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A. Sequencing target and acquisition 
 

i. Choice of Neutral Regions to target 

Regions for sequencing were targeted to be as neutral as possible with two constraints: 1) the 

target regions should consist of 5 to 20 kilobases (kb) of consecutive bases, and 2) the target 

regions should be arranged by groups of two or three (duplets or triplets) in partial linkage 

disequilibrium (LD) which is motivated by the design in (1). To achieve this goal, we designed 

the procedure outlined in the following.  

 

To minimize the confounding by natural selection, we considered only genomic regions located 

at least 100,000 bp and 0.1 cM away from coding or potentially coding sequences (defined as the 

union of Known Genes and Genes Bounds UCSC tracks), and free from segmental duplications 

(http://humanparalogy.gs.washington.edu/build36/build36.htm) and known copy number 

variants (http://projects.tcag.ca/variation/downloads/variation.hg18.v9.mar.2010.txt). Genomic 

sequences that may be under recent positive selection were also excluded, based on the 

consensus set assembled by Akey (2). From the contiguous stretches that fulfilled the above 

criteria, we only kept those larger than 100kb since these can satisfy the duplet or triplet design 

criteria. To further minimize the effects of selection, we considered regions with the lowest 

content of conserved elements (Mammal El, phastConsElement44wayPlacental UCSC track) and 

repetitive elements (rmskRM327 UCSC track), and with no CpG islands. All these features are 

now implemented as part of our Neutral Regions Explorer (NRE) (3). 
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Despite the best of our efforts, some of these loci may have unannotated function. Though our 

filtering procedures aims to minimize the confounder of natural selection on loci in these regions 

based upon several criteria, loci in these regions may still be under functional constraint. Hence 

loci in our regions are putatively neutral based only on the above criteria. 

 

A total of 15 target regions, between 5,340 bp to 20,000 bp long, spanning a total of 216,240 bp 

were used for sequencing (Table S2). They are arranged in 3 duplets and 3 triplets. Measured 

from their most distant 3' and 5' points, the duplets or triplets cover a physical distance of 195 kb 

on average (range: 93 kb and 430 kb) and are separated by an average genetic distance of 0.275 

cM (range: 0.20cM-0.36 cM).  

 

Target regions were also chosen to cover a range of diverse LD structures within regions and 

between the 2 regions in duplets or 3 regions in triplets. Within each duplet or triplet, regions are 

on average 0.154cM apart. Recombination varies across the regions from very low (0.0005 

cM/Mb) to moderately high (5.07 cM/Mb), with an average of 1.05cM/Mb, close to the genome-

wide average.  

 

Mean physical and genetic distance between the neutral regions and the closest gene were 211 kb 

(range: 100 kb-577 kb) and 0.37 cM (range: 0.12 cM-1.37 cM), respectively. They contain on 

average 0.81% (0.27%-1.2%) of conserved elements (less than 1/5 of the genome average). Their 

GC content (39.34%) is close to the overall genomic level.  
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ii. Illumina Library Construction 

Genomic DNA samples were constructed into Illumina paired-end pre-capture libraries 

according to the manufacturer’s protocol (Illumina 

Multiplexing_SamplePrep_Guide_1005361_D) with modifications as described in the BCM-

HGSC Illumina Barcoded Paired-End Capture Library Preparation protocol. Libraries were 

prepared using Beckman robotic workstations (Biomek NXp and FXp models).  The complete 

protocol and oligonucleotide sequences are accessible from the HGSC website 

(https://hgsc.bcm.edu/sites/default/files/documents/Illumina_Barcoded_Paired-

End_Capture_Library_Preparation.pdf ). 

Briefly, 1 µg of genomic DNA in 100µl volume was sheared into fragments of approximately 

300-400 base pairs in a Covaris plate with E210 system (Covaris, Inc. Woburn, MA) followed by 

end-repair, A-tailing and ligation of the Illumina multiplexing PE adaptors. Pre-capture Ligation 

Mediated-PCR (LM-PCR) was performed for 7 cycles of amplification using the 2X SOLiD 

Library High Fidelity Amplification Mix (a custom product manufactured by Invitrogen). 

Universal primer IMUX-P1.0 and a pre-capture barcoded primer IBC were used in the PCR 

amplification. In total a set of 12 such barcoded primers were used on these samples. Purification 

was performed with Agencourt AMPure XP beads after enzymatic reactions. Following the final 

XP beads purification, quantification and size distribution of the pre-capture LM-PCR product 

was determined using the LabChip GX electrophoresis system (PerkinElmer). 

iii. Sequence Capture Methods 

Twelve pre-capture libraries were pooled together (approximately 84 ng/sample, 1µg total 

library DNA per pool) and hybridized in solution to the custom probe design (1.1Mb capture 

https://hgsc.bcm.edu/sites/default/files/documents/Illumina_Barcoded_Paired-End_Capture_Library_Preparation.pdf
https://hgsc.bcm.edu/sites/default/files/documents/Illumina_Barcoded_Paired-End_Capture_Library_Preparation.pdf
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region, manufactured by NimbleGen) according to the NimbleGen SeqCap EZ Exome Library SR 

User’s Guide (Version 2.2) with minor revisions. Human COT1 DNA (100 µg) and 3’-

dideoxycytosin (ddC)-modified blocking oligonucleotides (5'-

AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGATC

T/3ddC,  

5’-CAAGCAGAAGACGGCATACGAGAT/3ddC and 5’-

ACTGGAGTTCAGACGTGTGCTCTTCCGATCT/3ddC; 650 pmoles each) were added into the 

hybridization to block repetitive genomic sequences and the Illumina adaptor sequences. Post-

capture LM-PCR amplification was performed using the 2X SOLiD Library High Fidelity 

Amplification Mix with 14 cycles of amplification. After the final AMPure XP bead purification, 

quantity and size of the capture library was analyzed using the Agilent Bioanalyzer 2100 DNA 

Chip 7500. The efficiency of the capture was evaluated by performing a qPCR-based quality 

check on the four standard NimbleGen internal controls.  Successful enrichment of the capture 

libraries was estimated to range from a 6 to 9 of ΔCt value over the non-enriched samples.  

Aliquots of 10 nM concentration of enriched libraries were submitted for sequencing. 

 

iv. Illumina Sequencing 

Library templates were prepared for sequencing using Illumina’s cBot cluster generation system 

with TruSeq PE Cluster Generation Kits (Part no. PE-401-3001). Briefly, these libraries were 

denatured with sodium hydroxide and diluted to 3-6 pM in hybridization buffer in order to 

achieve a load density of ~800K clusters/mm
2
. Each library pool was loaded in a single lane of a 

HiSeq flow cell, and each lane was spiked with 2% phiX control library for run quality control. 

The sample libraries then underwent bridge amplification to form clonal clusters, followed by 



6 

 

hybridization with the sequencing primer. Sequencing runs were performed in paired-end mode 

using the Illumina HiSeq 2000 platform. Using the TruSeq SBS Kits (Part no. FC-401-3001), 

sequencing-by-synthesis reactions were extended for 101 cycles from each end, with an 

additional 7 cycles for the index read. Real Time Analysis (RTA) software was used to process 

the image analysis and base calling. Sequencing runs generated approximately 250-400 million 

successful reads on each lane of a flow cell, averaging yield of 2.2 Gb per sample. With these 

sequencing yields, samples achieved an average of 95% of the targeted bases covered to a depth 

of 20X or greater. 

