Supplementary Information File

Characterizing and controlling the inflammatory network during

influenza A virus infection

Suoqin Jin¹, Yuanyuan Li¹, Ruangang Pan², Xiufen Zou¹

¹School of Mathematics and Statistics, Wuhan University, Wuhan 430072, China. ²State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China.

Table of Contents

Supporting Figures.	2
Figure S1, Figure S2	2
Figure S3	
Figure S4, Figure S5	4
Figure S6	5
Figure S7, Figure S8	6
Figure S9	7
Figure S10, Figure S11	8
Figure S12	9
Figure S13, Figure S14	
Figure S15, Figure S16	
Figure S17, Figure S18	
Figures S19- S21	
Supporting Tables	14
Table S1, Table S2	14
Tables S3-S5	
Tables S6-S9	
Table S10	17
Table S11	
Table S12	
Table S13	
Table S14	
Table S15	
Tables S16-18	
Tables S19-21	
Table S22	
Supporting Text	27
Improved conjugate gradient algorithm	
Nonlinear ODEs models of the two subnetworks	
DMGBDE algorithm	
Comparative control study for HCV infection	
Entropy	
Protein complex	
Correlation	

Supplementary Figures:

Figure S1 | The framework of the network construction.

Figure S2 | **Network metrics explored in this study.** These network metrics were used to compare the network features of the inflammatory network with those of the normal network and then to characterize the inflammatory network.

Figure S3 | The procedure for dynamical analysis of the networks.

Figure S4 | **The constructed PPI networks during the H5N1 and H1N1 infections.** The node sizes are proportional to the degree of the nodes. The edge colors represent the Pearson correlation coefficient (PCC) of paired proteins (dark green and red indicate strong negative and positive correlations, respectively). (a) and (b) are the normal and inflammatory networks during the H5N1 infection, respectively. (c) and (d) are the normal and inflammatory networks during the H1N1 infection, respectively.

Figure S5 | **Comparison of the number of decreased and increased differential entropy values.** The number of increased differential entropies (66 for the H5N1 infection and 59 for the H1N1 infection) is significantly greater than the number of decreased differential entropies (15 for H5N1 infection and 25 for H1N1 infection).

Figure S6 | Comparison between the inflammatory (I) and normal (N) networks of eight local network metrics for all nodes with degree \geq 2. (a) H5N1 infection. (b) H1N1 infection. P-values are from a two-tailed Wilcoxon rank sum test.

Figure S7 | Comparison of the variance of protein expression levels between the inflammatory (I) and normal (N) networks. The inflammatory networks exhibits significantly higher variability in the protein expression levels than that in the normal networks for the H5N1 and H1N1 infections. P-values are from an one-tailed Wilcoxon rank sum test.

Figure S8 | The differential network (edges are only in the inflammatory network and not in the normal network). The node sizes are proportional to the degree of the nodes. The red square nodes represent the potential target proteins, which were selected for further dynamical analysis

Figure S9 | Dynamical process of TNF α , IL-1 β , TLR2, NF κ B, CXCL10, IFN- γ and IL10 in the normal network (N) and the inflammatory network (I) over 96h. The blue dashed and red solid lines denote the simulation results (S) of the normal and inflammatory networks, respectively. The blue circle and red stars represent the experimental data (E) at each time point of the normal and inflammatory network, respectively. The experimental errors are plotted using short bars at each time point.

Figure S10 | **Network structures derived from the dynamical models.** The gray lines indicate the regulatory interactions predicted by our models. The red lines represent the regulatory interactions confirmed in the literature. The blue thick lines stand for the opposite regulatory interactions predicted by our models (comparison of two networks). The lines with arrows and short bars indicate positive and negative regulation, respectively. (a) Predicted by the inflammatory network model. (b) Predicted by the normal network model.

Figure S11 | Local robustness (LR) with respect to the initial values in the normal and inflammatory networks with 10% perturbations. [X]0 is the initial value of the output X in the dynamical models. The results show that both networks are very robust to perturbations of the initial concentrations of proteins.

Parameters

Figure S12 | **Local robustness (LR) with respect to the kinetic parameters with 10% perturbations.** The blue color in the color bar indicates values that are less than 0.6. (a) Normal network. (b) Inflammatory network.

Figure S13 | Bistability and tristability phenomena for sensitive parameters a32, a31 and a21 in the inflammatory network. SN represents a saddle-node bifurcation.

