Supporting Information

Larmola et al. 10.1073/pnas.1314284111

SI Materials and Methods

To assess whether indigenous CH₄ was formed during the incubations, we sampled a subset (n = 3) of the moss vials in the ¹⁵N₂-only treatment (no CH₄ added) for the headspace CH₄ concentration after the incubation period of 45 h. An air sample of outdoor air on site was also drawn to serve as a control for initial headspace conditions. The gas samples were analyzed by using gas chromatography as described in *Materials and Methods*. In the vials, the final CH₄ concentrations ranged from 0 to 0.5 ppm, indicating that during the incubation the headspace CH₄ concentration did not increase but decreased from the initial atmospheric concentration of 2.0 ppm (outdoor air). This change in the headspace CH₄ concentration corresponded to net CH₄ oxidation rates of 0.17–0.24 nmol·g⁻¹ of moss biomass·h⁻¹. Thus, it is unlikely that possible indigenous methane had a major contribution to the N₂ fixation rates.

Fig. S1. The relationship between the rate of CH₄ oxidation (measured as biomass incorporation of CH₄-derived C) and selected environmental variables. (*A*) The rate of biomass incorporation of CH₄-derived C and Fe content in moss samples of different successional peatland stages (\bigcirc , meadow; \blacksquare , mesotrophic fen; \blacktriangle , oligotrophic fen, and ∇ , fen-bog transition). The samples collected from flark microhabitats are indicated by filled symbols. (*B*) The rate of the biomass incorporation of CH₄-derived C (shown untransformed) and water table depth of *Sphagnum* moss samples. Negative values indicate depth of the water table below the moss surface. *Inset* shows the relationship between pH and variation in the biomass incorporation of CH₄-derived C [natural log (ln) transformed] not related to the water table depth (ln CH₄-C biomass incorporation = WT + pH, $R^2 = 0.58$, df_{reg, res} 1, 39).

Table S1. Study sites at Siikajoki peatland chronosequence

SANG SAN

Successional stage	Terrestrial age (1), y	Elevation (1), m a.s.l.	Peat thickness, cm	No. of peatlands	No. of Sphagnum samples	Sphagnum species
Meadow	200	1.5–2	12 (0.4)	3	3	sub, squ
Mesotrophic fen	700	7	58 (3)	3	6	pla, maj, fim, pap
Oligotrophic fen	1,070–1,300	12	86 (5)	3	6	sub, pap, obt
Fen-bog transition	2,410–2,520	25	117 (37)	3	6	sub, maj, obt, fus

Values in parentheses show SDs. Species are fim, Sphagnum fimbriatum; fus, Sphagnum fuscum; maj, Sphagnum majus; obt, Sphagnum obtusum; pap, Sphagnum papillosum; pla, Sphagnum platyphyllum; squ, Sphagnum squarrosum; sub, Sphagnum subsecundum. a.s.l., above sea level.

1. Tuittila E-S, et al. (2013) Wetland chronosequence as a model of peatland development: Vegetation succession, peat and carbon accumulation. Holocene 23(1):25–35.

	Lr	N ₂ fixa	tion	Ln CH₄-C biomass incorporation		
Source	df	F	Р	df	F	Р
Corrected model	14	9.5	<0.001	13	17.9	<0.001
Intercept	1	356.8	< 0.001	1	727.6	< 0.001
Water table	1	53.8	<0.001	1	113.1	< 0.001
Successional stage	3	6.8	< 0.001	3	10.1	< 0.001
Site (successional stage)	8	7.3	<0.001	8	11.8	< 0.001
CH₄ addition	1	4.4	0.039	NA	_	_
Light	1	17.2	<0.001	1	0.2	0.668
Error	64	_	_	28	_	_
Total	79	_	_	42	_	_
Corrected total	78	_	_	41	_	_
R ²	0.60	—	_	0.84	—	—

Table S2. Nested ANCOVAs on the effects of terrestrial age and treatments on N_2 fixation and biomass incorporation of $\rm CH_4\text{-}$ derived C

All interactions among factors were nonsignificant and excluded from the final models. Five observations with high N_2 fixation rates were excluded as outliers.