 

v. Illumina Primary Analysis 

Illumina sequence analysis was done using the HGSC Illumina analysis pipeline, moving data 

step by step through various analysis tools from the initial sequence generation on the instrument 

to finished duplicate-marked BAMs. Firstly, the primary analysis software on the instrument 

produces .bcl files that are transferred off-instrument into the HGSC analysis infrastructure by 

the HiSeq Real-time Analysis module. Once the run is complete and all .bcl files are transferred, 

the pipeline runs the vendor’s primary analysis software (CASAVA v1.7), which demultiplexes 

pooled samples and generates sequence reads and base-call confidence values (qualities). The 

next step is mapping of reads to the hg18 Human reference genome using the Burrows-Wheeler 

aligner (BWA (4), http://bio-bwa.sourceforge.net/) to produce a BAM (binary alignment/map) 

file (5). We then mark duplicates (using Picard and SAMtools), and where necessary merge 

separate sequence-event BAMs into a single sample-level BAM.  BAM sorting, duplicate read 

marking, and BAM format validation all occur at this step.   

 

http://bio-bwa.sourceforge.net/
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B. Variant and genotype calling 
 

i. Variant Analysis 

In each individual, aligned reads were subjected to “duplicate removal” using PICARD-1.66 

(http://picard.sourceforge.net). Downstream analyses were performed with the Genome Analysis 

ToolKit, GATK-1.5-31 (6, 7). Reads were locally realigned (GATK IndelRealigner). Variant 

detection and genotyping were performed using the UnifiedGenotyper (UG) tool from the GATK 

exclusively on the targeted regions. The UG tool generated an initial variant dataset for each 

sample (in variant call format, VCF) used as “raw” calls. The extreme depth of coverage of our 

regions allowed us to repeat this procedure three times, generating 3 VCF files based on a 

randomly chosen subset of reads for each sample, with a maximum of 250x depth per sample. 

An identical SNV filtering procedure was applied to the three replicates. Only the SNVs that 

passed the filters in all three replicates were kept for the genotype calling. These replicates can 

be seen as a partial validation.   

 

ii. Variant filters 

A threshold on the minimum base quality and the minimum mapping quality of the reads (40) 

was set to generate the raw calls. The maximum number of alternate alleles to genotype was set 

to 2. The threshold for 6 quality control variables (HS, QD, FS, MQRS, RPRS, Hrun) was 

empirically determined by plotting the distribution of the aforementioned variables. Raw calls 

were filtered out if they showed a high Haplotype Score (HS > 50), low average quality (QD < 

2), if they presented a strong strand bias (FS > 900), a strong correlation between mapping 
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quality and alternate allele (|MQRS| > 40), and a strong bias position along the read (|RPRS| > 

40) or fell in a homopolymer run (HRun > 5). In addition, all variants falling within 10 bp of an 

indel were filtered out. Triallelic positions were also removed from the dataset. 

 

In parallel, we ran the UG with the -A RMSMappingQuality and --output_mode 

EMIT_ALL_SITES options. This outputs the distribution of QUAL (Phred scaled probability 

that REF/ALT polymorphism exists at this site) and mrsMQ (mean root square of Mapping 

Quality of the reads across all samples) of the entire targeted region (independently on whether 

the sites are polymorphic or not). Threshold values for the variants were determined by plotting 

the empirical distributions of mrsMQ and QUAL values (Fig. B1). QUAL provides an overall 

quality score for the existence of an alternate allele in each genomic position. Variants with 

QUAL < 250 and mrsMQ < 30 were filtered out.  
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Figure B1. Distribution of the QUAL scores (on a log10 scale) for each variant before filtering. Black 

points represent sites where no call was made by the UnifiedGenotyper tool, while cyan points are genomic 

positions marked as polymorphic by the software. Polymorphic positions are expected to have higher QUAL 

values, while low QUAL values indicate a low probability of the existence of at least one copy of an alternate 

allele, as expected in non-polymorphic positions. The red line shows the cut-off value we used to filter out 

calls (cyan points) with low confidence. 

 

Individual genotype filters 

Individual genotypes were marked as missing if they presented strong allelic imbalance (>20%), 

a depth of coverage < 20x or a low individual genotype quality (QC < 30), resulting in only a 

small amount of missing data. We established that 95% of SNVs have successful calls for at least 

900 individual chromosomes out of the possible 986. 
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Variant calling quality control 

Several quality control steps were applied to the final set of variant calls. When compared to 

dbSNP135, 62.5% of the variants called in our regions were new. Ti/Tv ratio showed no 

indication of bias calling or sequencing error, neither for all SNVs (Ti/Tv=2.22) nor for novel 

SNVs alone (Ti/Tv = 2.29). No SNV presented significant departure from Hardy-Weinberg 

equilibrium.
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C. Calling Validation 
 

i. Calling validation by comparison to the site frequency spectrum (SFS) of the NHLBI Exome 

data 

The NHLBI exome sequencing project (ESP) data was obtained from the Exome Variant Server 

of the NHLBI Exome Sequencing Project (http://evs.gs.washington.edu/EVS/). Data was 

downloaded from the server in December, 2012. We first filtered out indels, variants with an 

average read depth of less than 20 and variants that were monomorphic in Europeans. Due to 

increased noise at lower number of variants, functional categories with less than 1000 SNVs 

were not analyzed. In order to compare the ESP data to the neutral regions (NR) data, we 

probabilistically downsampled both datasets to a sample size of 900 chromosomes. 

 

NR data plotted against the ESP data from different functional categories reveals that the NR 

SFS is more similar to the SFS of less conserved functional categories (near genes, intergenic 

and intronic regions, Fig. S4a). In addition, the NR data has the lowest fraction of singletons 

when compared to categories that are more conserved (missense, UTR, splice sites, synonymous, 

synonymous near splice sites, stop-gain, Fig. S4b), reflecting that fewer variants in the NR 

dataset are under selection.  

 

To test whether the SFS of the NR data and the SFS of a particular functional category of the 

ESP data were significantly different, we additionally calculated the chi-square test statistic 

as ∑
       

 

  
 . Let the expected SFS be the SFS obtained from combining the ESP data and the 
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NR data under the null hypothesis that the two datasets have the same SFS. Then ei is a vector of 

size 2, equal to the product of the number of variants in either the NR data or the ESP data and 

the proportion of variants in minor allele count bin i of the estimated SFS. oi is also a vector of 

size 2, equal to the observed number of variants in each minor allele count category in either the 

NR data or the ESP data. To increase the consistency of the result, we binned categories with 

more than 10 minor alleles into one bin such that the chi-square test statistic has 10 degrees of 

freedom. We performed a chi-square test and calculated a p-value for each of the pairwise 

comparisons. Similar to what we showed on Figure S4, we find that categories with greater 

functional constraint deviate further from the NR data (Table S3).  

 

ii. Calling validation by comparison with data from the CHARGE-S project 

In order to test for overall calling quality, false positive and false negative rates in the NR data, 

we compared our data to other sequencing data. An appropriate dataset for this comparison is the 

962 individuals with whole-genome sequencing data in the CHARGE-S project (8). 

