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Supplementary Figures

Figure 1: The tissue representation is taken from a cross section through the meristematic region of a primary
root. Cell vertices, cell walls and cell types are manually drawn from an image based on IAA2::GUS staining.
Scale bar = 10 µm.
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Figure 2: Split channel images of PIN1::PIN1:GFP, PIN3::PIN3:GFP and PIN7::PIN7:GFP. The red channel
shows propidium iodide which stains the plasma membrane and the green channel shows GFP. As reported [1] [27]
[3] PIN1 is present throughout the stele and PIN7 is present in the procambium, phloem and associated pericycle
cells. Whilst there is almost no variation in the patterns of PIN1 and PIN7, some variability exists in the PIN3
pattern and it is sometimes present in a broader domain. However, it is consistently strong in the protoxylem
associated pericycle cells. Scale bars = 20 µm.
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Figure 3: Characterization of PINs with immunolocalization. This allowed us to develop detailed z stacks without
the samples bleaching. PIN1 is detected with α-PIN1 antibody, whereas PIN3::PIN3:GFP and PIN7::PIN7:GFP
are detected with α-GFP antibodies. Using this approach we detected PIN1 in the endodermis (labeled end),
however it was not localized to any lateral membranes in these cells. We observed PIN1 on the lateral membranes
of the pericycle cells (pc). Here it appears to localize to the radial membranes (i.e. directing auxin between
the pericycle cells) and the centripetal membranes (i.e. directing auxin into the stele). We did not observe any
PIN1 on the centrifugal membranes in the pericycle cells. In the intervening procambial stem cells (ipcs) we
observed signal on all lateral membranes. In contrast within the xylem cells (xy) we did not see any lateral
localization of PIN1 and the signal was purely localized to the basal membrane. As before, we observed signal
in the protoxylem-associated pericycle cells. This appeared to include partial centripetal localization. We also
observed some PIN3 signal in the protoxylem. However, this was not accompanied with any observable lateral
localization. We observed radial and centripetal localization of PIN7 in the pericycle cells (suggesting that auxin
could be directed between these cells and into the vascular cylinder). We observed lateral localization of PIN7 on
what appeared to be the radial, centripetal and centrifugal membranes.
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Figure 4: Further analysis of the PIN7 localization by CellSeT [4]. CellSeT segments confocal icaption alignment
latexmages and assigns unique identities to each cell and walls between cells. The software then samples the
fluorescence offset between the red (propidium iodide stained cell wall) and the green (PIN7:GFP) channels, and
produce Gaussian plots of each. It will determine any offset between these Gaussians and report this at sub-
pixel accuracy. The offset illustrates the direction in which PINs are localized on the plasma membrane and this
information is returned with a confidence value based on the number of offset pixels. Based on this technology, we
were able to determine the polarity of PIN7 on the lateral membranes of procambial cells. (A) In the first instance
we tested the localization of PIN7 in procambial cells on the walls flanking the xylem axis. As we do not observe
any PIN7 within the xylem axis, we expected all of the PIN to be localized on the centrifugal side of this cell wall
(i.e. within the procambial cells). We observed this localization 94% of the time (n=46). Furthermore, the 6%
of cells where CellSeT reported the PIN to be present in the xylem cells were supported by very low confidence
values (0.16 pixels compared with 0.93 pixels). The white lines show which side of the cell wall the GFP signal
is predicted and an associated offset value. The gray lines show predictions that are supported with pixel offset
values below 0.1.(B) Our confocal images and immunolocalizations suggest that PIN7 was present on all lateral
membranes in procambial cells. These were based on observing the confocal images by eye. However, when we
see PIN7 associated with a cell wall between two cells expressing PIN7, it isn’t possible to be sure whether PIN7
is localized on both or just one of the plasma membranes. We reasoned that if PIN7 was present on both cell
membranes then it would predict the offset in the cell with the strongest expression of PIN7. However, as PIN7
levels appear to be approximately equal in each of the procambial cells we reasoned that if PIN7 was present in
both plasma membranes this would be evident from CellSeT because there would be no clear consensus about
which way the PINs would be localized and because the offset values would be relatively low. We observed that
in 57% of the cases CellSeT called the offset to be in the centrifugal direction (n=76) and in both the cases
where CellSeT predicted either a centrifugal and centripetal offset, these were supported by somewhat lower offset
values (0.62 and 0.65 pixels respectively). Taken together these results strongly support our previous observations
showing the localization of PIN7 on all lateral membranes in procambial cells.
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Figure 5: Documentation of PIN3 localization with
CellSeT. The top left image shows the raw confocal
image. The software segments the image and identi-
fies and assigns unique numbers to each cell. The user
manually assigns cells of interest with GFP expres-
sion and selects these cells along with the neighboring
cells. Although there is considerable variation, the
PIN3 accumulating on the boundary between pericy-
cle cells and their neighbors is predominantly local-
ized on the pericycle-side of the cell wall suggesting
that these cells export PIN to their neighbors. We
observed this in 70% of pericycle-neighbor boundaries
(n=64). An example of a marked up image showing
the localization of PIN3 is shown in the left panel. The
lower images zoom in on one of the xylem poles. The
cell numbered “99” is a protoxylem cell, and the cells
numbered “98” and “106” are protoxylem-associated
pericycle cells.

Figure 6: Schematic showing the localization of PINs 1, 3 and 7 used in this study. The cell types are annotated
in the same way as FigS1 (phloem = yellow, procambium = green, xylem = blue, pericycle = red and endodermis
= orange). The red arrows demonstrate the polarity of the PINs and the direction in which they will transport
auxin.
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ARR5 PIN7 TCSn AUX1 AUX1

Figure 7: Expression of vascular marker genes. Localization of the three reporters ARR5, PIN7 and TCSn
confer very similar patterns of cytokinin response in the vascular tissues of the primary root. Localization of
AUX1::AUX1:YFP shows that AUX1 is localized on the lateral membrane of phloem cells. Although AUX1
signal can be detected in other cells it does not appear to be localized to the lateral membranes in these cells.

Figure 8: Simulations showing the same model and parameter values as SM7 but using independent root geometries
taken at 40 µm above the quiescent centre.

1 Mathematical model applied in Supplementary Movies 1-9

In this section we develop our multicellular mathematical model of vascular patterning in a realistic geometry, as
used to generate Supplementary Movies 1-9. Initially, the tissue representation is derived by manually drawing the
cell walls and the distribution of auxin efflux transporters PIN1, PIN3 and PIN7 using the open source software
Inkscape. Cell wall geometry is reproduced from a digital photograph of a root cross section. The subcellular
location of the PINs is based on confocal images (see Supplementary Figures 2 and 3), and in the case of PIN3 and
PIN7 has been determined using the CellSeT software [4]. The framework used for the model itself is OpenAlea,
an open source software project for plant architecture modeling[5]. Libraries and tools in OpenAlea are primarily
based on the use of the high level, object-oriented script language, Python. The .xml format file encoding the cell
wall structure plus PIN locations produced by Inkscape is converted into a format compatible for use in OpenAlea
using a separate Python script. Once this is done, the sub-cellular interaction network, as summarised in Figure
1 and Supplementary Figure 9, is then coded into ordinary differential equations (ODEs) and embedded in every
cell in the realistic tissue structure using the OpenAlea software. The ODE model is derived below, and a table
summarizing the species included in the model is reported in Supplementary Table 1.
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Figure 9: Schematic representation of the network regulating vascular patterning. Green solid arrows indicate
gene activation, red solid arrows indicate gene inhibition, the dashed green arrow indicates the transport on auxin
mediated by PIN7 and the purple segment represents mutual degradation between miRNA165/166 and PHB
mRNA.

Species symbol Species name Species type

Aux Auxin hormone
CK Cytokinin hormone

ARR5m Arabidopsis response regulator 5 mRNA
ARR5p Arabidopsis response regulator 5 protein
AHP6m Arabidopsis histidine phosphotransfer 6 mRNA
AHP6p Arabidopsis histidine phosphotransfer 6 protein
IAA2m indole-3-acetic acid inducible 2 mRNA
IAA2p indole-3-acetic acid inducible 2 protein
PIN1p Arabidopsis thaliana PIN-formed 1 protein
PIN3p Arabidopsis thaliana PIN-formed 3 protein
PIN7m Arabidopsis thaliana PIN-formed 7 mRNA
PIN7p Arabidopsis thaliana PIN-formed 7 protein
PHBm Phabulosa mRNA
PHBp Phabulosa protein

miRNA165/6 microRNA 165/6 micro RNA
CKIN Cytokinin inhibitor unknown

Table 1: Table summarising the species included in the mathematical model defined by Eqs. (1)-(6).

