	normal cervix vs cervical cancer	Fundamental differences in cell cycl
73	UTERUS	Wong_Endometrium	2003	8	25	2.546	0.031	AA875933	Stanford microarrays	normal cervix vs cervical carcinoma	Expression genomics of cervical car

<u>be classification by gene expression.</u> <u>Ider: a common carcinoma in situ gene expression signature exists disregarding histopathological classification.</u> <u>putcome in patients with invasive bladder cancer using oligonucleotide microarrays.</u>

extended gliomagenesis pathway maps and three novel MYC-interacting genes in human gliomas.
extended gliomagenesis pathway maps and three novel MYC-interacting genes in human gliomas.
extended gliomagenesis pathway maps and three novel MYC-interacting genes in human gliomas.
extended gliomagenesis pathway maps and three novel MYC-interacting genes in human gliomas.
extended gliomagenesis pathway maps and three novel MYC-interacting genes in human gliomas.
extended gliomagenesis pathway maps and three novel MYC-interacting genes in human gliomas.
extended gliomagenesis pathway maps and three novel MYC-interacting genes in human gliomas.
gental way maps and three novel MYC-interacting genes in human gliomas.
le analysis of neurofibromatosis 1-associated and sporadic pilocytic astrocytomas.
nolecularly and clinically distinct subtypes of glioblastoma multiforme.
-grade and low-grade gliomas.
cell factor induces angiogenesis within the brain.
cell factor induces angiogenesis within the brain.
cell factor induces angiogenesis within the brain.

linical outcome in breast cancer. our stroma promote breast cancer metastasis. ophalangeal syndrome in humans is overexpressed in breast cancer. sal-like human breast cancer. sal-like human breast cancer. lobular and ductal invasive breast carcinomas by laser microdissection and microarray analysis. lobular and ductal invasive breast carcinomas by laser microdissection and microarray analysis. lobular and ductal invasive breast carcinomas by laser microdissection and microarray analysis.

nset colorectal cancer that integrates diverse signaling pathways: implication for tumorigenesis. nset colorectal cancer that integrates diverse signaling pathways: implication for tumorigenesis. pilles of colorectal adenoma, adenocarcinoma, and normal tissue examined by oligonucleotide arrays.

tromal genes expressed in common between Barrett's esophagus and adenocarcinoma. gastric cancer by oligonucleotide microarrays. to adenocarcinoma is associated with the suppression of the transcriptional programs of epidermal differentiation. to adenocarcinoma is associated with the suppression of the transcriptional programs of epidermal differentiation.

ith tumorigenesis and metastatic potential of hypopharyngeal cancer by microarray analysis. signature associated with recurrent disease in squamous cell carcinoma of the head and neck. signature associated with recurrent disease in squamous cell carcinoma of the head and neck. le deregulation in human papillomavirus-positive and human papillomavirus-negative head/neck and cervical cancers. on profile and tumor invasion in oral squamous cell carcinoma.

irvival of patients with lung adenocarcinoma.

pmas by mRNA expression profiling reveals distinct adenocarcinoma subclasses.
 pmas by mRNA expression profiling reveals distinct adenocarcinoma subclasses.
 pmas by mRNA expression profiling reveals distinct adenocarcinoma subclasses.
 pmas by mRNA expression profiling reveals distinct adenocarcinoma subclasses.
 pmas by mRNA expression profiling reveals distinct adenocarcinoma subclasses.
 pmas by mRNA expression profiling reveals distinct adenocarcinoma subclasses.
 pmas by mRNA expression profiling reveals distinct adenocarcinoma subclasses.
 pmocarcinoma of the lung.
 nocarcinoma of the lung.
 nocarcinoma of the lung.
 inomas of smokers and nonsmokers.
 ssion between human pulmonary adenocarcinoma and a carcinogen-induced murine model.
 yal control for Q-RT-PCR from microarray data using a block bootstrap re-sampling scheme.

reveals the high centrality of genes differentially expressed in lung cancer tissues.

<u>
 liver cancers.</u>
 <u>
 liver cancers.</u>
 <u>
 HCV-induced dysplasia and hepatocellular carcinoma.</u>

melanoma progression. Jefined by specific gene expression profiles with no BRAF signature. Jefined by specific gene expression profiles with no BRAF signature. ant melanoma but not benign melanocytic lesions.

genic activity and is a downstream target of Wnt signaling in ovarian endometrioid adenocarcinomas. genic activity and is a downstream target of Wnt signaling in ovarian endometrioid adenocarcinomas. genic activity and is a downstream target of Wnt signaling in ovarian endometrioid adenocarcinomas. genic activity and is a downstream target of Wnt signaling in ovarian endometrioid adenocarcinomas. genic activity and is a downstream target of Wnt signaling in ovarian endometrioid adenocarcinomas. acterize advanced stage serous ovarian cancers. pithelial ovarian cancer with gene expression arrays and recursive descent partition analysis. s in normal and neoplastic ovarian tissue samples identifies candidate molecular markers of epithelial ovarian cancer.

sected pancreatic intraepithelial neoplastic lesions. lissected pancreatic ductal carcinomas using high-density DNA microarrays. ancreatic ductal carcinoma based on gene expression profiles of pancreatic ductal cells. enocarcinoma and chronic pancreatitis identifies multiple genes differentially regulated in pancreatic cancer.

pogenes and tumor suppressors in malignant pleural mesothelioma using large-scale transcriptional profiling.