 

In order to compare the SFS of both the CHARGE-S and the NR data, we subset the CHARGE-S 

data to an equal sample size as sampled in the NR data (n = 493 individuals). These individuals 

were chosen either to be samples that were also in the NR data, or individuals from a 

homogeneous cluster on a principal component analysis (PCA) of the CHARGE-S data. Out of 

the 493 individuals chosen, 395 are part of the ARIC cohort, of which 20 were also sequenced in 

the NR analysis. Thus, we had sequences that were obtained both by the CHARGE-S project and 

by the present study, for the same genomic regions and individuals. Using the list of genotype 

calls for the 20 overlapping individuals in each study, we could use the genotype consistency as 
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a measure of calling quality. In calculating the proportion of genotypes ascertained in the other 

dataset, we considered only positions where the derived allele is present in at least one of the 20 

individuals and only heterozygous genotypes.  

 

One important property of this validation procedure is the asymmetry of the two datasets. The 

NR dataset has an average median coverage of 295X, while the average median coverage in 

CHARGE-S for the corresponding regions in the subset of 493 individuals is 4.6X. This 

fundamental difference in coverage represents a limitation for the estimation of false positives in 

the NR dataset, as a call missed in CHARGE-S does not necessarily indicate a calling error in the 

high coverage NR data. It also represents to a lesser extent a limitation in estimating the false 

negative rate since the low-coverage data are more prone to sequencing errors.  

 

An estimate of the proportion of calls missed due to low coverage was computed as part of the 

CHARGE-S project. The adjustment is based on 886 individuals that have both high coverage 

exome-sequence data and low coverage whole genome sequence data. An exponential decay 

function was used to fit the discovery rate of the first 20 bins, similar the one used in Gravel et 

al. (9). This adjustment represents a deviation, for each minor allele count (MAC), from a perfect 

calling with 100% power. We apply this adjustment to the CHARGE-S data to estimate false 

positive rate of the NR data. 

 

Overall calling quality 

First, for each dataset of 493 individuals, we counted the number of copies of the minor allele at 

all the positions that were polymorphic. Eliminating 8 cases where our data have more than 80% 
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missing genotypes, the consistency in minor allele frequency (MAF) between both datasets is 

very high (Spearman rho=98.56) for the 1115 polymorphic positions called both by CHARGE-S 

and the NR (Fig. C1). This shows that the overall NR calling does not present a strong bias 

related to variant frequency. 

 

 

Figure C1. Concordance of the minor allele frequency (MAF) of the NR and the CHARGE-S subset. 
Outliers, marked with a star, are SNVs for which more than 80% of the individuals have missing data in the 

NR data. Individual genotypes of the CHARGE-S were imputed and have therefore no missing data. 

 

Second, the average median coverage of the positions that show perfect consistency between 

CHARGE-S and NR is 4.96X and 336.4X, for CHARGE-S and NR respectively, which is above 

each dataset’s average. Similarly, the average median coverage of positions with one or more 

genotype found in NR but not called in CHARGE-S is 4.76X and 317.5X, for CHARGE-S and 

NR respectively. In contrast, the average median coverage of positions with one or more 

genotype found in CHARGE-S but not called in NR is below average: 4.27X and 223X for 

CHARGE-S and NR respectively. This suggests that these positions are more likely to be 
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enriched for calling errors. However, the increase in calling error is probably very low for data of 

223X coverage, suggesting that the genotypes with discrepancy are more likely to be CHARGE-

S calling errors. 

 

False positive rate in NR 

As a first step, we considered the proportion of concordant genotypes in the subset of 20 

individuals sequenced independently by the CHARGE-S project and the present study (black in 

Fig. C2). We observe that a low proportion of genotypes in the NR validation subset are 

consistent with the CHARGE-S genotypes. For example, only 37% of singletons in the NR 

validation subset are also called by CHARGE-S. The genotype consistency between both 

datasets increases for increasing MAC. For MAC=8, this proportion reaches 85% and for 

MAC=41 the proportion is above 95%. Given the high coverage of the NR dataset and the low 

coverage in CHARGE-S, we expect a difference in the power to call variants, especially for low 

MAC categories. In particular, we expect a fraction of the NR variants to be absent in CHARGE-

S without necessarily being NR false positives. To explore this idea, we estimated for each MAC 

the proportion of SNVs that the CHARGE-S data had the power (yellow in Fig. C2) to detect by 

fitting an exponential decay function to the first 20 MAC categories, similar to Gravel et al. (9). 

The discovery power can be interpreted as an expected false negative rate in CHARGE-S. We 

observed that the proportion of NR genotypes observed in CHARGE-S follows very closely the 

theoretical maximum power line in CHARGE-S. In other words, the proportion of NR calls not 

observed by CHARGE-S follows closely the expected proportion of false negatives in 

CHARGE-S. As a consequence, this suggests that the false positive rate in NR is not very high, 
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although the difference in coverage prevents us from providing a reasonable quantitative 

estimate.  

 

 

Figure C2. Proportion of concordant genotypes in the subset of 20 individuals sequenced independently 

by the CHARGE-S project and the present study. The y-axis presents the proportion of NR genotypes that 

are concordant with CHARGE-S genotypes (black points). The x-axis shows the minor allele count (MAC) of 

the CHARGE-S SNVs. Data are shown for the first 50 categories of MAC. Note that MAC values go beyond 

20 because although only 20 individuals were involved in the genotype comparison, we considered the minor 

allele count of the SNVs in the whole sample of 493 individuals. We removed part of the noise due to the low 

sample size involved in the comparison (20 individuals) by fitting a loess function to the data (line). Yellow 

points show the estimated discovery power in the low coverage CHARGE-S data. The discovery power 

provides an approximation to the false negative rate in CHARGE-S. The NR genotypes discordant with the 

CHARGE-S genotypes are more often found in low MAC categories of the CHARGE-S data, for which the 

discovery power is also lower. The overall agreement between the black and yellow points shows that the 

SNVs in NR not found in CHARGE-S can be almost entirely explained by the limited discovery power in the 

lower coverage CHARGE-S data. 

 

False negative rate in NR 
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In another approach to identify potential false negatives in the NR dataset, we counted the 

genotypes called by CHARGE-S and not discovered by the NR in the 20 individuals sequenced 

by both studies. The proportion obtained varied between 0% and 50% depending on the MAC. 

The principal difference with the previous comparison is that the proportion does not increase 

with the MAF, but is equally distributed between rare and common variants of the NR data, 

ruling out a systematic bias related to the allele frequency (Fig. C3a). In contrast, the NR 

genotypes discordant with CHARGE-S are mainly rare variants in CHARGE-S (Fig. C3b).  