Sub-cellular interactions. Our model is based on the following biological hypotheses. All genetic loci are
transcribed and translated in every cell and all the species are degraded in every cell except miR165/6 (which
is transcribed only in the endodermis) and CKIN (which is transcribed only in the metaxylem. In all other
tissues the transcription rates of CKIN and miRNA,pmiRNA, pCKINm , are set to zero. PIN1, PIN3 and PIN7 are
located as experimentally observed on the cell walls represented in Supplementary Figure 7 and auxin is actively
transported between cells in which at least one of the PIN proteins is present.

Based on the above mentioned hypotheses, we model transcription via the following reactions:

∅
pAHP6mFAHP6m−−−−−−−−−−−→ AHP6m, AHP6m

dAHP6m−−−−−→ ∅,

∅
pIAA2mFIAA2m−−−−−−−−−−→ IAA2m, IAA2m

dIAA2m−−−−−→ ∅,

∅
pARR5mFARR5m−−−−−−−−−−−→ ARR5m, ARR5m

dARR5m−−−−−→ ∅,

∅
pPHBm−−−−−→ PHBm, PHBm

dPHBm−−−−−→ ∅, .

where pAHP6m , pIAA2m , pARR5m , pPIN7m , pPHBm are transcription rates, dAHP6m , dIAA2m , dARR5m , dPIN7m , dPHBm



8 1 MATHEMATICAL MODEL APPLIED IN SUPPLEMENTARY MOVIES 1-9

are degradation rates and FAHP6m , FIAA2m , FARR5m are Hill functional forms given by:

F
(i)
AHP6m

([Aux]i, [PHBp]i) =
([Aux]i/θAux)mAux

1 + ([Aux]i/θAux)mAux + ([PHBp]i/θPHB)mPHB
,

F
(i)
IAA2m

([Aux]i) =
([Aux]i/θAux)mAux

1 + ([Aux]i/θAux)mAux
,

F
(i)
ARR5m

([Aux]i, [Ck]i) =
([Ck]i/θCk)

mCk

1 + ([Ck]i/θCk)mCk + ([AHP6p]i/θAHP6)mAHP6
,

(1)

where i is the cell index, θAux, θCk, θPHB, θAHP6 are the binding thresholds of the relevant proteins, mAux,
and mCk, mAHP6 are Hill coefficients. PIN1, PIN3 and PIN7 protein concentrations are divided among the cell
walls where these proteins are present (see Supplementary Figure 7). In Supplementary Movies 1-4, their total
concentration within each cell containing PINs is fixed to the unitary value, whereas in Supplementary Movies
5-9 only PIN7 is present and its mRNA concentration is governed by the Hill function:

F
(i)
PIN7m

([ARR5p]i) = (
[ARR5p]i/θARR5)mARR5

1 + ([ARR5p]i/θARR5)mARR5
, (2)

where i is the cell index, θARR5 is ARR5 binding threshold and mARR5 its Hill coefficient.
We suppose that CKIN mRNA is produced only in the metaxylem via:

∅
pCKINm−−−−−→ CKINm, CKINm

dCKINm−−−−−→ ∅,

and miRNA165/166 only in the endodermis via:

∅ pmiRNA−−−−−→ miRNA165/166, miRNA165/166
dmiRNA−−−−−→ ∅

where pCKINm , dCKINm , pmiRNA, dmiRNA are production and degradation rates. PHB mRNA and miRNA165/166
accelerate each other’s degradation at rate dmiRNA/mRNA as follows [6]:

PHBm + miRNA165/166
dmiRNA/mRNA−−−−−−−−−−→ ∅.

From the above reactions we obtain the following system of ordinary differential equations:

d[AHP6m]i
dt

= pAHP6mF
(i)
AHP6m

− dAHP6m [AHP6m]i,

d[IAA2m]i
dt

= pIAA2mF
(i)
IAA2m

− dIAA2m [IAA2m]i,

d[ARR5m]i
dt

= pARR5mF
(i)
ARR5m

− dARR5m [ARR5m]i,

d[PIN7m]i
dt

= pPIN7mF
(i)
PIN7m

− dPIN7m [PIN7m]i,

d[PHBm]i
dt

= pPHBm − dPHBm [PHBm]i − dmiRNA/mRNA[PHBm]i[miRNA165/166]i,

d[CKINm]i
dt

=

{
pCKINm − dCKINm [CKINm]i, if i in metaxylem,
0, otherwise,

(3)

Translation of these mRNAs is modelled assuming the following reactions:

AHP6m
pAHP6p−−−−−→ AHP6m + AHP6p, AHP6p

dAHP6p−−−−−→ ∅,

IAA2m
pIAA2p−−−−→ IAA2m + IAA2p, IAA2p

dIAA2p−−−−→ ∅,

ARR5m
pARR5p−−−−−→ ARR5m + ARR5p, ARR5p

dARR5p−−−−−→ ∅,

PIN7m
pPIN7p−−−−→ PIN7m + PIN7p, PIN7p

dPIN7p−−−−−→ ∅,

PHBm

pPHBp−−−−→ PHBm + PHBp, PHBp

dPHBp−−−−→ ∅,

CKINm

pCKINp−−−−−→ CKINm + CKINp, CKINp

dCKINp−−−−−→ ∅,



9 1 MATHEMATICAL MODEL APPLIED IN SUPPLEMENTARY MOVIES 1-9

where pAHP6p , pIAA2p , pARR5p , pPIN7p , pPHBp , pCKINp are translation rates and dAHP6p , dIAA2p , dARR5p , dPIN7p , dPHBp , dCKINp
are degradation rates. From these reactions we obtain the following system of ordinary differential equations:

d[AHP6p]i
dt

= pAHP6p [AHP6m]i − dAHP6p [AHP6p]i,

d[IAA2p]i
dt

= pIAA2p [IAA2m]i − dIAA2p [IAA2p]i,

d[ARR5p]i
dt

= pARR5p [ARR5m]i − dARR5p [ARR5p]i,

d[PIN7p]i
dt

= pPIN7p [PIN7m]i − dPIN7p [PIN7p]i,

d[PHBp]i
dt

= pPHBp [PHBm]i − dPHBp [PHBp]i,

d[CKINp]i
dt

= pCKINp [CKINm]i − dCKINp [CKINp]i. (4)

Transport and diffusion. The modeling of transport and diffusion is inspired by the auxin transport model
developed in [7]. We denote by Vi (µm3) the volume of cell i and by Ni the set of neighboring cells of cell i. If i
and n are two neighboring cells, Si,n (µm2) denotes the area of the exchange surface, and [PIN1p]i,n, [PIN3p]i,n
and[PIN7p]i,n are the respective levels of PIN1, PIN3 and PIN7 on the membrane of cell i facing cell n. The sum
of each of the membrane bound PINs in a given cell is equal to the total intracellular level of that PIN ([PIN1p]i,
[PIN3p]i and[PIN7p]i), and is distributed between each of the walls with PIN according to the ratio of their surface
areas.

We assume auxin, cytokinin and miRNA165/166 to be passively transported between cells, with background
permeabilities PAux, PCk, PmiRNA. Auxin is additionally transported actively by PIN carriers with rate TAux.
Assuming that cytokinin biosynthesis is inhibited by CKIN protein, we model such inhibition by the saturating
form:

F
(i)
Ck([CKINp]i) =

1

1 + ([CKINp]i/θCKIN )mCKIN
, (5)

where θCKIN is the binding threshold of the protein CKIN and mCKIN a Hill coefficient. We assume that auxin
and cytokinin biosynthesis and degradation occurs in every cell of the root section inside the endodermis and, to
account for their transport through the phloem, we enable our model to have different hormone biosynthesis rates
in this particular tissue. More precisely, auxin and cytokinin biosynthesis and degradation are governed by the
reactions:

∅ pAux−−−→ Aux, Aux
dAux−−−→ ∅,

∅ pCk−−→ Ck, Ck
dCk−−→ ∅,

where pAux, pCk are biosynthesis rates and dAux, dCk are degradation rates. From the above considerations we
obtain the following system of ordinary differential equations:

d[Aux]i
dt

= pAux − dAux[Aux]i

− 1

Vi

∑
n∈Ni

Si,nPAux

(
[Aux]i − [Aux]n

)
− 1

Vi

∑
n∈Ni

Si,nTAux

(
([PIN1p]i,n + [PIN3p]i,n + [PIN7p]i,n)[Aux]i

− ([PIN1p]n,i + [PIN3p]n,i + [PIN7p]n,i)[Aux]n

)
,

d[Ck]i
dt

= pCkFCk − dCk[Ck]i −
1

Vi

∑
n∈Ni

Si,nPCk

(
[Ck]i − [Ck]n

)
,

d[miRNA165/166]i
dt

= pmiRNA − dmiRNA[miRNA165/166]i

− dmiRNA/mRNA[PHBm]i[miRNA165/166]i

− 1

Vi

∑
n∈Ni

Si,nPmiRNA

(
[miRNA165/166]i − [miRNA165/166]n

)
, (6)
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where i is the cell index and pmiRNA = 0 in all cells outside the endodermis.
The experimental evidence suggest that auxin and cytokinin marker genes are absent from the endodermis.