's in prostate cancer. te tissues: insights into gene expression patterns of prostate development during puberty.) prostate carcinoma during hormonal therapy identifies and rogen-responsive genes and mechanisms of therapy resistance. nalysis of prostate cancer reveals distinct transcriptional programs associated with metastatic disease. a transforming oncogene in human prostate cancer cells. prostatic hyperplasia: molecular dissection by gene expression profiling. te cancers. overexpression in prostate cancer. primary cultures from human prostate tumors: a molecular approach to predict clinical behavior of prostate cancer. cal prostate cancer behavior. ling of prostate cancer progression. ter protein 185 identified by expression profiling is associated with prostate cancer progression. er protein 185 identified by expression profiling is associated with prostate cancer progression. analysis of prostate cancer reveals signatures of metastatic progression. and surrogate molecular markers for dasatinib in prostate cancer: rationale for patient selection and efficacy monitoring. es candidate markers and pharmacological targets in prostate cancer. state cancer predicting tumor aggression and preceding development of malignancy.

ifferentially expressed genes in renal cell carcinoma by expression profiling on a global human 31,500-element cDNA array. Ifferentially expressed genes in renal cell carcinoma by expression profiling on a global human 31,500-element cDNA array. Ifferentially expressed genes in renal cell carcinoma by expression profiling on a global human 31,500-element cDNA array. Ifferentially expressed genes in renal cell carcinoma by expression profiling on a global human 31,500-element cDNA array. Ifferentially expressed genes in renal cell carcinoma by expression profiling on a global human 31,500-element cDNA array. Ifferentially expressed by complementary DNA microarray. If enal cell carcinoma gene expression identified by parametric analysis of microarray data. If enal cell carcinoma gene expression identified by parametric analysis of microarray data.

tifies genes with altered expression in salivary adenoid cystic carcinoma.

, including those in a 200-kb gene cluster at 12p13.31, is associated with in vivo differentiation of human male germ cell tumors.

d carcinoma reveals highly consistent profiles.

stinction between primary and metastatic squamous cell carcinomas in the lung.

titutive and hormonally regulated genes during endometrial neoplastic transformation. le deregulation in human papillomavirus-positive and human papillomavirus-negative head/neck and cervical cancers. ncer: molecular classification and prediction of radiotherapy response by DNA microarray.

SUPPLEMENTARY TABLE III (A)

REMBRANDT DATA

Expression of Fibulin mRNA by microarray analysis, mean expression values

shaded cells: lower quality grade for transcript assignment to the reporter (reporter with annotation grade E or R) ==> vetted probesets

Unif: Unified gene expression. Results from the individual probesets were processed into splice-form based probesets, to show a gene-based view of the expression data (additional information regarding unified gene view in http://caintegrator-info.nci.nih.gov/rembrandt)

Significant differences against controls:

		Mean expression	Geometric mean	St. Dev.	Fold over				Mean expression	Geometric mean	St. Dev.	Fold over				Mean expression
	reporter	intensity	(Log2)	(Log 2)	control	p value		reporter	intensity	(Log2)	(Log 2)	control	p value		reporter	intensity
FIBULIN-1	201787_at	190.151	7.432	1.696	0.936	0.7885	FIBULIN-2	203886_s_at	32.200	5.360	1.604	0.666	0.1173	FIBULIN-3	201842_s_at	6387.342
ASTRO	202994_s_at	142.518	7.079	1.507	0.893	0.5958	ASTRO							ASTRO	201843_s_at	1910.852
	202995_s_at	401.986	8.635	0.982	0.997	0.9991									228421_s_at	17.304
	207834_at	101.476	6.594	0.724	0.814	0.0740										
	207835_at	231.040	7.737	0.638	0.848	0.0881										
	Unif 2192	163.697	7.249	1.691	0.955	0.8516		Unif 2199	27.963	5.174	1.605	0.680	0.1381		Unif 2202	1907.175
-														-		
FIBULIN-1	201787_at	215.568	7.242	1.856	0.820	0.4295	FIBULIN-2	203886_s_at	27.704	5.278	1.656	0.629	0.0469	FIBULIN-3	201842_s_at	7211.082
GBM	202994_s_at	121.095	6.623	1.808	0.651	0.0765	GBM							GBM	201843_s_at	2108.498
	202995_s_at	365.822	8.318	1.346	0.801	0.2144									228421_s_at	19.698
	207834_at	119.098	6.633	0.877	0.836	0.1369										
	207835_at	235.568	7.619	0.637	0.781	0.0051										
	Unif 2192	283.714	7.057	1.857	0.836	0.4757		Unif 2199	37.091	5.091	1.659	0.642	0.0578		Unif 2202	3164.583
-						-								-		
FIBULIN-1	201787_at	59.956	5.921	1.695	0.328	0.0003	FIBULIN-2	203886_s_at	31.801	4.911	1.509	0.488	0.0268	FIBULIN-3	201842_s_at	5297.654
MIXED	202994_s_at	76.460	6.022	1.376	0.429	0.0004	MIXED							MIXED	201843_s_at	1964.659
	202995_s_at	342.893	8.027	0.942	0.654	0.0063									228421_s_at	15.996
	207834_at	177.027	6.893	0.803	1.001	0.9949										
	207835_at	351.159	7.832	0.382	0.906	0.6244										
	Unif 2192	53.378	5.765	1.687	0.342	0.0004		Unif 2199	28.495	4.748	1.508	0.506	0.0358		Unif 2202	1888.352
FIBULIN-1	201787_at	81.008	6.133	1.609	0.380	0.0001	FIBULIN-2	203886_s_at	22.896	4.670	1.062	0.413	<0.0001	FIBULIN-3	201842_s_at	2565.457
OLIGO	202994_s_at	56.415	5.941	1.102	0.406	<0.0001	OLIGO							OLIGO	201843_s_at	985.697
	202995_s_at	239.022	7.879	0.613	0.591	<0.0001									228421_s_at	12.799
	207834_at	120.259	6.801	0.750	0.939	0.5931										
	207835_at	212.895	7.717	0.520	0.836	0.0333										
	Unif 2192	72.821	5.964	1.602	0.392	0.0001		Unif 2199	20.574	4.496	1.055	0.425	0.0001		Unif 2202	1005.107
FIBULIN-1	201787_at	270.289	7.528	1.176			FIBULIN-2	203886_s_at	120.630	5.946	1.649			FIBULIN-3	201842_s_at	2268.283
CONTROL	202994_s_at	211.569	7.242	0.872			CONTROL							CONTROL	201843_s_at	757.735
	202995_s_at	554.702	8.639	0.562	1										228421_s_at	24.101
	207834_at	185.257	6.892	0.707												
	207835_at	382.475	7.975	0.516								1				
	Unif 2192	233.896	7.315	1.173	1			Unif 2199	105.556	5.730	1.662	l			Unif 2202	766.428

Geometric mean	St. Dev.	Fold over				Mean expression	Geometric mean	St. Dev.	Fold over				Mean expression	Geometric mean	St. Dev.	Fold over	
(Log2)	(Log 2)	control	p value	[reporter	intensity	(Log2)	(Log 2)	control	p value		reporter	intensity	(Log2)	(Log 2)	control	p value
12.298	1.216	3.422	< 0.0001	FIBULIN-4	206580_s_at	927.369	9.820	0.851	1.243	0.0600	FIBULIN-5	203088_at	393.713	8.249	1.618	0.827	0.3931
10.687	1.240	3.145	< 0.0001	ASTRO	209356_x_at	721.572	9.441	0.917	1.260	0.0658	ASTRO						
4.160	1.184		0.8342														
10.759	1.226	3.369	<0.0001		Unif 30008	590.654	9.256	0.910	1.285	0.0454		Unif. 10516	222.558	7.509	1.890	0.820	0.4597
12.089	2.007	2.961	0.0001	FIBULIN-4	206580_s_at	1765.670	10.967	0.855	2.753	< 0.0001	FIBULIN-5	203088_at	672.318	8.793	1.757	1.205	0.4248
10.296	2.109	2.398	0.0019	GBM	209356_x_at	1429.208	10.618	0.920	2.849	<0.0001	GBM						
4.554	1.327		0.0848														
10 999	2 070	3 979	0.0014		Unif 30008	1851 738	10 432	0.913	2 902	< 0.0001		Unif. 10516	719 082	8 237	2 027	1.358	0 2605
10.000	2.070	0.010	0.0011	L	0	10011100	101102	0.010	2.002		I	0	1101002	0.201	2.027	1.000	0.2000
11 599	1 592	2 108	0.0013	FIBUI IN-4	206580 s at	770.016	9 251	1 013	0.838	0 2057	FIBUL IN-5	203088 at	360 821	7 881	1 814	0.640	0.0920
9.973	1.681	1.917	0.0073	MIXED	209356 x at	502.096	8.790	1.148	0.803	0.1689	MIXED	200000_u	0001021	1.001		0.010	0.0020
3.750	1.228		0.2257														
9.999	1.570	1.989	0.0028	[Unif 30008	442.202	8.628	1.144	0.831	0.2470		Unif. 10516	169.448	6.803	2.246	0.503	0.0467
				_													
11.297	1.343	1.710	0.0039	FIBULIN-4	206580_s_at	535.224	9.346	0.336	0.895	0.3356	FIBULIN-5	203088_at	180.143	7.221	1.695	0.405	0.0002
9.849	1.328	1.760	0.0024	OLIGO	209356_x_at	380.565	8.850	1.033	0.837	0.2028	OLIGO						
3.810	0.947		0.1588														
0.872	1 260	1 822	0.0008	ŀ	Unif 30008	345 679	8 670	1.032	0.861	0.2830		Unif 10516	68 720	6 23/	1 878	0 339	0.0001
0.012	1.200	1.022	010000	L	00000	0-10.010	0.010	1.002	0.001	0.2000			00.720	0.204	1.070	0.000	0.0001
10 523	0.432	I		FIBUI IN-4	206580 s at	1077 461	9 506	0 264	1		FIBULIN-5	203088 at	599 091	8 524	0.713		
9.034	0.512			CONTROL	209356 x at	779.325	9.108	0.327			CONTROL	200000_at	000.001	0.024	0.710		
4.107	0.830			2001	u	110.020	0.100	0.02.			50OL						
		1															
		J															
9.007	0.501]			Unif 30008	665.242	8.895	0.341]			Unif. 10516	404.648	7.795	1.120	[
		-		-					-		-					-	