 

 

Figure C3. Genotype consistency among the 20 individuals sequenced both by CHARGE-S and the 

present study. a) The y-axis presents the proportion of CHARGE-S genotypes that are concordant with NR 

genotypes. b) The y-axis presents the proportion of NR genotypes that are concordant with CHARGE-S 

genotypes. On both panels a) and b), the x-axis shows the minor allele count of the CHARGE-S SNVs in the 

whole sample. Panel b) data are the same as in Figure C2 and is shown for comparison purposes. We observe 

that the proportion of CHARGE-S genotypes discordant with NR genotypes are equally distributed among rare 

and common variants of the NR data (panel a), indicating no systematic bias in the NR genotypes, whereas the 

NR genotypes discordant with CHARGE-S are mainly rare variants in CHARGE-S (panel b). 
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In order to understand the source of the genotype discrepancies, we checked the NR calling 

before quality control and filtering. We observe that 77.3% (92/119) of CHARGE-S genotypes 

not observed in NR are either positions not called due to low base quality, low mapping quality 

or extremely low coverage (12 cases), or positions called in the raw NR that were subsequently 

filtered in the QC step (19 cases). This includes triallelic positions (9 cases), proximity to indels 

(14 cases), coverage < 20 X (38 cases), and positions with low quality control variables 

(Supplementary Note B). The remaining 22.7% (27/119) of inconsistencies are CHARGE-S 

genotypes absent in NR, though located in regions with good coverage and QC values. The 

BAM files for these 27 individuals were visually examined at the ambiguous positions with the 

Integrative Genome Viewer application (IGV version 2.0.23), enabling the filter to remove 

duplicated reads. The NR genotypes in these 27 cases do not present any sign of a 

polymorphism. 

 

From this analysis we conclude that our strict filtering may have generated some false negatives, 

notably due to strict filtering of QC variables and filtering around indels. Filtering around indels 

is often justified and has become a common procedure (10-12). In addition, it only affects 1.9% 

of all the raw calls of polymorphic positions in the NR data and does not systematically affect 

variants of a particular frequency (the average MAC of SNVs around indels is 138, varying from 

MAC 1 to 350).  

 

Altogether, comparing the genotype calls in the 20 individuals present in both datasets, only 119 

heterozygous genotypes in CHARGE-S were not found in the 3929 heterozygous genotypes in 

the NR data, representing 3.03% of the false negatives. However, this value is an upper bound, 
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with the assumption that all CHARGE-S calls not found in NR were true calls. Due to the 

difference in coverage, and some visual validation, we can safely assume that the real false 

negative rate is probably much lower. Importantly, we showed that the CHARGE-S calls not 

found in NR are spread over all frequency categories, showing that our filtering process does not 

generate a strong bias in the SFS and therefore in the demographic estimates.  
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D. Data homogeneity and coverage 
 

i. Coverage effect on variant calling 

We empirically investigated the effect of coverage by running the main GATK pipeline 3 times, 

modifying only the maximum number of reads considered per position. This was achieved by 

changing the option -dcov to 111, 27 and 15. The two first values (111X and 27X) were chosen 

from the average median depth reported in Tennessen et al.(13) and Nelson et al. (12), 

respectively. The 15X maximum depth was chosen arbitrarily to represent lower coverage. The 

rest of the pipeline is identical to that applied to the NR dataset, with the exception of filtering of 

individuals with less than 20X, which was only applied to the 111X set. 

 

The SFS derived from the pipeline run on a maximum of 111X does not show any perceptible 

difference from the NR SFS. In fact they only differ by one SNV (Fig. S3). The SFS from the 

27X coverage subset presents a lower proportion of singletons (Fig. S3), though we expect that a 

relaxed set of filters would allow partial recovery of true singletons. For this reason, we interpret 

that the comparison between the NR dataset and the 27X subset does not show that 27X 

coverage represents insufficient coverage, but rather shows that high coverage allows application 

of very strict quality filters (leading to a reduced false positive rate), which have to be relaxed to 

call SNVs on data with lower coverage. Finally, we observe that the 15X coverage presents a 

substantial deviation from the high coverage dataset (Fig. S3). Interestingly, the change in the 

shape of the SFS from 27X to 15X is more accentuated than the change from 111X to 27X, 

suggesting that coverage depths below 20X are insufficient for high quality calling. 

 



21 

 

ii. Assessing population homogeneity with POPRES sample 

We additionally compared the sequenced individuals to individuals from POPRES (14). 

POPRES genotyping data was obtained from dbGaP. To ensure similar sample sizes across 

European populations, 10 individuals were chosen from each POPRES population (with the 

exception of Croatia and Greece, where only 7 and 8 individuals could be chosen). Following 

Novembre et al. (15), ancestry for each individual was assigned as the reported ancestry of the 

maternal and paternal grandparents (after removing individuals with mixed grandparental 

ancestry). Data for POPRES and ARIC individuals were merged, with 369,145 overlapping sites 

after removing sites with a joint missingness rate above 10%. Linkage disequilibrium based 

pruning was applied with a maximum r
2
 threshold of 0.5 in PLINK (16) in addition to removing 

sites with potential allele flips and regions of extended LD (15). We computed principal 

components on the remaining 150,497 autosomal variants using EIGENSOFT (17). The PCA of 

POPRES individuals are qualitatively similar to those previously published (15). We next 

computed PCA using samples from the POPRES cohort and ten randomly chosen samples from 

the NR project. We found that individuals from the NR had North-Western European ancestry, 

similar to that of individuals from the POPRES UK sample. Similar results are observed other 

random NR samples. 

 

iii. The effect of homogeneity of the sampled population on the SFS  

In order to test for the importance of using a single homogeneous population to model recent 

demography, we simulated two populations and compared their SFS (Fig. S1). The first 

population followed the history of Model II described in Table 1. The other population consisted 

of 8 subpopulations that mimic European populations and split 400 generations ago: all 8 
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subpopulations share a common history and have the same initial population size (5633) at the 

time of split. After the split, all 8 subpopulations follow the same demographic history of Model 

II in Table 1. We sampled 900 individuals from both populations. For the population with 8 

subpopulations, we performed two sampling strategies. In the first case, we sampled a balanced 

number of individuals in each subpopulation. In the second case, the number of samples taken 

from each subpopulation was 308, 124, 32, 104, 116, 32, 36 and 48, in proportion to the sample 

sizes from different European populations in Table S10 of (12). When sampling a balanced 

number of individuals in each subpopulation, we used 112 samples from 6 populations and 114 

samples from 2 populations because we could not equally divide 900 samples into 8. All 

simulations were done using the software ms (18). The results show that although each 

subpopulation had the same demographic history as the homogeneous population, the SFS 

derived from a non-homogeneous sample shows a higher proportion of rare variants than the SFS 

from the homogeneous sample. This is true both in the case of balanced or unbalanced sampling 

of 900 individuals from 8 subpopulations. These results demonstrate that using non-

homogeneous samples can bias demographic estimates. 
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E. Demographic modeling and the SFS 
 

i. Downsampling data for figures of the SFS 

In order to compare SNVs with differing numbers of successful genotype calls, it was necessary 

to estimate the allele counts given a lower sample size. Employing the strategy implemented in 

(19) for a folded site frequency spectrum (SFS), we estimated allele counts for a sample size of 

900 chromosomes (as this constituted 95% of our variants). All variants with less than 900 

successful genotype counts were removed. Thus, for each SNV, the probability it is of a certain 

allele count is given by the following formula. 