To reflect this in the model additional degradation terms are added to the equations for auxin and cytokinin in
(6):

− 1

Vi

∑
n∈Ni

Si,nP
end
Aux[Aux]i,

− 1

Vi

∑
n∈Ni

Si,nP
end
Ck [Ck]i,

for i in the endodermis. These terms also account for loss of auxin and cytokinin to the outer root tissues not
included in the tissue geometry and, in the case of auxin, from top-down transport in the primary root. To
keep auxin and cytokinin at a low level in the endodermis we set P endAux = 20.0 · µm · µM−1 · s−1 and P endCk =
100.0 · µm · µM−1 · s−1.

In Supplementary Movie 9 we include the influx carrier AUX1 and we model auxin transport as follows:

d[Aux]i
dt

= pAux − dAux[Aux]i −
1

Vi

∑
n∈Ni

Si,nPAux

(
[Aux]i − [Aux]n

)
− 1

Vi

∑
n∈Ni

Si,nTAux

(
[PIN7p]i,n[Aux]i − [PIN7p]n,i[Aux]n

)
− 1

Vi

∑
n∈Ni

Si,nTAUX1

(
[AUX1]n,i[Aux]n − [AUX1]i,n[Aux]i

)
,

where TAUX1 is the influx rate due to AUX1 expression. AUX1 is localised on all the membranes of the phloem
cells and is constantly expressed in the phloem, its unitary concentration being proportionally divided on the cell
walls.

Parameters. As in other mathematical analyses of signaling networks, only partial information is known about
the parameter values of the model [8], [9]. As in [8], the parameter values have been specified as follows. The
parameters relating to auxin transport efficiency (TAux) and auxin background permeability (PAux) have been
analyzed in [10], [11] and we use the same values for those parameters (see Supplementary Table 2).

Parameter Description Value

TAux Transport efficiency of PIN proteins 20.0 · µm · µM−1 · s−1

PAux Auxin background permeability 1.0 · µm · s−1

PCk Cytokinin background permeability 10.0 · µm · s−1

PmiRNA miRNA background permeability 1.5 · µm · s−1

pAux Auxin biosynthesis rate 0.06 · µM · s−1

pCk Cytokinin biosynthesis rate 2.0 · µM · s−1

pCKINp CKIN protein translation rate 1.0 · s−1

pAHP6p AHP6 protein translation rate 1.0 · s−1

pIAA2p IAA2 protein translation rate 10.0 · s−1

pARR5p ARR5 protein translation rate 10.0 · s−1

pPIN7p PIN7 protein translation rate 5.0 · s−1

pPHBp PHB protein translation rate 1.0 · s−1

dAux Auxin degradation rate 1.0 · s−1

dCk Cytokinin degradation rate 10.0 · s−1

dCKINp CKIN protein degradation rate 1.0 · s−1

dAHP6p AHP6 protein degradation rate 1.0 · s−1

dIAA2p IAA2 protein degradation rate 10.0 · s−1

dARR5p ARR5 protein degradation rate 10.0 · s−1

dPIN7p PIN7 protein degradation rate 1.0 · s−1

dPHBp PHB protein degradation rate 1.0 · s−1

Table 2: Default values of the parameters regulating translation and cell-to-cell communication.
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Parameter Description Value

pmiRNA miRNA165/166 transcription rate 32.5 · µM · s−1

pCKINm CKIN mRNA transcription rate 5.0 · µM · s−1

pAHP6m AHP6 mRNA transcription rate 2.0 · µM · s−1

pIAA2m IAA2 mRNA transcription rate 10.0 · µM · s−1

pARR5m ARR5mRNA transcription rate 20.0 · µM · s−1

pPIN7m PIN7 mRNA transcription rate 1.0 · µM · s−1

pPHBm PHB mRNA transcription rate 2.0 · µM · s−1

dmiRNA miRNA165/166 degradation rate 1.0 · s−1

dCKINm CKIN mRNA degradation rate 1.0 · s−1

dAHP6m AHP6 mRNA degradation rate 1.0 · s−1

dIAA2m IAA2 mRNA degradation rate 10.0 · s−1

dARR5m ARR5 mRNA degradation rate 10.0 · s−1

dPIN7m PIN7 mRNA degradation rate 1.0 · s−1

dPHBm PHB mRNA degradation rate 1.0 · s−1

dmiRNA/mRNA miRNA165/166 - PHB mRNA 10.0 · µM−1 · s−1

mutual degradation rate
θAux Auxin binding threshold 0.25 · µM
θCKIN CKIN binding threshold 0.05 · µM
θAHP6 AHP6 binding threshold 0.04 · µM
θPHB PHB binding threshold 0.4 · µM
θCk Cytokinin binding threshold 0.5 · µM
θARR5 ARR5 binding threshold 0.1 · µM
mAux auxin Hill coefficient 2.0
mCk cytokinin Hill coefficient 2.0
mAHP6 AHP6 Hill coefficient 3.0
mPHB PHB Hill coefficient 3.0
mARR5 ARR5 Hill coefficient 3.0
mCKIN CKIN Hill coefficient 5.0

.

Table 3: Default values of the parameters regulating transcription. The Hill coefficients have been set greater than
one to reflect a non-linear response of genes to activators and repressors. Where known, these have been chosen
to reflect the presence of multiple binding sites within a promoter or the number of genes required for a given
response. For example, both AHP6 and IAA2 contain multiple Auxin Response Elements (AuxREs).

Following [10], we assume that the ratio between rates of active and passive transport to be 1/20. The other
parameters are unknown: initially, as proposed in [8], all unknown parameters were set to be unity of their
particular unit; subsequently, some have been modified in the light of experimental observations. We explored a
range of values for the production and degradation of PHB mRNA and miR, and selected realistic values from
this range that reproduced the patterns observed in [12]. We subsequently examined the effect that altering these
values had (see section 2) and found that quite significant changes were required in order to disrupt the gradient
of PHB. Due to the partial arbitrariness of the parameter choice, and to test the robustness of the model results,
in the following sections we develop local and global sensitivity analyses of our signaling network model in single
cells, taken from different tissues, and we analyze the effects of parameter perturbations in the two-dimensional
geometry. The default parameter values and units used in the multicellular model are reported in Supplementary
Tables 2, 3. Variations around these values have been applied to produce Supplementary Movies 1-7 and are
reported in the legends of the Supplementary Movies. With this choice of parameters the model evolves to a
stable pattern in approximately 15 seconds simulated time (see Supplementary Movies 1-7). A typical simulation
result is presented in Supplementary Movie 6.
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2 Exploration of parameter space in PHB - miRNA165/6 sub model

The spatial distribution of PHB protein is modified in the model solely via the interaction and mutual degradation
of miRNA and PHB mRNA. Because of this the equations for both in (3) and (6) may be considered as a separate
sub-model defining the spatial expression of PHB mRNA. Figure 10(a) shows the steady state distribution of PHB
mRNA using the default parameter values given in Table 3. The robustness of model PHB expression pattern
to parameter changes was tested by considering the mean mRNA values in five concentric cell layers as shown
in Figure 10(b). These were then plotted relative to the peak PHB expression in the central layer (L1) for a
variety of parameter values. The distribution for the default parameter set is shown in figure 10(c). PHB mRNA
distributions for variations in each of the default parameter values for dmiRNA/mRNA, pPHBm , dPHBm , PmiRNA,
dmiRNA and pmiRNA are shown in Figure 11.

Figure 10: (A.) Steady state PHB protein in the wild type root cross section using the default parameter values
in Table 3 with the original model (Equations (3) and (6)). (B.) Schematic root cross section showing cell layer
groupings used to produce the mean value plots in C and in Figure 11. (C.) Mean PHB mRNA and miRNA in
each of the cell layer groupings L1-L5 for both the original model (red), and the model given by Equations (7a)
and (7b) in which miRNA is not degraded by the interaction with PHB mRNA (blue). For PHB mRNA each
bar is plotted relative to the value in L1 using the original model, while for miRNA each bar is plotted relative to
the value in L5 with the original model.