SUPPLEMENTARY TABLE IV

TARGET SEQUENCES USED FOR RNA INTERFERENCE

	Target sequence
human Fibulin-3 siRNA1	5'-CACAACGTGTGCCAAGACATA
human Fibulin-3 siRNA2	5'-CACGCAATGCACTGACGGATA
rat Fibulin-3 siRNA1	5'-AGGCAACAACGATTTATGCAA
rat Fibulin-3 siRNA2	5'-ATGCGTTTGCCCGGTCTCAAA

PRIMERS USED FOR RT-PCR

Primer ID	Sequence	Species specificity	Use	Comments
GAPDH forward	5'-AGTCCATGCCATCACTGCCAC	human / rat / mouse	aRT-PCR	
GAPDH reverse	5'-ATGACCTTGCCCACAGCCTTG	human / rat / mouse	qRT-PCR	
Fibulin-3 forward	5'-TCAGACATCTTCCAGATACAG	human / rat / mouse	qRT-PCR	
Fibulin-3 reverse	5'-CCCACTATTATTGTCAATCTTAA	human / rat / mouse	qRT-PCR	
Fibulin 2 forward	E' TOACOTOCTOCTOCTOCT	humon		independent control for Eibulin 2 overcession in human aposimone
Fibulin-3 reverse	5-IGAGGICCITCIGCIGGI	human		independent control for Fibulin-3 expression in numan specimens
	3-00200212001010001100	numan		
Fibulin-3 forward	ACATGCCACTGTCTTCCTGG	rat	qRT-PCR	independent control for Fibulin-3 expression in rat tissues or cell lines
Fibulin-3 reverse	GTTTGCTGCCAGCTGAAACC	rat	qRT-PCR	
Fibulin-3 forward	5'-TCAGACATCTTCCAGATACAG	human / rat / mouse	RT-PCR	multi-species specific primers for semiquantitative RT-PCR
Fibulin-3 reverse	5'-CCCACTATTATTGTCAATCTTAA	human / rat / mouse	RT-PCR	
Fibulin 2 forward		humon		used to detect onice variants of human fibulin 2 with and without
Fibulin-3 forward		human		the pop-coding exon 2
	3-0777000001110770711010	numan		
MMP2 forward	5'-CCATCGAGACCATGCGGAAG	human / rat / mouse	aRT-PCR	
MMP2 reverse	5'-CCTGTATGTGATCTGGTTCTTG	human / rat / mouse	qRT-PCR	
MMP9 forward	5'-TCATCCAGTTTGGTGTCGCG	human / rat / mouse	qRT-PCR	
MMP9 reverse	5'-GACCACAACTCGTCGTCGTC	human / rat / mouse	qRT-PCR	
ADAMIS4 forward	5'-GTAGATICGTGGAGACACTG	rat		
ADAWI 54 reverse	5-ACCAAGTIGACAGGGTITCG	Ial	YR I-PCR	
ADAMTS5 forward	5'-AGCTAGGTGATGACCATGAG	rat	aRT-PCR	
ADAMTS5 reverse	5'-GGAGAACATATGGTCCCAAC	rat	aRT-PCR	