 



P[ min (i  d, n  i  (n  m  d))] =
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where i is the original allele count, m is the number of chromosomes to downsample to, n is the 

number of successful genotype calls for this SNV and d = 0,…,min(i, n-m). When presenting the 

SFS, variants are binned into the following minor allele count categories: (1, 2, 3, 4, 5, 6-10, 11-

20, 21-50, 51-100, 101-200, 201-450). The proportion of variants is then weighted by the 

number of minor allele count categories in each bin.  

 

 

ii. SFS of simulated populations according to previously published demographic models 

We compared the SFS of the NR data to other SFS of previously published models (11, 12). For 

each of these published scenarios, we simulated 10,000 independent regions for 900 
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chromosomes (to match the sample size of the NR data) with the coalescent simulator ms (18). 

We observe that the fraction of singletons in the NR data is below the estimates given by the two 

models (Fig. S6). The models over-predict the number of singletons (55.65% and 54.23%, 

respectively, compared to 38.4% in the SFS of the NR data) and extremely rare variants, a 

pattern that could be expected if less purifying selection acted on the loci sequenced in the NR 

data. Though these previous studies modeled recent demography based on the SFS derived solely 

from synonymous variants in order to minimize the confounding effect of selection, the data of 

these are nonetheless derived from sequencing of genic regions (11, 12), which may partially 

explain the differences in estimates with the NR data.  

 

iii. Demographic inference 

In all demographic inference models, we fixed ancient demographic history following previously 

described scenarios (9, 20, 21), and focused on the parameters associated with recent human 

population growth. When using the ancient demography model of (9), we assumed an 

instantaneous recovery from the second bottleneck instead of a gradual recovery. We estimated 

parameters of interest using the maximum likelihood approach of Keinan et al.  (20). For each of 

the models considered, we profiled the likelihood surface as a function of the multiple 

parameters using predefined grid points, which corresponds to a particular combination of 

multiple parameters. Grid points were carefully selected to cover the range of most likely 

parameter values with better resolution through an initial set of broader grid points and later 

zooming in (Table S6). For each grid point, we calculated the expected SFS of the model using 

simulated genealogies from ms (18). For each grid point, 200,000 ms simulations were 

conducted and the length of branches that lead to a different allele count was calculated for each. 
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Branch lengths were then summed up across the 200,000 genealogies and standardized to obtain 

the expected SFS.  

 

Given the expected SFS, we calculated the likelihood of the observed SFS as follows. Let s 

denote the number of SNVs and n denote the number of chromosome samples. Also let xi and mi 

denote the number of minor alleles and the total number of successful genotypes at SNV i (xi ≤ 

mi/2 ≤ n/2). Then, a composite likelihood for the data is given by 
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)()(   where P(a of b) is the probability of observing a alleles 

out of b, conditioned on demography. In order to account for the sampling of the mi successful 

genotypes out of the possible n, we derived L by the law of total probability to be  
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To explore models of recent history, we started with a simple recent growth model with two 

parameters capturing the time the growth started and final Ne (‘Model I’). Since we assume an 

exponential growth with constant rate, the growth rate is no longer a free parameter and can be 

derived for any given time of growth and final Ne. We also studied two three-parameter models: 

similar to Model I, with the ancestral Ne before growth as an additional free parameter (‘Model 

II’), and a model with two epochs of growth with the start time of the first growth fixed at 400 

generations ago (‘Model III’). We additionally explored a four-parameter model by allowing the 

time of the first growth in Model III to be another free parameter (‘Model IV’).  
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To improve resolution, we applied a smooth spline approach to estimate the frequency of SNVs 

belonging to a MAC category as a function of each parameter (see below). In all models where 

the smooth spline approach was used, the 95% CI for a given parameter is defined as all values 

of the parameter for which the log-likelihood is comprised between the maximum value minus 

1.92 (half of the 95% percentile of the  
   
  distribution) and the maximum, while fixing all other 

parameters at the maximum likelihood estimates. CI for the 4-parameter models, where the 

smooth spline approach was not applied for computational efficiency, were obtained from the 

original grid points. 

 

 

iv. Evaluation of the power of the maximum likelihood approach 

One epoch of growth 

To evaluate the power of our maximum-likelihood approach, we used the coalescent simulator 

ms (18) to simulate a population with an ancient history as described in Keinan et al. (20), and 

with a single epoch of growth starting 400 generations ago. During this time, the population 

grows from Ne = 10,000 to Ne = 1,100,000, representing a growth rate of 1.18% per generation. 

We chose a value of 1,100,000 for the final Ne as described in (22) because it is between the 

other two recent estimates of European Ne: 512,000 7(11) and 4,000,000 (12). For this scenario, 

we simulated 986 chromosomes with 500,000 SNVs. We randomly subsampled 1800 SNVs 

(comparable to the number of SNVs in the NR dataset), and applied the likelihood method to 

estimate three parameters: initial Ne before the growth, time of the onset of growth, and growth 

rate. We repeat the above procedure and define power as the proportion of 10,000 replicates of 

resampling for which the three parameter estimates are a minimum of one grid point away from 
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the true value. The result shows a reasonable power of ~80% to capture the three parameters for 

the scenario we tested. 

 

 
Two epochs of growth 
 

As above, we simulated a population with ancient demography as described Keinan et al. (20) 

with a 2-epoch growth model. We varied the rate of the first epoch of growth while fixing all 

other parameters, including the length of the two epochs of growth (280 and 120 generations 

respectively), the rate of the second growth (3%), Ne before growth (5,633), and ancient 

demographic parameters (20). For each parameter combination, we simulated a sample of 986 

chromosomes with 500,000 SNVs, from which we randomly subsampled 1800 SNVs and 

conducted a likelihood ratio test between a reduced Model II (2 parameters with fixed ancestral 

population size of 5633) and Model III (three parameters). We repeated this procedure and 

defined power as the proportion of 1000 replicates for which the likelihood ratio test p-value is 

less than 0.05. Power was estimated for each parameter combination. 

 

As shown in Fig. S9, we have reasonably good power (over 60%) for detecting the first epoch of 

growth when the rate of growth falls between 0.6~1.8%.  

 

v. Validation of improved accuracy of estimated SFS using smoothing spline 

 

A smoothing spline (smooth.spline in R (23)) was used to estimate the frequency of SNVs 

belonging to a specific MAC category as a function of one of the parameters each time. To 

validate the performance of the smoothing spline, we conducted a simulation study using one 
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specific demographic history with one epoch of growth at 100 generations ago and 24 grid 

parameter values for final Ne varying from 2 to 200 million. For each of the two-parameter 

combinations, we performed 10,000 ms simulations to get the estimated SFS and an additional 

1.2 million ms simulations to get another estimate of the SFS as the "true underlying" SFS. 

Although the estimate from 1.2 million simulations may not be equal to the true underlying SFS, 

this was only used as a standard to validate the performance of the smoothing spline by 

comparing the estimate from 10,000 simulations, the estimate after applying the smoothing 

spline, and the estimate from 1.2 million simulations. 

 

The squared distance from the 1.2 million simulations SFS was consistently smaller for 

smoothing spline estimates than the original ones (Fig. S10), indicating the superior performance 

of the smoothing spline approach. Moreover, by using smoothing spline, we can obtain the 

estimated SFS for any grid point from a fitted line, which will increase the accuracy of our 

approach, in addition to saving computing time. 