To demonstrate the importance of the mutual degradation of both the miRNA and PHB mRNA in establishing
a sharp boundary to the domain of PHB expression an alternative model was considered in which while the miRNA
still accelerates the degradation of PHB mRNA, it is itself no longer consumed in this reaction, as follows:

d[miRNA]i
dt

= pmiRNA − dmiRNA[miRNA]i

− 1

Vi

∑
n∈Ni

Si,nPmiRNA ([miRNA]i − [miRNA]n) , (7a)

d[PHBm]i
dt

= pPHBm − dPHBm [PHBm]i

−dmiRNA/mRNA[PHBm]i[miRNA]i, (7b)

where the model variables and parameter values are as previously defined. For this alternative model the mean
PHB mRNA in each cell layer L1-L5 is plotted, relative to the L1 value using the full model, for each of the
parameter sets as shown in Figures 10(c) and 11. In each case, removing the mutual degradation of miRNA
and PHB mRNA and replacing with just the miRNA promoted degradation of PHB mRNA removes the sharp
boundary between strong and weak PHB expression in adjacent cell layers.
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Figure 11: Alterations in parameter space in the PHB mRNA/miRNA submodel. Red bars: Mean steady state
PHB mRNA using the original model (Equations (3) and (6)) in each of the cell layers L1-L5 (defined in Figure
10(b)), relative to the value in L1, for half and double each of the default parameter values for dmiRNA/mRNA,
pPHBm , dPHBm , PmiRNA, dmiRNA and pmiRNA given in Table 3. In each case the remaining parameter values are
kept to the default values. Blue bars: As for plot shown with red bars but using the model in which miRNA is
not degraded by the interaction with PHB mRNA (Equations (7a) and (7b)). The bars are normalised to the
value in L1 found using the original model.

2.1 Continuous approximation of the PHB - miRNA165/6 sub model

2.2 Model derivation

To examine further the relevance of mutual degradation in creating a sharp boundary of PHB mRNA we as-
sumed that the root cross section has approximately radial symmetry with respect to geometry, production and
degradation of PHB and miRNA and analyzed the evolution of [miRNA](r, θ, t) and [PHBm](r, θ, t) on a circle
of radius R̄ with r ∈ [0, R̄], θ ∈ [0, 2π] and t ∈ R+. We considered a two-dimensional discrete model comprising
the interaction between miRNA and PHB mRNA and neglecting the other molecular interactions. The model
assumes Nr cells along any radius for a fixed angle, Nθ cells along any circumference for a fixed radius and is given
by the equations

∂[miRNA](r, θ, t)

∂t
= pmiRNA(r)− dmiRNA[miRNA](r, θ, t)− dmiRNA/mRNA[miRNA](r, θ, t)[PHBm](r, θ, t)

+D∆d[miRNA](r, θ, t), (8a)

∂[PHBm](r, θ, t)

∂t
= pPHBm − dPHBm [PHBm](r, θ, t)− dmiRNA/mRNA[miRNA](r, θ, t)[PHBm](r, θ, t), (8b)

where ∆d is a discrete Laplacian operator accounting for the circular geometry,

∆d[miRNA](r, θ, t) :=
[miRNA](r − δr, θ, t)− 2[miRNA](r, θ, t) + [miRNA](r + δr, θ, t)

δ2
r

+
1

r

[miRNA](r + δr, θ, t)− [miRNA](r − δr, θ, t)
2δr

+
1

r2

[miRNA](r, θ − δθ, t)− 2[miRNA](r, θ, t) + [miRNA](r, θ + δθ, t)

δ2
θ

, (9)
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D is the diffusion coefficient of [miRNA], r = i · δr = i · R̄Nr and θ = j · δθ = j · 2π
Nθ

, where i = 1, . . . , Nr and
j = 1, . . . , Nθ are the cell indexes, δr, δθ are the radial and angular spacings, and where reactions and parameters
are defined as in Section 1. Approximate estimates measured from cross sections in root regions similar to the
one represented in Supplementary Figure 1 suggest that on average R̄ = 45 µm. We assume that miRNA is
transcribed in a region close to the boundaries, representing the endodermis, at rate:

pmiRNA(r) :=

{
32.5 µM · s−1 if 0 µm ≤ r ≤ 5 µm or 40 µm ≤ r ≤ 45 µm,

0 µM · s−1 if 5 µm ≤ r ≤ 40 µm.

Accounting for radial symmetry and assuming that δr, δθ � 1, we then derive a continuum limit and analyze how
the steepness of [PHBm] profile varies when we vary the degradation rate dmiRNA/mRNA in two model variants. In
the first variant, we assume that miRNA and PHB mRNA mutually degrade one another following the equations:

∂[miRNA](r, t)

∂t
= pmiRNA(r)− dmiRNA[miRNA](r, t)

−dmiRNA/mRNA[miRNA](r, t)[PHBm](x, t) +D∆[miRNA](r, t), (10a)

∂[PHBm](r, t)

∂t
= pPHBm − dPHBm [PHBm](r, t)− dmiRNA/mRNA[miRNA](r, t)[PHBm](r, t), (10b)

where ∆ is the usual Laplacian operator, namely in the radially symmetric case

∆[miRNA](r, t) =
∂2[miRNA]

∂r2
+

1

r

∂[miRNA]

∂r
, (11)

with 0 < r < R̄, with the following conditions at r = 0, R̄

∂[miRNA](R̄, t)

∂r
= 0, (12a)

|[miRNA](0, t)| < ∞, (12b)

and with initial conditions given by

[miRNA](r, 0) = 0, [PHBm](r, 0) = 0. (13)

In the second variant we assume that only PHB mRNA is degraded by miRNA as follows:

∂[miRNA](r, t)

∂t
= pmiRNA(r)− dmiRNA[miRNA](r, t) +D∆[miRNA](r, t), (14a)

∂[PHBm](r, t)

∂t
= pPHBm − dPHBm [PHBm](r, t)− dmiRNA/mRNA[miRNA](r, t)[PHBm](r, t), (14b)

with the boundary and initial conditions given by Eqs. (12), (13).

2.3 Analytical solutions

The time dependent solution of equation (14a) and the steady states of equations (14) can be derived analytically.
The steady state of equation (14a) follows by substituting into the equation

0 = pmiRNA(r)− dmiRNA[miRNA](r) +D∆[miRNA](r) (15)

the Fourier-Bessel series expansions

pmiRNA(r) :=
∞∑
n=0

pnJ0(λnr), [miRNA](r) :=
∞∑
n=0

mnJ0(λnr), (16)

where J0(λnr) is the zero-th Bessel function of the first kind, 0 < λ0 < . . . < λn < . . . are the infinite solutions of
the equation J

′
0(λnR̄) = 0 and

pn :=
〈pmiRNA(r), J0(λnr)〉

‖J0(λnr)‖2
, mn :=

〈[miRNA](r), J0(λnr)〉
‖J0(λnr)‖2
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are the coefficients of the Fourier-Bessel series with

〈f(r), g(r)〉 :=

∫ R̄

0
f(r)g(r)rdr, ‖f‖2 := 〈f, f〉, f, g : (0, R̄]→ R.

From the identity ∆J0(λnr) = −λ2
nJ0(λnr) it follows that mn = pn

Dλ2n+dmiRNA
and, from the latter, we deduce that

the steady state solution is given by

[miRNA](r) =
∞∑
n=0

pn
Dλ2

n + dmiRNA
J0(λnr). (17)

The corresponding time dependent solution is

[miRNA](r) =
∞∑
n=0

pn
1− e−(Dλ2n+dmiRNA)t

Dλ2
n + dmiRNA

J0(λnr). (18)

At steady state, equation (14b) supplies an algebraic equation for [PHBm] in terms of [miRNA] which can be
written as

[PHBm](r) =
pPHBm

dPHBm + dmiRNA/mRNA[miRNA](r)
.

The case with mutual degradation of PHB mRNA and miRNA given by equations (10) cannot be solved ana-
lytically (cf. Levine et al. [6]) but it can be clarified further by an asymptotic analysis of the limit in which
dmiRNA/mRNA becomes large, so that miRNA and PHB mRNA cannot coexist at significant levels at the same
location. In this case, a sharp-interface problem then results in the limit, with sharp drops off in miRNA and
PHB mRNA levels either side of the interface. In particular, if

dmiRNA/mRNA[miRNA]� dPHBm , (19)

then in the miRNA rich region and at steady state, on neglecting the independent degradation term in Eq. (10b)
one has

pmiRNA(r)− pPHBm − dmiRNA[miRNA](r) +D∆[miRNA](r) = 0. (20)

Although formally the solution of Eq. (20) on the full domain reduces to Eq. (17) with

pn =
〈pmiRNA(r)− pPHBm , J0(λnr)〉

‖J0(λnr)‖2
(21)

this solution approximates the steady state solution of Eq. (10a) only in the region satisfying the condition (19).
Conversely, assuming that in the PHB mRNA rich region the effect of miRNA diffusion is negligible and that at
any cellular position the decay of miRNA and PHB mRNA is dominated by coupled degradation within a ‘strong
interaction limit’ defined by the inequality

max
{dmiRNA/mRNA · pmiRNA(r)/dmiRNA

dPHBm
,
dmiRNA/mRNA · pPHBm/dPHBm

dmiRNA

}
� 1, ∀r (22)

the estimate of PHB mRNA concentration at steady state derived in one dimension (cf. Levine et al. [6]) for an
mRNA concentration of an unspecified gene under these conditions still holds in two dimensions:

[PHBm](r) ≈ [pPHBm − pmiRNA(r)]+
dPHBm

, (23)

with [x]+ = max {0, x}.

