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Before the iterative procedure can be applied to the measured
momentummaps, background intensity has to be subtracted from
the angle-resolved photoemission spectroscopy (ARPES) data.
To get rid of contributions arising from the diffuse substrate
emission, the average polar angle Θ-intensity distribution of
different azimuthal angles Φ where no molecular features are
present is subtracted from the whole raw intensity data I(Θ, Φ).
Beside these subtractions for all measured orbitals, in the case of
pentacene (5A)/Ag(110) there is a small amount of a second
domain with molecules rotated 90° with respect to the main
domain, which may impede the reconstruction procedure. The
second domain may be seen for instance in the lowest un-
occupied molecular orbital (LUMO) map at a ky value of 1.4 Å

−1

(Fig. 3C), but is also present in the other orbitals momentum
maps. To handle this circumstance we rotate the corresponding
experimental momentum map by 90° and subtract 10% of the so-
rotated data from the original momentum map, getting rid of
contributions from the minor domain.
The real-space resolution of the orbitals is given by the max-

imum momentum value of the respective ARPES maps, which in
turn is governed by the kinetic energy of the photoemitted
electrons. Because the kinetic energies for the studied orbitals lie
around 25 eV if photons of 30 eV are used, maximum k values
around kmax = 2.5 Å−1 result. The resolution in real space would
be therefore Δx = π/kmax = 1.25 Å. To obtain smoother orbital
images, we expand the momentum space domain size to ∼17.5
Å−1 and set the data outside the measured kmax = 2.5 Å−1 to
zero. Thereby, we can interpolate orbitals in real space on
a denser grid with a spacing of π/17.5 = 0.2 Å. The data produced
with these preparation steps were used as an input for the iter-
ative procedure.
We relate the reconstructed orbitals to those measured with

scanning tunneling microscopy (STM) (Fig. S1). As mentioned in
the introduction, STM measurements probe the local density of
states of the orbital at the position of the tip. Thus, no information
on the phase of the wave function can be obtained in STM. In
contrast, our ARPES-based reconstruction algorithm provides
information about the phase, which we consider a major ad-
vantage over orbital imaging in STM. As expected, there are clear
similarities in the results of the two techniques, e.g., regarding the
nodal structure of all orbitals (Fig. S1 A–H). However, there are
also clear differences: Firstly, the lateral extensions of the orbi-
tals in the STM measurements are larger than the reconstructed
ones, most notably in the case of 5A (Fig. S1 A–D). We think
that this is related to the fact that the probability density is de-
tected at distances further away from the molecule, whereas in
ARPES the orbital is cut in reciprocal space, which determines
the size of the lobes. Secondly, Fig. S1 E and F illustrate the
ambiguity of orbital images obtained from STM, arising from the
influence of the tip. Thirdly, the ARPES-based reconstruction
algorithm is not restricted to the LUMO and HOMO states of
a molecule and should work independent of the chosen substrate.
In Fig. S2, which shows the same experimental data as Fig. 3 of

the main text, the reconstructed orbitals are compared with 2D

projections of the theoretical orbitals. These 2D projections
ϕðx; yÞ are obtained from the computed 3D orbitals, ψðx; y; zÞ, in
the following way:

ϕðx; yÞ=
Z

dz  ψðx; y; zÞ · ze−cjzj: [S1]

Here, the function ze−cjzj resembles the z dependence of a carbon
pz orbital where the parameter c is chosen accordingly.
For a further proof of the robustness of our method, Fig. S3

shows once again the iterative procedure, but now with a ran-
domly kx, ky distributed phase as a starting point. The data and
the color code used in this example are the same as for Fig. 2 of
the main text. In Fig. S3A the first iteration of the procedure can
be seen. Note the random distribution of the phase on the top
left. After the first inverse Fourier transform, the so-obtained
real-space intensity distribution, depicted in Fig. S3A (Right),
shows no similarity to an actual molecular orbital, but resembles
a random distribution. Arrow number 4 shows the last step that
closes one iteration cycle, which consists of applying the newly
obtained complex phase (Fig. S3A, Bottom Left) to the square
root of the measured intensity