 

In order to further reduce noise and increase accuracy, we binned SNVs with MAC greater than 

50 into one category. Smoothing spline and likelihood calculations were applied to the data after 

binning (22). 
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F. Difference between census population size and effective population size 
 

We show that a model with two epochs of growth (Model III) does not provide a better fit to our 

data than a model with a single epoch of growth (Model II). Besides power considerations, this 

result suggests that although the census population size (Nc) started to increase with the 

invention of agriculture 400 generations ago (24, 25), the effective population size (Ne) only 

began to grow recently (140 generations ago, according to Model II). A high variance in 

reproductive success is one known factor that explains Nc > Ne (26). Here, we explore how large 

the variance in reproductive success should be in order to explain alone a constant Ne during the 

Neolithic Europe.  

 

According to Crow and Kimura (27), for diploid species with two sexes under the assumption of 

random mating, the effective population size of the t
th

 generation is a function of the census 

population size of t
th

 generation Nc(t), the average number of offspring per individual of (t - 1)
th

 

generation  ̅(  - 1) and the variance of the number of offspring per individual Vk(t - 1).  ̅=2 

corresponds to the population maintaining a constant census population size and Vk = 2 for a 

population of constant population size with a Poisson distribution of offspring number. Thus, we 

have:  
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which further leads to the following equation, 
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If the growth rate of the Nc is (α - 1), i.e., Nc(t + 1) = αNc(t), then the average number of 

offspring per individual  ̅ =  α is a constant, and the growth rate of the effective population size 

is (β - 1), i.e., Ne(t + 1) = βNe(t). Solving for the variance of the number of offspring per 

individual of t
th

 generation at time growth begins, Vk(t) gives: 

V     = (
α

β
)

 

V  0     α( α - 1) [(
α

β
)

 

 - 1] (Eq.1) 

Archeological data can provide estimates for α during the time frame we attempted to detect the 

first growth epoch (260 generations, from 400 to 140 generations ago). Around 1000 BC, 

Northern Europe population size estimates vary between 100,000 for the British Islands to 

roughly 200,000 for a territory overlapping part of the current Poland and Germany (28). Growth 

in census population size may have been as high as ~1% per generation at that time according to 

archeological data (24, 29, 30), although other evidence suggests it could be around 0.4% (9). 

This leads to estimates of α ranging from 1.004 to 1.01 and Nc, 140 (the census population size 

140 generations ago) ranging from 2.82x to 13.29x of Nc, 400 (the census population size 400 

generations ago). As an illustration, if Nc, 400 is 5633 (as in Model II), population growth results 

in an Nc, 140 between 15,904 and 74,868 for an α of 1.004 and 1.01, respectively. If we assume 

that the reproductive success 400 generations ago was Poisson distributed, i.e., Vk, 400 = 2 (the 

variance in reproductive success 400 generations ago), and there was actually no effective 

population growth (β = 1), the above scenarios result in a Vk, 140  (the variance in reproductive 

success 140 generations ago) between 9.34 to 51.91 for α of 1.004 and 1.01, respectively.  These 

values are in the reasonable range for historical civilizations (31). For example, historical data on 

intensive agriculturalist civilizations report as many as hundreds of children for a very few elite 

males. Estimates based on contemporary pre-industrialized societies show that the variance in 

male reproductive success in pastoralists and horticulturalist cultures varies between 8 and 86 
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(31). Thus, the increase in Vk may explain why the increase in Nc was not accompanied with an 

increase in Ne. 

 

In addition to the case that the increase in Vk leads to a constant Ne, it is also possible that the 

increase in Vk causes the growth rate of Nc to be accompanied with a milder growth rate of 

effective population size, which might be in the range for which we have limited statistical 

power. The following table shows Vk under different combinations of growth rates of Nc (in the 

range of 0.6% to 1%) and growth rates of Ne (in the range of 0.3% to 0.6%, corresponding to 

statistical power of 25% and 60% respectively).  

β             α 1.006 1.007 1.008 1.009 1.01 

1.003 6.74 9.34 1 .70 17.06   .71 

1.004 4.74 6.74 9.33 1 .70 17.05 

1.005 3.19 4.74 6.74 9.33 1 .69 

1.006  .00 3.19 4.74 6.74 9.33 

Most of the variances above are within reasonable ranges of estimates for human populations 

(31). Even if the census population size has grown by 1% per generation over this period of 260 

generations, Vk of 9.3 would lead Ne to only grow by 0.6% per generation, which we only have a 

statistical power of 60% to detect.  
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G. ms command lines 
 

Commands for running ms for the four models (I through IV, respectively) from Table 1 in the 

main text, using best-fit parameters, are reported below:  
 

Model I: ./ms 986 25000 -T -G 0.11531883E+07 -eG 0.54230771E-05 0 -eN 0.2980769E-04 0.1056635E-
03 -eN 0.3461538E-04 0.1923077E-02 -eN 0.2221154E-03 0.3642163E-04 -eN 0.2269231E-03 
0.1923077E-02 
 
Model II: ./ms 986 25000 -T -G 0.88335800E+05 -eG 0.53822631E-04 0 -eN 0.2370031E-03 
0.8401376E-03 -eN 0.2752294E-03 0.1529052E-01 -eN 0.1766055E-02 0.2895910E-03 -eN 
0.1804281E-02 0.1529052E-01 
 
Model III: ./ms 986 25000 -T -G 0.10703884E+06 -eG 0.45445210E-04 -0.53861189E+03 -eG 
0.13698630E-03 0 -eN 0.2123288E-03 0.7526712E-03 -eN 0.2465753E-03 0.1369863E-01 -eN 
0.1582192E-02 0.2594418E-03 -eN 0.1616438E-02 0.1369863E-01 
 
Model IV: ./ms 986 25000 -T -G 0.65788146E+05 -eG 0.70000000E-04 -0.11920425E+04 -eG 
0.17000000E-03 0 -eN 0.3100000E-03 0.1098900E-02 -eN 0.3600000E-03 0.2000000E-01 -eN 
0.2310000E-02 0.3787850E-03 -eN 0.2360000E-02 0.2000000E-01 
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H. Conservation analysis of the NR data 
 

We chose the loci with the aim of minimizing the confounding of selection in our data. To 

investigate the level of selection, beyond comparisons to other types of loci (Figure S4; Table 

S3), we utilized GERP (32) to assess the amount of selection or constraint loci in our regions 

were under. GERP measures the difference between the expected substitution rate under 

neutrality and the observed rate, where positive scores are given to constrained elements or 

variants suspected of having undergone purifying selection (32). We lifted-over our data from 

hg18 to hg19 (33) and used the GERP conservation track on the UCSC genome browser (33) to 

obtain the score for each of our 1834 SNVs that passed quality control filtering. For comparison, 

we obtained GERP estimates for synonymous SNVs from the Exome Sequencing Project (ESP) 

data (34). Comparing the distribution of variants from the NR data to those from the synonymous 

category within the ESP data, we found that variants from the NR data are more closely 

distributed around zero (Fig. S5). We additionally filtered synonymous SNVs in the ESP data 

that lay in conserved elements (Mammal El, phastConsElement44wayPlacental UCSC track) and 

still observed a wider distribution as compared to variants from the NR data. These results 

support that the putatively neutral loci in our regions are less confounded by selection than the 

synonymous SNPs used in some of the previous studies that modeled recent growth in 

population size. This is reasonable given the criteria we filtered upon when choosing regions to 

sequence (Supplementary Note A).  