Table S3. Rates of N₂ fixation in different successional stages

	N_2 fixation, nmol·g ⁻¹ of moss dry mass·h ⁻¹						
	¹⁵ N ₂ tr	eatment		$^{15}N_2 + ^{13}CH_4$ treatment			
Successional stage (microhabitat)	Mean (SEM)	Min	Max	Mean (SEM)	Min	Max	
Under prevailing light conditions							
Meadow	0.8 (0.5)	0.2	1.8	3.3 (0.5)	2.3	3.9	
Mesotrophic fen <i>flark</i>	35 (26)	5.8	87	49 (39)	7.7	126	
hummock	5.5 (2.8)	0.2	9.2	9.1 (5.8)	0.3	20	
Oligotrophic fen flark	3.0 (1.9)	0.9	6.8	6.5 (3.2)	1.6	12	
hummock	1.8 (0.4)	0.9	2.3	2.9 (0.3)	2.4	2.4	
Fen-bog transition flark	6.0 (3.6)	0.1	13	5.7 (3.0)	0.4	11	
hummock	0.6 (0.1)	0.5	0.9	0.7 (0.4)	0.1	1.5	
In dark							
Meadow	2.0 (1.1)	0.01	4.1	2.5 (0.6)	1.4	3.5	
Mesotrophic fen <i>flark</i>	11 (7.4)	2.9	25	16 (13)	2.8	43	
hummock	1.2 (1.0)	0	3.3	3.5 (3.3)	0.2	10	
Oligotrophic fen flark	2.0 (0.2)	1.6	2.3	4.6 (3.0)	1.4	11	
hummock	0.9 (0.1)	0.6	1.1	0.8 (0.2)	0.5	1.1	
Fen-bog transition flark	2.0 (1.0)	0.2	3.7	2.5 (1.3)	0.2	4.5	
hummock	0.3 (0.1)	0	0.4	0.1 (0.04)	0	0.1	

The mean, minimum, and maximum rates as well as SE of mean (SEM, n = 3 peatlands in each stage) for the four treatments: ${}^{15}N_2$ and ${}^{15}N_2+{}^{13}CH_4$ addition both under prevailing light conditions and in dark are shown.

Table S4. Water table depth (WT) relative to moss surface, water pH, dissolved CH₄ concentration, *Sphagnum* nutrient contents and δ^{15} N natural abundance in different successional stages.

Successional stage (microhabitat)	WT, cm	рН	$CH_{4,} \ \mu mol \cdot L^{-1}$	Sphagnum C:N:P	<i>Sphagnum</i> P, mg∙g ^{−1}	Sphagnum δ^{15} N
Meadow	-5 (0)	5.0 (0.1)	7 (2)	515 (167):13 (0):1	1 (0.3)	-1.3 (0.1)
Mesotrophic fen <i>flark</i>	0 (1)	5.5 (0.3)	13 (10)	414 (324):15 (13):1	1.6 (1.1)	1.4 (2.2)
hummock	-14 (1)	5.4 (0.3)	69 (18)	733 (441):16 (8):1	0.8 (0.4)	0.8 (0.5)
Oligotrophic fen flark	0 (0)	5.6 (0.1)	89 (43)	722 (136):19 (1):1	0.6 (0.1)	-0.6 (0.6)
hummock	–13 (2)	5.3 (0.2)	77 (31)	999 (364):18 (3):1	0.5 (0.2)	-1.6 (0.6)
Fen-bog transition flark	-3 (1)	5.3 (0.3)	14 (8)	1376 (493):26 (7):1	0.4 (0.2)	-0.1 (0.1)
hummock	-27 (6)	5.3 (0.4)	20 (9)	1655 (418):23 (6):1	0.3 (0.1)	-0.5 (0.8)

Values in parentheses are SEM.

PNAS PNAS

Table S5. Stepwise linear regression models analyzing the relationships of environmental variables and In transformed N_2 fixation, CH_4 -induced N_2 fixation, and biomass incorporation of CH_4 -derived C

			Adj. R ² , df _{reg, res}				
Models	Р	WT	Fe	рН	Constant	P only or Fe only model	Full model
LnN ₂ fixation							
All treatments	1.09 (0.14)	0.03 (0.008)	_	_	0.71 (0.16)	0.49 (1, 82)	0.54 (2, 81)
¹⁵ N ₂ light	1.39 (0.34)	_	_	—	0.34 (0.30)	0.45 (1, 19)	_
¹⁵ N ₂ dark	0.78 (0.19)	0.03 (0.11)	_	—	0.62 (0.22)	0.50 (1, 19)	0.61 (2, 18)
¹⁵ N ₂ + ¹³ CH ₄ light	0.96 (0.27)	_	_	—	2.19 (0.69)	0.61 (1, 19)	—
$^{15}N_{2}+^{13}CH_{4}$ dark	1.12 (0.27)	_	0.02 (0.007)	—	-0.06 (0.22)	0.54 (1, 19)	0.65 (2, 18)
¹⁵ N ₂ + ¹³ CH ₄ - ¹⁵ N ₂ only	0.55 (0.20)	—	0.01 (0.004)	—	1.12 (0.09)	0.52 (1, 40)	0.59 (2, 39)
LnCH ₄ -C biomass incorpo	oration						
	—	0.10 (0.03)	0.03 (0.02)	1.32 (0.62)	-3.0 (3.0)	0.45 (1, 40)	0.60 (3, 38)

P only and Fe only models were run for LnN₂ fixation and LnCH₄-C biomass incorporation, respectively.