2.4 Numerical solutions

In order to express the steepness of [PHBm] quantitatively we calculated numerically its spatial derivative ∂[PHBm]
∂x

on a diameter D = [−R̄, R̄] at a point x̄ ∈ I = [−R̄, 0] such that

[PHBm](x̄) =
maxx∈I([PHBm]) + minx∈I([PHBm])

2
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and we considered its absolute value
∣∣∂[PHBm]

∂x (x̄)
∣∣ as an estimate of [PHBm] sharpness. In both variants we

maintained transcription and degradation rates as defined in Supplementary Tables 2, 3 and we fixed D =
1.5 µm2 ·s−1. In Figure 12a we show the steady state solutions of equations (10) and (14) together with a segment
which is tangent to [PHBm] at x̄. The slope of this segment is clearly higher when mutual degradation occurs.
The importance of mutual degradation in generating a steep gradient of [PHBm] is further highlighted in Figure

12b which shows how PHB sharpness (
∣∣∂[PHBm]

∂x (x̄)
∣∣) varies in the steady state solutions of equations (10) and

(14) when changing dmiRNA/mRNA. Whereas PHB sharpness reaches a plateau at higher values of dmiRNA/mRNA

when miRNA is not degraded by PHB mRNA, mutual degradation causes a pronounced increase in
∣∣∂[PHBm]

∂x (x̄)
∣∣

when increasing dmiRNA/mRNA.
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Figure 12: Continuous approximation of the PHB - miRNA165/6 sub model. (a) Steady state solutions of Eqs.
(10) (solid lines) and (14) (dashed lines) along a diameter. Steady state solutions of miRNA are presented in blue,
whereas steady state solutions of PHB mRNA are shown in green. The red segments are tangent to [PHBm]
at x̄ and their slope highlights that when mutual degradation is present the profile of PHB mRNA is steeper.
(b) PHB mRNA sharpness (

∣∣∂[PHBm]
∂x (x̄)

∣∣) of the steady state solutions of Eqs. (10) (red line) and (14) (blue
line) at increasing values of dmiRNA/mRNA. Mutual degradation causes PHB mRNA sharpness to increase more
dramatically than when miRNA is not degraded by PHB mRNA.

3 Sensitivity analysis

Mathematical models of signaling networks often comprise of a large number of nonlinear differential equations
describing the interaction network which, in turn, rely upon a large number of parameters associated with the
reaction rates. Since the input/output relationships in such models may be not intuitive, sensitivity analysis
algorithms may help identifying which parameters play a key role by ordering the relevance of parameter variations
(input) in modifying the variation in the model variables (output). In order to investigate how the variables of
the mathematical model defined by Eqs. (1)-(6) vary when choosing parameter values that differ from the default
value reported in Supplementary Tables 2 and 3 we apply three types of sensitivity analysis.

Firstly, using a local sensitivity analysis, we analyze in one-dimension how each individual component of
the sub-cellular interaction network is affected by variation of each parameter from its default value, in two
representative tissue types (inside and outside the metaxylem), allowing us to identify which variables are most
affected by parameter perturbations. The parameters are then ranked by the average sensitivity of the model
variables to parameter perturbations allowing us to identify which parameters have the strongest influence on the
components of the interaction network.

We then apply a global sensitivity analysis, which ranks the sensitivity of parameters over a much wider region
of the parameter space. This finds that, in general, the parameters whose rankings in the global analysis differ
most from those computed by the local analysis are ranked lower by the local sensitivity algorithm than the global
sensitivity algorithm. This suggests that their optimised values do not reside within a sensitive region of the
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parameter space and that the signalling pathway is relatively robust to parameter variation [14].
We finally select the parameters that affect the variables of the sub-cellular network most strongly, and analyze

the sensitivity of the model variables in every tissue within the full multicellular model to variation in these
parameters.

3.1 Sub-cellular network (local sensitivity analysis).

Following the approach proposed in [15], [16], we analyse the steady state sensitivity of the sub-cellular interactions
defined by Eqs. (1)-(6) to perturbations from the default set reported in Supplementary Tables 2 and 3, with the
exception of parameters associated with transport and permeability (TAux, PAux, PCk, PmiRNA) and parameters
associated with PIN7 concentration (pPIN7p , dPIN7p). We have not included the endodermis in this analysis
because it does not contain PIN7 and there is no significant variation in the expression of network components
within this tissue.

Under these conditions, we can investigate two possibilities; namely, when a cell is located in the metaxylem
(where CKIN is expressed) and when it is located outside this tissue (where CKIN is not expressed). The steady-
state sensitivity for the k-th element (state or reaction rate) Xk with respect to the parameter pj is defined
by:

Sk,j :=
X

(ss)
k (pj + δpj )−X

(ss)
k (pj)

δpj
,

where X
(ss)
k is the function returning the steady-state for this element (state or reaction rate) for the given

parameter pj and δpj is a perturbation of this parameter [16]. The normalised sensitivity index, defined by:

S
(n)
k,j :=

pj
Xss
k (pj)

|Sk,j |, (24)

estimates the sensitivity of the steady-state value X
(ss)
k (pj) to perturbation of the parameter pj , relative to the

absolute values of both the steady-state and the parameter under evaluation. This index is calculated for all
the model species and parameters under a relative parameter perturbation of 1% as defined by default in the
Systems Biology Toolbox for Matlab, SBToolbox [15]. Since nominal parameter values of zero lead to normalized
sensitivities of zero for these parameters, and nominal steady-state values of zero lead to infinite normalised
sensitivities, in these cases the normalized sensitivities for these parameters and states are not determined.

All parameters associated with cell geometry are set to zero, these being the transport and permeability pa-
rameters (TAux, PAux, PCk, PmiRNA) and parameters associated with PIN7 concentration (pPIN7p , dPIN7p). In
addition, when considering a cell outside the metaxylem, parameters associated with CKIN (pCKINm , pCKINp ,
dCKINm , dCKINp , θCKIN , mCKIN ) are removed as this component is not present outside this tissue. The other
parameter values are as reported in Supplementary Tables 2 and 3. The steady states represent changes in
protein and mRNA levels when parameters are perturbed. The SBToolbox default relative parameter pertur-
bation has been applied, this being set to be 1% of the parameter default value, [15]. The results of this eval-
uation for each parameter and model species, in typical cells outside and within the metaxylem, are given at
http://www.cpib.ac.uk/vascularmodel, Figures 1-4.

In Supplementary Figure 13 we show a MinMax view of the magnitude of normalised steady-state sensitivities
in a typical cell external to the metaxylem (Supplementary Figure 13a) and within the metaxylem (Supplementary
Figure 13b). Bars extend from the minimal to the maximal values of all the sensitivities of the variables (species)
of the model given by Eqs. (1)-(6) and reported in Supplementary Table 1. The names associated with the
parameter ranks are reported in Supplementary Tables 4, 5. Blue lines show the mean value of the sensitivities
of the model variables, whereas red lines their median value. Parameters are ranked by the mean values of the
variable sensitivities in decreasing order.

The parameters that affect the average variable sensitivity the most outside the metaxylem are those associated
with auxin expression and binding (see Supplementary Figure 13a and Supplementary Table 4). Within the
metaxylem however, parameters associated with CKIN, auxin and cytokinin expression and binding have a stronger
influence on the model output.

In Supplementary Table 6 we present the parameters that affect the average variable sensitivity the most in
both cell types (inside and outside the metaxylem) by evaluating the sum of their ranks in the two cell types. We
identify mAux, dAux, pAux, θAux, pCk, dCk, θCk, mCk as such parameters. Perturbation of these parameters will
be analyzed include this parameter in the comparison among different tissues reported in Supplementary Table
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Parameter rank Parameter name Parameter rank Parameter name

1 mAux 19 dARR5p

2 dAux 20 pmiRNA
3 θAux 21 dmiRNA
4 pAux 22 θARR5

5 dAHP6m 23 pPHBm
6 pAHP6m 24 pIAA2m

7 dAHP6p 25 dIAA2m

8 pAHP6p 26 dmiRNA/mRNA
9 θAHP6 27 pPHBp
10 mAHP6 28 pPIN7m

11 pCk 29 pIAA2p

12 dCk 30 dPHBp
13 θCk 31 dIAA2p

14 mCk 32 dPIN7m

15 mARR5 33 dPHBm
16 pARR5m 34 mPHB

17 dARR5m 35 θPHB
18 pARR5p

Table 4: Table summarising the parameter names associated to the parameter ranks reported in Supplementary
Figure 13a.