 

We next partitioned SNVs to those with a GERP score between -4 and 0, and those with a 

positive score. The SFS of both sets are very similar to the SFS of the original data, though the 
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set with positive GERP scores deviates slightly in the direction that the ESP synonymous data 

deviate from our data (Fig. H1).This is in line with this set being more affected by selection, but 

still to a much smaller extent than synonymous SNPs are. We additionally re-estimated 

demographic parameters from the best-fit model II (Table 1 in main text) using each of the two 

subsets of the NR data. We found that the 95% confidence interval for both subsets include the 

original estimates on the full data, though estimates from the GERP score > 0 subset were 

somewhat closer to demographic estimates from previous studies utilizing synonymous variants 

(13) (Table H1).  

 

 

Figure H1. SFS of the variants from the NR data separated into variants with a GERP 

score between -4 and 0 (not including 0), and those with a positive GERP scores. For 

comparison, the SFS of synonymous variants from the Exome Sequencing Project after filtering 

SNVs in conserved elements is also presented. The SFS of variants with a positive GERP score 

deviates slightly from the SFS of the full NR data in the direction of the synonymous variants, 

consistent with more purifying selection on these sites, but not as extensive as purifying selection 

on synonymous sites.
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 GERP_Score>0 GERP_Score<0 

Ne after earlier growth    6519.0 (3949.4, 9000.0)         4924.0  (3240.5, 6962.0) 

Duration of growth (generations)  156.7 (108.8, 216.6)    108.8  (76.9, 148.7) 

Ne after growth (millions)   0.65 (0.2, 112.0)                1.33  (0.22,284.0) 

 
Table H1. Demographic inference of Model II on subsamples of data with different GERP scores 

(Supplementary Note H). 95% confidence intervals are shown in parenthesis. In all cases, 95% 

confidence intervals include the estimates derived from the full NR dataset.  
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I. Figures 

 

Figure S1. Effect of population homogeneity on the SFS. Samples of 900 chromosomes were 

taken from either one single population, or from 8 subpopulations. The subpopulations are 

derived from a population that split 400 generations ago into 8 subpopulations. Each of the 8 

subpopulations had the same initial population size (5,633) and the same demographic history 

after the split as Model II in Table 1. When using unbalanced sample size, we sampled 308, 124, 

32, 204, 116, 32, 36 and 48 chromosomes from each subpopulation (Supplementary Note D). 

When sampling a balanced number of individuals in each subpopulation, we used 112 samples 

from 6 populations and 114 samples from 2 populations.  
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Figure S2: Distribution of the median read coverage calculated for each position of the 

216,240 bp sequenced across all 493 individuals. Positions with no reads were not plotted. 
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Figure S3. SFS based on different maximum depth of coverage. SFS for 111X and 27X 

coverage are close to the NR data, while SFS for the 15X coverage is especially different in its 

much lower proportion of singletons. See Supplementary Note D for a further description of 

these results.  
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Figure S4. SFS of the ESP data compared to SFS of NR data. Minor allele count of the ARIC 

neutral region data plotted against data from the NHLBI exome data of various functional 

categories that are (A) less conserved and (B) more conserved. ‘Near gene 3’ and ‘near gene 5’ 

were combined into the single category of near gene, UTR 3’, UTR 5’ were combined into the 

category UTR and splice 3’ and 5’ were combined into functional category splice. Minor allele 

counts were binned for counts greater than 5. 900 chromosomes were probabilistically 

subsampled for each variant (Supplementary Note E). The y-axis is presented on log scale. Inset 

zooms in on the fraction of variants that are singletons for each category (the y-axis here is in 

linear scale).  
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Figure S5. The distribution of GERP scores for variants in the NR data, and synonymous 

variants in the ESP data. Variants from the NR project (‘NR’) are more tightly distributed 

around zero and have a smaller portion of variants with positive GERP > 0, which points to 

evolutionary conservation. Synonymous variants from the ESP data (‘Synonymous’) and 

synonymous variants after filtering out variants in conserved elements (‘Syn. Filtered’) are more 

widely distributed around zero. Details regarding GERP scores are provided in Supplementary 

Note H. 
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Figure S6.  Comparison between the SFS of the NR data to simulated SFS for a matching 

sample size (900) of various published models. The y-axis is presented in log scale. Simulated 

data follow two previously published models of recent growth: Nelson e  al. ( 01 ), and 

Tennessen e  al. ( 01 ). The fraction of singletons in the NR data is below the estimates given by 

the other models. For further details see Supplementary Note E. 
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Figure S7: Impact of the ancestral demography on the modeling of recent demography. (A) 

Model I fit with different scenarios of ancient history. (B) Model II, where population size before 

growth is added as a free parameter. The y-axis is presented in log scale. All three models are 

fitted to the NR data and estimate parameter values for a single epoch of growth, with the only 

difference between the three models being the ancient history scenario assumed before the 

growth. The sample size and number of SNVs is consistent across all SFS.  
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Figure S8. Comparison of the 4 models of recent human history. On both panels, Ne is 

represented on a log scale. (A) Models with 1 epoch of growth (Model I and Model II; Table 1) 

represented for the last 400 generations. Dotted lines denote epochs where a model assumes a 

constant size, and solid lines denote an estimated change in population size. (B) Models with 2 

epochs of growth (Model III and Model IV; Table 1) during the last 400 generations. 
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Figure S9: Power to detect an additional epoch of growth for different growth rates. We 

vary the growth rate of the first epoch of growth while fixing all other parameters. Power is 

estimated as the proportion of replicates for which a likelihood ratio test p-value is less than 0.05. 

We performed 1,000 replicates to estimate the power under each parameter combination. 

(Supplementary Note E).  
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Figure S10. Ratio between distances from "true" SFS for the original and smoothing spline 

estimated SFS across minor allele count categories using simulations. The solid line denotes 

the ratio of 1. All points are above the solid line, which means the smoothing spline estimates are 

closer to the "true" SFS than the original SFS, thus indicating the superior performance of the 

smoothing spline approach.
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J. Tables 

 

Model of recent history Tennessen e  al. 

( 01 ) 

Nelson e  al. 

( 01 ) 

Coventry e  al. 

( 010) 

This paper 

Model I 

This paper 

Model II 

This paper 

Additional 
Models 

Ancient demography Gravel e  al. Schaffner e  al.  Schaffner e  al. Keinan e  al. Keinan e  al.  Keinan e  al. 