ffiffi
I

p
(Fig. S3B, Left). The real-

space wave function obtained in the second cycle (Fig. S3B,
Right) still looks like an irregular distribution. After 50 iterations
(Fig. S3C) the real-space orbital is already close to the one ob-
tained with the constant phase, and after the 250th iteration (Fig.
S3D) the converged result is indeed the same as for reconstruction
starting with a constant phase (Fig. 2). Performing several recon-
structions with different initial random complex phase patterns
leads to essentially identical results, apart from minor details,
thereby maintaining the good agreement with the calculated
density functional theory (DFT) orbitals.
The issue of orbital translation is illustrated in Fig. S4 for the

second highest occupied molecular orbital (HOMO-1) orbital of
5A. Comparing the reconstructed orbital (Fig. S4A) with the
Kohn–Sham orbital (Fig. S4C), the concordance between these
two is not as good as for the other four orbitals. On closer in-
spection, one may infer a better agreement if the reconstructed
orbital is cyclically shifted in the direction indicated with the
arrow. Such a shift may indeed result from the reconstruction
algorithm, because a translation of the orbital in real space only
leads to a constant phase factor in momentum space, due to the
mathematical properties of Fourier transforms already men-
tioned in point (ii) of the main text section, How Can the Lost
Phase Be Recovered?. Therefore, the reconstruction algorithm
cannot distinguish between a function ϕðx; yÞ and the constant
shifted function ϕðx−Rx; y−RyÞ multiplied with a phase factor
expðiξÞ. To solve this ambiguity, we may choose to fix the posi-
tion of the orbital’s center in the middle of the confining box by
applying inversion symmetry to the wave function during the
iteration cycles. Doing so, we obtain the reconstructed orbital
shown in Fig. S4B, whose shape is actually in good agreement
with the DFT calculation.
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Fig. S1. Comparison between the orbitals reconstructed iteratively from ARPES data and images of orbitals measured with STM. (A and C) STM images of the
5A LUMO and HOMO on NaCl/Cu(111) using a pentacene tip, taken from ref. 1. (B and D) The 5A LUMO and HOMO reconstructed from ARPES (Upper) and the
corresponding Kohn–Sham orbital images (Lower). (E and G) STM images of the PTCDA LUMO and HOMO on Au(111) using a CO tip (Left) and a bare metal tip
(Right). (F and H) PTCDA LUMO and HOMO reconstructed from ARPES (Upper) and the corresponding Kohn–Sham orbital images (Lower). A and C reprinted
figure with permission from Repp J, Meyer G, Stojkovic SM, Gourdon A, Joachim C (2005) Phys Rev Lett 94(2):026803. Copyright 2005 by the American Physical
Society, http://prl.aps.org/abstract/PRL/v94/i2/e026803.
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Fig. S2. Compilation of orbitals reconstructed from ARPES data in this work (same data as in Fig. 3 of the main text except for the theoretical orbital images).
(Left) Experimental constant binding energy (CBE) ARPES maps of the PTCDA LUMO (A) and HOMO (B), and the pentacene LUMO (C), HOMO (D), and HOMO-1
(E). (Center) CBE maps with the recovered phase information. (Right) Reconstructed real-space orbitals (orange box) which are compared with corresponding
2D projections of Kohn–Sham orbital (without box) as explained in the text. The wave function confinement regions are 14.8 × 7.2 Å2 and 14.8 × 5.4 Å2 for
PTCDA and pentacene, respectively.
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Fig. S3. Illustration of the iterative wave function reconstruction algorithm with a random complex phase distribution as the starting point, using the example
of the perylene-3,4,9,10-tetracarboxylic dianhydride (PTCDA) HOMO. Black isolines represent the square root of the measured intensities, whereas the color
indicates the phase. (A) First iteration. (B–D) Reciprocal- (Left) and real-space (Right) picture of the wave function in the 2nd, 50th and 250th iterations, re-
spectively. At the bottom of D we show the real part of the reconstructed wave function in k space and real space.
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Fig. S4. Illustration of the cyclic translation that can result from incorrect spatial confinement. (A) Real-space reconstruction of the HOMO-1 orbital of 5A
without any further constraints besides the spatial confinement of the orbital. (B) Real-space reconstruction of the HOMO-1 orbital applying inversion sym-
metry to the orbital during the iterative procedure. (C) Kohn–Sham orbital image of the HOMO-1 of 5A.
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