6; nevertheless, because of its high rank in the metaxylem we will also investigate the effect of its perturbation in
two dimensions in section 3.3.

3.2 Sub-cellular network (global sensitivity analysis).

A local sensitivity analysis can provide information about the influence of varying parameters on the model output
in a small range around chosen default parameters. In order to explore a much wider range of parameter choices,
we now analyze the sensitivity of the same model used in the previous section by applying a variance-based global
sensitivity algorithm.

In contrast to regression-based methods, variance-based methods do not assume linearity or monotonicity
in the input-output relationships and are well suited to analyze models of non-linear differential equations [14].
Among these methods a well established algorithm is the eFAST algorithm [15], [14], [17], [18], [19].

The eFAST method is a variance decomposition method which partitions the variance of the model output,
determining what fraction of the variance can be explained by variation in each input parameter [19]. The
parameter space is sampled along curves defined by the transformation function:

x̂i =
1

2
+

1

π
arcsin (sin (ωiy + φi)),

where each parameter varies at frequency ωi and random phase shift φi with a scalar variable y ∈ (−π, π). With
this transformation the model output function can be expressed as a Fourier series with respect to y [14].

The overall variance of the output function is decomposed into summands of the square of Fourier series
coefficients which are calculated by Monte Carlo integrations on the sampled parameter space. As a result of this
decomposition, two sensitivity indexes are then defined for each parameter: a first-order sensitivity index and a
total effect sensitivity index. The first-order sensitivity index Si of a parameter i is calculated as the variance at
the frequency uniquely associated with a parameter divided by the total variance. More precisely, the variance s2

i

is firstly calculated from the Fourier coefficients at the frequency of interest, the first-order sensitivity index Si is
then defined as

Si =
s2
i

s2
total

The first-order sensitivity index represents the fraction of the model output variance which is explained by the
input variation of a given parameter. The total effect sensitivity index STi is then estimated as follows. eFAST
first computes the summed sensitivity index of the entire complementary set of parameters, namely the set of all
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Figure 13: MinMax view of the magnitude of normalized steady-state sensitivities in a typical cell external to the
metaxylem (a) and within the metaxylem (b). Bars extend from the minimal to the maximal values of all the
sensitivities of the variables (species) of the model given by Eqs. (1)-(6) and reported in Supplementary Table 1.
The names associated with the parameter ranks are reported in Supplementary Tables 4, 5. Blue lines show the
mean value of the model variables, whereas red lines their median value.
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Parameter rank Parameter name Parameter rank Parameter name

1 mCKIN 22 θARR5

2 mAux 23 dmiRNA
3 pCk 24 pAHP6m

4 dCk 25 dAHP6m

5 pAux 26 dPHBp
6 dAux 27 pPHBp
7 θCk 28 pIAA2m

8 θAux 29 dIAA2m

9 mCk 30 dmiRNA/mRNA
10 dCKINm 31 pAHP6p

11 pCKINm 32 dAHP6p

12 dCKINp 33 dPHBm
13 pCKINp 34 θPHB
14 pARR5m 35 pPIN7m

15 dARR5m 36 pIAA2p

16 θCKIN 37 dPIN7m

17 pARR5p 38 dIAA2p

18 dARR5p 39 mAHP6

19 mARR5 40 mPHB

20 pPHBm 41 θAHP6

21 pmiRNA

Table 5: Table summarising the parameter names associated to the parameter ranks reported in Supplementary
Figure 13b.

Parameter name Parameter rank Parameter rank Sum of ranks (< 30)
not in metaxylem in metaxylem

mAux 1 2 3
dAux 2 6 8
pAux 4 5 9
θAux 3 8 11
pCk 11 3 14
dCk 12 4 16
θCk 13 7 20
mCk 14 9 23

Table 6: Table summarising the most sensitive parameters in a cell within and outside the metaxylem as evaluated
by the sum of the parameter ranks in both tissues. Parameters whose sum of ranks is minor than the arbitrary
threshold of 30 are reported, these being associated with auxin and cytokinin expression and binding.
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parameters except for parameter i. STi is then calculated as the remaining variance after the contribution of the
complementary set Sci is removed:

STi = 1− Sci
In such a way, STi evaluates also higher-order, nonlinear interactions between the parameter of interest and the
complementary set of parameters.

In what follows we evaluate the total effect sensitivity indexes of the model variables considering the two sub-
cellular cases and nominal parameter values that we analyzed in the previous section. More precisely, we applied
the eFAST algorithm as encoded in the Systems Biology Toolbox for Matlab, SBToolbox [15] by maintaining the
default algorithm parameter values (1000 Monte Carlo simulations, one order of magnitude of parameters range
from the nominal parameter value).

Since data showing a high degree of cooperativity have Hill coefficients of up to 10 [20], [21] and a perturbation
of one order of magnitude would lead to Hill coefficients up to 50, we do not include in the global sensitivity analysis
these parameters. Perturbations of the Hill coefficients from their nominal values were however investigated locally
in the previous section.

As with the local sensitivity analysis, in Supplementary Figure 14 we show a MinMax view of the magnitude
of the total effect sensitivities in a typical cell external to the metaxylem (Supplementary Figure 14a) and within
the metaxylem (Supplementary Figure 14b). Bars extend from the minimal to the maximal values of all the
sensitivities of the variables (species) of the model given by Eqs. (1)-(6) and reported in Supplementary Table 1.
The names associated with the parameter ranks are reported in Supplementary Tables 7 and 8. Blue lines show
the mean value of the model variables, whereas red lines their median value.

Because of the variation in the search space between the local and global sensitivity analyses, the relative
influence of parameter perturbations on the model variables, which we evaluate as parameter ranks, may differ
between the two. Supplementary Table 9 lists the parameters outside the metaxylem with the greatest difference
in rank between the two analyses (> 10 ranks), and Supplementary Table 10 lists those parameters that differ
most in rank within the metaxylem. Comparing the ranking of the parameter sensitivities of the local analysis
with the global analysis in this way, we found that in general, the parameters whose rankings differ most between
the two analyses are ranked lower by the local sensitivity algorithm than the global sensitivity algorithm.

The result of this comparitive analysis means that the parameters whose associated sensitivity is most influ-
enced by increasing the search space of their perturbed values are relatively less sensitive to local perturbations
around their default value than to global perturbations comprising a wider parameter range, suggesting that their
default values do not reside within a sensitive region of the parameter space. Consequently, the signalling path-
way appears to be operating in a region of parameter space more robust to stochastic variation in gene regulation
affecting these parameters [14] than if their default values were chosen in other regions of the search space.

In cases where the difference in ranked influence between the global and local sensitivity is small, this suggests
that the parameters sampled in the smaller search space in the local analysis do not have a greater relative influence
on the model output than when parameters are sampled in the wider search space using the global sensitivity
algorithm. In other words, in relative terms, the choice of the default parameter values is not greatly affecting the
sensitivity of the model to small perturbations in these parameters.

3.3 2D model of vascular patterning.

Using the results of the sensitivity analysis of the one-dimensional model developed in sections 3.1, 3.2, we now
evaluate in our multicellular model given by Eqs. (1)-(6), and the tissue representation reported in Supplementary
Figures 1 and 2, the sensitivities of the parameters that most effect the model variables in one dimension, both in
the metaxylem and outside the metaxylem. The selected parameters are pAux, pCk, dAux, dCk, θAux, θCk, mAux,
mCk and mCKIN , the latter of which is most important in the metaxylem. We also analyze perturbations in
transport, permeability, PIN7 protein production and protein degradation rates, as these were not included in the
1D sensitivity analysis, and the parameters affecting mutual degradation of PHB mRNA and miRNA165/6 as a
further support of the analysis performed in Section 2. Parameters were perturbed 10% above their default values
reported in Supplementary Tables 2 and 3.