Ancestral Pop Size 14,470 14,000 14,000 10,000 10,000 10,000 

Time Out of Africa 

population bottleneck 
(kya) 

51 87.5 87.5 118 118 118 

Pop size after the first 
bottleneck 

1,861 7,700 7,700 10,000 10,000 10,000 

Time second bottleneck  3 47.5 47.5 18 18 18 

Pop size after the second 

bottleneck 

1,03  7,700 7,700 10,000 5,633 5,633 

Growth Duration 
(generations) 

715 NA NA NA NA see Table 1 

Size 9, 08* NA NA NA NA see Table 1 

Growth rate (per 

generation) 
0.307% 

(0.301,0.313) 

NA NA NA NA see Table 1 

Growth Duration 

(generations) 
205 

 

370 56 

(36,112) 

112.8 

(92.9,136.8) 

140.8 

(116.8,164.7) 

see Table 1 

Final size 51 ,000 4,000,000 

(2.5M,5M) 

1,100,000 5,200,000 

 (0.8M,300M) 

654,000  

(0.3M, 2.87M) 

see Table 1 

Growth rate (per 
generation) 

1.95% 

(1.89,2.01) 

1.70% 

(1.2,2.3) 

9.40% 

(4.5,14.5) 

5.54% 

(3.2,11.1) 

3.38% (2.4,5.1) see Table 1 

 

Table S1. Estimates of recent demography by previously published models compared to the 

models estimated in the present study. The estimates based on the two-parameter model 

(Model I in Table 1) are given. Bold values indicated estimated parameters. The other scenarios 

that have been explored are detailed in Table 1. The asterisk (*) indicates that in the model of 

Tennessen e  al. (11), the population does not have an instantaneous recovery of its original size 

after the second bottleneck: it starts growing at a slow exponential rate of 0.307% per generation 

after the bottleneck to reach an initial size (before the recent fast growth) of 90 8 individuals. 

For other models, bottleneck intensities are given in Schaffner e  al. ( 1) for Nelson e  al. (1 ) 

and Coventry e  al. (  ) models, and in Keinan e  al. ( 0) for the current study.  
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Chr Target start Target end Target length Base-pairs with 

coverage >  0X in at 
least 1 individual 

Base-pairs with 

coverage >  0X 
in at least 450 

individuals 

# of SNVs after QC 

 

1  37,146,097  37,165,997 19,900 19,90  19,764 180 

1  37,360,801  37,380,801  0,000  0,004 19,539 197 

4 164,000,000 164,0 0,000  0,000 17,96  16,117 96 

4 164,115,673 164,135,673  0,000 19,768 19,443 119 

6 165,34 ,001 165,355,001 13,000 11,098 10,659 86 

6 165,413,304 165,4 5,304 1 ,000 1 ,00  1 ,00  103 

6 165,470,500 165,48 ,500 1 ,000 1 ,000 1 ,000 1   

7 49,565,734 49,579,734 14,000 1 ,577 11,183 115 

7 49,645, 00 49,659, 00 14,000 14,000 13,779 17  

10 8 ,981,0 3 83,001,0 3  0,000 19,87  18, 78 1 6 

10 83, 07,715 83, 15,715 8,000 8,004 7,378 79 

10 83,388,407 83,408,407  0,000 14,534 1 ,773 131 

10 133,143,109 133,150,109 7,000 7,003 7,003 81 

10 133, 31,083 133, 4 ,083 11,000 11,004 11,004 117 

10 133, 66,053 133, 71,393 5,340 5, 85 5,066 110 

To al   216,240 205,015 195,988 1834 

 

 
 

Table S2. Genomic locations of the neutral regions (NR) sequenced in this analysis. 

All positions are given for the human genome assembly hg18.  
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Functional_Category # SNVs χ2 P value 

Near gene 3,353 31.6 4.60E-04 

Intergenic 15,433 43.9 3.46E-06 

Intron 390,077 77.4 1.64E-12 

Synonymous 245,336 110 5.44E-19 

UTR 44,470 119 8.07E-21 

Synonymous near splice 4,123 109.6 6.31E-19 

Missense 412,904 521.1 1.33E-105 

Splice 4,566 1018.2 2.27E-212 

Stop gained 10,569 1531.4 4.45E-323 

 

 

Table S3. Chi-square statistic and test for goodness of fit of the ESP SFS to the SFS of the 

NR data. Results are presented for pairwise comparisons between each functional category of 

the ESP data and the NR data. No functional category shows evidence of fitting the NR data. 

Details regarding the goodness of fit test are presented in Supplementary Note C.  
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Ancient 
Demography 

Number of free 
Parameters 

Initial Pop 
Size 

Growth Duration 
(generations) 

Final Pop Size 
(millions) 

Growth Rate 
log 

Likelihood 

Schaffner et al. 
(2005) 

2 7700 276.5 (236.6,320.5) 0.81 (0.46,1.8) 
1.68% 

(1.3,2.2) 
-3586.254 

Gravel et al. (2011) 2 1032 168.7 (144.8,196.7) 0.15 (0.1,0.24) 
2.60% 

(2.1,3.3) 
-3597.474 

Keinan et al. 
(2007) 

2 10,000 112.8 (92.9,136.8) 5.2 (0.8,300) 
5.54% 

(3.2,11.1) 
-3595.141 

 
Table S4. Additional two-parameter models based on the NR SFS, varying ancient history 

scenario. Estimates of the free parameters are shown in bold, and fixed parameters are shown in 

italicized character and regular font denotes parameters that were derived from other estimated 

parameters. 95% confidence intervals are also shown in parenthesis. Model I (Table 1) is also 

given and highlighted in grey for easy comparison. 
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Ancient 
demography 

Number of free 

parameters 

Initial Pop 

Size t  

Growth  Duration 

(generations) 

Final Pop Size 

(millions) 
Growth Rate 

log 

Likelihoo
d 

Schaffner et al. 3 
7494 

(6000,9000) 
268.6 (228.6,312.5) 0.771 (0.4,1.95) 1.73% (1.3, .4) -3586.051 

Gravel et al. 3 
4126 

(3300,5000) 
128.8 (112.8,148.8) 0.471 (0.23,1.26) 3.68% ( .7,5.1) -3584.336 

Keinan et al. 3 
5633 

(4400,7100) 
140.8 (116.8,164.7) 0.654 (0.3,2.87) 3.38% ( .4,5.1) -3583.975 

 

Table S5. Additional three-parameter models based on the NR SFS, varying ancient history 

scenario. The fixed and free parameters for the modeling of one recent epoch of growth with 

three parameters. 95% confidence intervals are also shown in parenthesis. Bold characters are 

estimated parameters and regular font denotes parameters that were derived from other estimated 

parameters. For comparison, Model II with three parameters (Table 1) is also given in grey.  
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Model 

Total # 

grid 

points Pop Size t1 t1 Pop Size t2 t2 Pop Size t3 

Model I 240 NA NA NA 5-600 (15) 0.05-30 (16) 

Model II 1920 2k-9k (8) NA NA 5-600 (15) 0.05-30 (16) 

Model III 1920 NA NA 0.002-0.1 (12) 200-380 (10) 0.005-100 (16) 

Model IV 7840 NA 200-600 (7) 0.003-0.1 (10) 50-200 (8) 0.01-100 (14) 

 

 

 

Table S6. Grid points used in parameter estimation. The ranges of values used for the four 

models are listed below. Values in parenthesis indicate the number of points. For each parameter, 

we used 7-16 grid points with slightly more points for parameters associated with the second 

growth and fewer points for the first one. For all models, we ran ~200K ms simulations for each 

of the grid points. In order to validate that 200K ms simulations are sufficient for our estimates, 

we rerun 10 million ms simulations for a portion of the grid and find similar results. 


