Supplemental Material to:

Whitney Shatz, Shan Chung, Bing Li, Brett Marshall, Max Tejada, Wilson Phung, Wendy Sandoval, Robert F Kelley, and Justin M Scheer

Knobs-into-holes antibody production in mammalian cell lines reveals that asymmetric afucosylation is sufficient for full antibody-dependent cellular cytotoxicity

> mAbs 2013; 5(6) http://dx.doi.org/10.4161/mabs.26307

http://www.landesbioscience.com/journals/mabs/article/26307/

Supplemental Figures Legend

Figure S1. N-linked afucosylated carbohydrate species.

Quantification of N-linked afucosylated species using GlycoChip shows a difference in relative abundance of structures when core fucose is absent. These longer adducts do not appear to affect ADCC potency.

đ

Figure S2. ADCC potencies of various heterodimers are reproducible in different cell based assays.

ADCC potencies of heterodimer and asymmetric antibodies were tested using two different PBMC donors. In addition, the assay was run using an engineered NK cell line on two different days to test for consistency and reproducibility of ADCC. Though raw values vary, the trend remains consist among assays demonstrating that the absence of only one core fucose is required to achieve high potencies similar to complete afucosylation.

	Asn297	G ₁ +NANA	0/N	0.5	0/N	0/N
*[Asn297	G ₂ +NANA	0.5	10.1	18.7	0/N
	Asn297	G ₂	5.9	23.3	36.1	8.5
* { • • •	Asn297	G1	34.1	29.6	12.9	36.7
⊶{}	Asn297	G ₁ -1	0.00	0.6	0/N	0/N
` }	Asn297	Go	39.1	27.1	N/O	26.4
•{>	Asn297	G ₀ -1	0.6	1.2	N/O	0/N
·}	Asn297	ManX	4.2	5.4	32.3	28.3
Mann Gai	 GlcNac 		AF WT	AF knob/AF hole (H6)	AF knob (H6)	AF hole (H6)

	Parental ½ mAb	version*	Host	ProA Recovery (mg/L)	Knob	Hole
nsient	anti-CD20	1	СНО	7		x
		2	СНО	73	x	
		2	СНО	78	x	
		1	СНО	25		x
		3	Fut8KO	15	x	
		4	Fut8KO	10		x
		5	E.coli	8	x	
	Ab-1	1	СНО	6.5		x
		2	СНО	81		х
Tra		3	СНО	90		х
Shake Flask or	Ab-2	1	СНО	8	x	
		2	СНО	22	x	
		3	сно	30	x	
	Ab-3	1	СНО	85		x
	Ab-4	2	СНО	13	х	
	Ab-5	1	E.coli	12.8	х	
		2	E.coli	7	х	
	Ab-6	1	СНО	26.5		x
		2	сно	96		x
	Ab-7	1	СНО	96.2	x	
		2	СНО	70	х	
	Ab-8	1	E.coli	5.2		x
	Ab-2	1	E.coli	567.8	х	
ble		1	E.coli	413.6	x	
ital	Ab-3	1	E.coli	186		x
atch or S	Ab-4	1	E.coli	60	x	
	Ab-5	1	E.coli	200	x	
		2	E.coli	360	x	
ā ļ	Ab-6	3	СНО	2000		x
Fec	Ab-7	3	СНО	2500	х	
	Ab-9	1	сно	1600	x	

*denotes sequence variants of the same parental antibody

Supplemental Table S1. Protein-A yields for half-antibodies derived from *E.coli*, CHO and Fut8KO cell lines. *E.coli* Pro-A yields are from either shake flask cultures (top) or fedbatch cultures (bottom), while mammalian host Pro-A yields are from either transient expression cultures (top) or stable cell cultures (bottom). Each antibody (Ab) is against a unique target and blinded in this table.

	Theoretical G ₀ Mass	Measured G ₀ Mass	Theoretical Mass (without glycosylation)	Measured Mass (PNGase treated)
knob/knob	148,346.98	N/O	145,731.80	N/O
hole/hole	147,936.46	N/O	145,321.28	N/O
heterodimer	148,141.72	148,125.72	145,526.54	145,530.91

Supplemental Table S2. Comparison of theoretical and MS measured masses for H6