In Supplementary Figures 16 - 18 we show the mean of the normalized sensitivity index given by Eq. (24)
for all cells of each cell type, calculated for each model component, for each parameter listed above. As expected
intuitively, pAux and dAux play the strongest role in the sensitivity of auxin and of the proteins associated with
auxin response (IAA2, AHP6), and pCK and dCK influence mainly the sensitivity of cytokinin, ARR5 and PIN7.
Parameters associated with protein-DNA binding and Hill coefficients present an analogous effect on the network
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Figure 14: MinMax view of the magnitude of the total effect sensitivities in a typical cell outside the metaxylem
(a) and within the metaxylem (b). Bars extend from the minimal to the maximal values of all the sensitivities
of the variables (species) of the model given by Eqs. (1)-(6) and reported in Supplementary Table 1. The names
associated with the parameter ranks are reported in Supplementary Tables 7, 8. Blue lines show the mean value
of the model variables, whereas red lines their median value.
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Parameter rank Parameter name Parameter rank Parameter name

1 dAux 16 dIAA2m

2 pAux 17 pARR5m

3 θAux 18 dmiRNA/mRNA
4 pPHBm 19 dARR5p

5 pAHP6m 20 θAHP6

6 dAHP6m 21 pIAA2m

7 dCk 22 pARR5p

8 pAHP6p 23 dIAA2p

9 dmiRNA 24 dPIN7m

10 dAHP6p 25 dPHBp
11 pPHBp 26 θARR5

12 pCk 27 pIAA2p

13 pmiRNA 28 pPIN7m

14 dARR5m 29 dPHBm
15 θCk 30 θPHB

Table 7: Table summarising the parameter names associated to the parameter ranks reported in Supplementary
Figure 14a.

Parameter rank Parameter name Parameter rank Parameter name

1 dAux 19 θCKIN
2 θAux 20 pARR5m

3 pCKINm 21 dARR5p

4 pAux 22 dIAA2p

5 pPHBm 23 dPIN7m

6 pCKINp 24 pAHP6p

7 dmiRNA 25 dAHP6p

8 pmiRNA 26 dCKINp
9 dCk 27 dPHBp
10 dIAA2m 28 pIAA2p

11 dAHP6m 29 pPIN7m

12 dARR5m 30 pARR5p

13 dmiRNA/mRNA 31 pCk
14 θCk 32 θARR5

15 pPHBp 33 dPHBm
16 pIAA2m 34 θAHP6

17 dCKINm 35 θPHB
18 pAHP6m

Table 8: Table summarising the parameter names associated to the parameter ranks reported in Supplementary
Figure 14b.

Parameter name Parameter rank Parameter rank Distance by ranks
in local analysis in global analysis (> 10 ranks)

pPHBm 23 4 19
pPHBp 27 11 16
dmiRNA 21 9 12
θAHP6 9 20 11

Table 9: Table summarising the parameters whose local sensitivity rankings differ most from the global rankings
(> 10 ranks) in decreasing order of difference in a cell outside the metaxylem.
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Parameter name Parameter rank Parameter rank Distance by ranks
in local analysis in global analysis (> 10 ranks)

pCk 3 31 28
dIAA2m 29 10 19

dmiRNA/mRNA 30 13 17

dmiRNA 23 7 16
dIAA2p 38 22 16
pPHBm 20 5 15
dAHP6m 25 11 14
dPIN7m 37 23 14
dCKINp 12 26 14
pmiRNA 21 8 13
pARR5p 17 30 13
pPHBp 27 15 12
pIAA2m 28 16 12

Table 10: Table summarising the parameters whose local sensitivity rankings differ most from the global rankings
(> 10 ranks) in decreasing order of difference in a cell within the metaxylem.

components, with θAux and mAux influencing mostly IAA2 and AHP6 sensitivity, and with θCK and mCk affecting
mainly ARR5 and PIN7 (see Supplementary Figure 16).

In Supplementary Figure 15 we show the same chart when perturbing mCKIN . As it can be observed by
the magnitude of the mean normalized sensitivity (of the order of 10−8), the sensitivity of the model variables
across different tissues of the cross-section to mCKIN in the two-dimensional model is not as noteworthy as in the
one-dimensional model in a single cell within the metaxylem.

We then analyzed the sensitivity of the model variables to changes in parameters that are associated with the
cellular geometry that could not be analyzed in the one-dimensional model. Supplementary Figure 17 shows the
mean normalized sensitivities of the two-dimensional model when perturbing TAux, PAux, PCk, PmiRNA, pPIN7p

and dPIN7p . Perturbations in TAux, PAux influence mainly the sensitivity of auxin, IAA2 and AHP6, with TAux
playing a stronger role in phloem, procambial and xylem cells, while perturbations in PCk affects mainly cytokinin,
ARR5 and PIN7, and perturbations in PmiRNA act mostly on miRNA, PHB and AHP6.

In Section 2 the robustness of a sub-model of PHB mRNA and miRNA165/6 mutual degradation was investi-
gated by varying the parameter values associated and observing the spatial pattern generated. We extend this here
by analysing the sensitivity of these parameters in the full model given by Eqs. (1)-(6). Supplementary Figure 18
shows the mean normalized sensitivities of the two-dimensional model when perturbing pmiRNA, pPHBm , dmiRNA,
dPHBm and dmiRNA/mRNA. As expected intuitively, perturbations in these parameters affect mainly the network
components that they regulate directly (miRNA, PHBp) or indirectly (AHP6p, ARR5p), in the tissues in which
these components are present.

The simulation results at t = 15 seconds of our multicellular model given by Eqs. (1)-(6), the tissue represen-
tation reported in Supplementary Figures 1 and 2 and the default parameter values reported in Supplementary
Tables 2 and 3 show that vascular patterning is maintained under all the parameter perturbations discussed in this
section. The model output under each of these perturbations is given at http://www.cpib.ac.uk/vascularmodel,
Figures 5-24.

4 Steady state analysis

In order to establish and maintain a pattern of gene expression when PIN is free to be expressed throughout the
root vasculature, with a homogeneous production rate of both auxin and cytokinin, it must be possible for adjacent
cells of a similar size and shape to have significantly different steady state expression of key genes. This can be
tested using the model by finding the possible steady states as key model parameters are varied. In particular, the
existence of multiple possible steady states within a cell for given production rates of auxin and cytokinin would
demonstrate the possibility that a pattern of gene expression within a field of cells could be produced.

It is not practical to compute steady states in the full model with all the spatial information, either analytically
or numerically, so to investigate further a number of model simplifications are made. Firstly, rather than the full
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Figure 15: Plot representing the mean, calculated for all cells in a particular tissue and for all tissues, of the
normalised sensitivity index given by Eq. (24) when perturbing mCKIN 10% above its default value reported
in Supplementary Table 3. The sensitivity of the model variables across different tissues to mCKIN is not as
noteworthy as in the one-dimensional model in a single cell within the metaxylem being of the order of magnitude
of 10−8.

spatial tissue structure, we consider just two cells of equal volume, with a single interface of unit area between the
two. A value for the cell volume of V = 6 is used as an approximation of the mean wall surface area to volume
ratio found in the full tissue structure. We also assume that the level of PIN at the cell membrane facing the
shared interface of a cell i at any time is equal to the level of of PIN protein ([PINp]i) present in cell i at that
time.

While the spatial distributions of both cytokinin and PHB protein are governed by the full model, neither
are regulated directly or indirectly in the model by auxin or the genes AHP6, PIN7 or ARR5. Because of this,
to investigate model steady states both cytokinin (Ck) and PHB protein (PHB) are considered as parameter
inputs to a simplified sub-model governing AHP6, PIN7 and ARR5. The initial values for Ck and PHB used
are the approximate values seen in the xylem pole pericycle cells in the full spatial model, using the default
parameter set (Ck = 0.2, PHB = 0.5). The affect of changing these parameters is investigated in the steady
state analysis. Finally, it is not necessary to include IAA2 in the model when analyzing the steady states of genes
regulating xylem pole specification because it doesn’t regulate the output of any other components. If the cells in
the simplified model are denoted by their subscript, we have the following model:

d[Aux]1
dt

= pAux − dAux[Aux]1 −
PAux
V

([Aux]1 − [Aux]2)

−TAux
V

([PIN7p]1[Aux]1 − [PIN7p]2[Aux]2) , (25a)

d[Aux]2
dt

= pAux − dAux[Aux]2 −
PAux
V

([Aux]2 − [Aux]1)

−TAux
V

([PIN7p]2[Aux]2 − [PIN7p]1[Aux]1) , (25b)

d[AHP6m]i
dt

= pAHP6mF
(i)
AHP6m

− dAHP6m [AHP6m]i, (25c)

d[ARR5m]i
dt

= pARR5mF
(i)
ARR5m

− dARR5m [ARR5m]i, (25d)

d[PIN7m]i
dt

= pPIN7mF
(i)
PIN7m

− dPIN7m [PIN7m]i, (25e)

d[AHP6p]i
dt

= pAHP6p [AHP6m]i − dAHP6p [AHP6p]i, (25f)

d[ARR5p]i
dt

= pARR5p [ARR5m]i − dARR5p [ARR5p]i, (25g)

d[PIN7p]i
dt

= pPIN7p [PIN7m]i − dPIN7p [PIN7p]i, (25h)
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 16: Series of plots representing the mean, calculated for all cells in a particular tissue and for all tissues, of
the normalized sensitivity index given by Eq. (24). Parameters associated with auxin and cytokinin expression and
binding (pAux, pCK , dAux, dCK , θAux, θCK, mAux, mCK) are perturbed 10% above their default value reported
in Supplementary Tables 2 and 3. As expected intuitively perturbations in these parameters affect mainly the
network components that they regulate directly or indirectly (auxin, IAA2, AHP6 for parameters associated with
auxin; cytokinin, ARR5, PIN7 for parameters associated with cytokinin) in the tissues in which these components
are present.
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(a) (b)

(c) (d)

(e) (f)

Figure 17: Series of plots representing the mean, calculated for all cells in a particular tissue and for all tissues,
of the normalized sensitivity index given by Eq. (24). Parameters associated with the cell geometry (TAux, PAux,
PCK , PmiRNA, pPIN7p , dPIN7p) are perturbed 10% above their default value reported in Supplementary Tables
2, 3. TAux, PAux influence mainly the sensitivity of auxin, IAA2 and AHP6; PCk affects mainly cytokinin, ARR5
and PIN7; perturbations in PmiRNA act mostly on miRNA, PHB and AHP6.
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(a) (b)

(c) (d)

(e)

Figure 18: Series of plots representing the mean, calculated for all cells in a particular tissue and for all tissues,
of the normalised sensitivity index given by Eq. (24). Parameters associated with PHB mRNA and miRNA165/6
(pmiRNA, pPHBm , dmiRNA, dPHBm , dmiRNA/mRNA) are perturbed 10% above their default value reported in
Supplementary Tables 2, 3. Perturbations in these parameters affect mainly miRNA, PHBp, AHP6p, ARR5p in
the tissues in which these components are present.
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for i = 1, 2, where:

F
(i)
AHP6m

=
([Aux]i/θAux)mAux

1 + ([Aux]i/θAux)mAux + (PHB/θPHB)mPHB
,

F
(i)
ARR5m

=
(Ck/θCk)

mCk

1 + (Ck/θCk)mCk + ([AHP6p]i/θAHP6)mAHP6
,

F
(i)
PIN7m

=
([ARR5p]i/θARR5)mARR5

1 + ([ARR5p]i/θARR5)mARR5
.

Unless stated otherwise, all parameters and variables are as previously defined.
Figure 19 shows the steady states for auxin, PIN7m, AHP6m and ARR5m in one of the cells for increasing

values of paux, the auxin biosynthesis rate (the results are identical in both cells). At low paux there is a single
steady state with low AHP6 expression resulting in high PIN7 expression in both cells so that the level of auxin
is equal in both. At high paux there is also a single steady state in which the level of auxin is balanced in both
cells, but here the high level of AHP6 strongly represses ARR5 and so little or no PIN7 is expressed in either cell.
At intermediate values for paux there exist two additional stable steady states representing the cases where there
there is asymmetry in expression between the two cells, with high ARR5 and PIN7 and low AHP6 and auxin
in one cell, and vice versa in the other cell. These additional stable branches end with limit points, from which
four unstable steady states double back and meet the symmetric steady state branch at two subcritical pitchfork
bifurcations, themselves linked by one final unstable steady state. This final unstable steady state represents
the range of values for paux for which gene expression is balanced between the two cells but in which any small
perturbation from that steady state is likely to lead to a switch to the case with an asymmetry in gene expression.
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Figure 19: Steady states for auxin, PIN7m, AHP6m and ARR5m (in either cell) for increasing values of the auxin
production rate paux in the model given by equations (25). Red dots indicate limit points, green dots pitchfork
bifurcations, solid lines stable steady states, dotted lines unstable steady states.

This result suggests that in the two cell case at least, once an imbalance in PIN7 expression has been established
between the two cells, there is relatively broad range of auxin production rates within which this imbalance
is maintained, providing a hypothetical mechanism for maintaining a pattern. Furthermore, a range of auxin
production also exists within which, even when expression is balanced between the two cells, the system is sensitive
to small perturbations and will switch to the case where PIN7 is strongly expressed in one cell only, providing a
hypothetical mechanism for establishing a pattern.
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Plotting the steady states for increasing levels of Ck and PHB results in similar, but not identical bifurcation
structures as for paux. For PHB, there is no positive lower limit to the bistable region, so that below a threshold
value of PHB the system is only stable with high PIN7 in one cell and low PIN7 in the other (Figure 20A). Above
another threshold of PHB there exists only one stable steady state in which PIN7 is equal in both cells, and
between the two thresholds there is a region in which the system may be stable in either a balanced or imbalanced
state. Finally, as with auxin, for low and high Ck there is a single stable steady state where PIN7 is respectively
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Figure 20: Steady states for PIN7m (in either cell) for increasing values of PHB (A.), and Ck (B.) in the model
given by equations (25). Red dots indicate limit points, green dots pitchfork bifurcations, solid lines stable steady
states, dotted lines unstable steady states.

expressed weakly and strongly in both cells, and for intermediate values multiple steady states are possible (Figure
20B). As with auxin, at the top end of this intermediate Ck range there are two limit points and a subcritical
pitchfork bifurcation bounding a range in which PIN7 may either be expressed stably equally in both cells, or
strongly in one cell and weakly in the other. Unlike with auxin however, the lower bound of the bistable range
occurs at a supercritical pitchfork bifurcation.

5 Mathematical model applied in Supplementary Movies 10-14

In this section, we extend the mathematical model developed in section 1 to include the regulatory effect of SHORT
ROOT (SHR) on miRNA165/6. SHR is produced in the vascular cylinder and moves into the endodermis to bind
SCARECROW (SCR) [22]. Once in the endodermis, the protein complex SHR-SCR promotes the transcription of
miRNA165/6 [12]. Endodermally produced miRNA165/6 then degrades its target mRNA PHB in the endodermis
and stele periphery. In our model, we assume that transcription and translation of SHR occurs in all tissues except
for the endodermis:

∅
pSHRm−−−−−→ SHRm, SHRm

dSHRm−−−−−→ ∅,

SHRm

pSHRp−−−−→ SHRm + SHRp, SHRp

dSHRp−−−−→ ∅.

SHR protein is allowed to diffuse and activates the expression of miRNA165/6 in the endodermis. Although
this activation would involve binding with SCR, we simplify this redundant process by assuming SHR to directly
regulate miRNA165/6 transcription in the endodermis only. Transcription of miRNA165/6 is controlled by the
Hill function:

F
(i)
miRNA165/6([SHR]i) =

([SHR]i/θSHR)mSHR

1 + ([SHR]i/θSHR)mSHR
, (26)

As a result, SHR mRNA and protein levels are governed by the equations:

d[SHRm]i
dt

=

{
0, if i is in the endodermis,
pSHRm − dSHRm [SHRm]i, otherwise,

d[SHRp]i
dt

= pSHRp − dSHRp [SHRp]i

− 1

Vi

∑
n∈Ni

Si,nPSHR

(
[SHRp]i − [SHRp]n

)
, (27)
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Parameter Description Value

pSHRm SHR mRNA transcription rate 1.0 · µM · s−1

dSHRm SHR mRNA degradation rate 1.0 · s−1

θSHR SHR binding threshold 0.05 · µM
mSHR SHR Hill coefficient 2
PSHR SHR background permeability 10.0 · µm · s−1

pSHRp SHR protein translation rate 1.0 · s−1

dSHRp SHR protein degradation rate 1.0 · s−1

Table 11: Default values of the parameters applied in Supplementary Movies 10-14 together with the default
parameters in Supplementary Tables 2 and 3.

whereas the equation for miRNA165/166 takes the form:

d[miRNA165/166]i
dt

= pmiRNAF
(i)
miRNA165/6 − dmiRNA[miRNA165/166]i

− dmiRNA/mRNA[PHBm]i[miRNA165/166]i

− 1

Vi

∑
n∈Ni

Si,nPmiRNA

(
[miRNA165/166]i − [miRNA165/166]n

)
, (28)

where i is the cell index. In agreement with experimental observations on PIN7 expression (see Figure 4), in
Supplementary Movie 12 all vascular cells are allowed the potential to express PIN7 . The extended model is then
defined by Eqs. (1)-(28) substituting Eq. (28) to the equation for miRNA165/6 transcription in Eqs. (6). The
default parameter values of the extended model are defined in Supplementary Table 11 together with the ones
reported in Supplementary Tables 2 and 3.

6 Plant Lines

All plant lines were in the Columbia background. the TCSn::GFP line was provided by Bruno Müller [24]. The
ARR5::GUS line was published in [25], PIN1::PIN1::GFP, PIN3::PIN3:GFP and PIN7::PIN7:GFP were pub-
lished in [26, 27], DR5rev::GFP was published in [28], AHP6::GFP in [23], PHB::PHB:GFP in [29], AUX1::AUX1:GFP
in [30] and IAA2::GUS in [3].
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