Figure S14 | **Bifurcation graph for the sensitive parameters a32, a67 and a76 in the normal network.** HB and SN represent a Hopf bifurcation and a saddle-node bifurcation, respectively. Domain I is the parameter range for the 20% perturbation. Domain II exhibits an HB and oscillation.

Figure S15 | Three related modules in the inflammatory network identified using the Cytoscape plugin ClusterOne. The red and green colors indicate the increased and decreased entropy of the proteins, respectively. (a) Module including TNF, IL-1 β , TLR2, NF κ B, and IL10. (b) Module of COX-2. (c) Module of the protein complex (TNFSF10/HDAC4/HDAC5).

Figure S16 | Comparison of the local network entropies (S) and the variance of protein expression levels between the inflammatory (I) and normal networks (N) for HCV infection. P-values are from a two-tailed Wilcoxon rank sum test. (a) Comparison of the local network entropies for all nodes with degree ≥ 2 . (b) Comparison of the variance of protein expression levels for all nodes. There are not significant differences in both the entropies and the variance of protein expression levels between the normal and inflammatory networks for HCV infection.

Figure S17 | Comparison between the inflammatory (I) and normal (N) networks of eight local network metrics for all nodes with degree ≥ 2 for HCV infection. P-values are from a two-tailed Wilcoxon rank sum test.

Figure S18 | PPI network collected from four PPI databases (BIND, HPRD, BioGRID and STRING). The node sizes are proportional to the degree of the nodes.

Figure S19 | Residual error of the inflammatory network model for various values of the constant a.

Figure S20 | **Interactions of these potential target proteins in the constructed inflammatory network (a) and normal network (b) are shown, respectively.** The gray lines indicate the interactions in the constructed networks. The red lines represent the regulatory interactions confirmed in the literatures. The lines with arrows and short bars indicate positive and negative regulations, respectively.

Figure S21 | **Average relative errors (AREs) of the networks.** The y-axis represents the number of nodes in networks whose AREs are fall into the corresponding bins. (a) and (b) are the distributions of the AREs of the normal and inflammatory networks for HCV infection, respectively.

Supplementary Tables:

	H51	N1	H1N	11
topological metrics	inflammatory network	normal network	inflammatory network	normal network
network diameter	6	6	6	6
network density	0.098	0.094	0.099	0.092
network centralization	0.417	0.387	0.363	0.306
average path-length	2.545	2.573	2.541	2.569
average number of neighbors	8.733	8.136	8.483	8.0
average clustering coefficient	0.520	0.454	0.496	0.478

Table S1 | Detailed global topological metrics of the inflammatory and normal networks for the H5N1 and H1N1 infections

Table S2 | Optimal parameter values obtained by DMGBDE algorithm in the inflammatory network model

Kinetic	Biological	Optimal	Kinetic	Biological	Optimal
parameter	process	value	parameter	process	value
a12	IL-1 β \rightarrow TNF α	0.0776	a62	IL-1β→IFN-γ	0.3130
a13	TLR2→TNFα	2.5419	a64	ΝΓκΒ→ΙΓΝ-γ	2.7954
a15	CXCL10→TNFα	1.8110	a65	CXCL10→IFN-γ	0.6673
a16	IFN-γ→TNFα	2.5771	a67	IL10— IFN-γ	-0.6650
a17	IL10— TNFα	-2.5470	a71	TNFα→IL10	1.4850
a21	TNFα→IL-1β	1.2849	a73	TLR2→IL10	1.1734
a23	TLR2→IL-1β	1.0904	a74	NFκB→IL10	1.5965
a24	$NF\kappa B \rightarrow IL-1\beta$	2.4924	a76	IFN - γ→IL10	3.5223
a26	IFN-γ— IL-1β	-0.3075	d1	TNF α degradation	2.1500
a31	TNFα— TLR2	-1.4332	d2	IL-1β degradation	2.3792
a32	IL-1β→TLR2	2.8533	d3	TLR2 degradation	1.3920
a34	NFκB— TLR2	-0.6967	d4	NFkB degradation	1.4283
a37	IL10→TLR2	0.0839	d5	CXCL10 degradation	0.1317
a42	IL-1β→NFκB	3.0824	d6	IFN-γ degradation	3.2306
a43	TLR2→NFκB	3.3122	d7	IL10 degradation	5.8791
a45	CXCL10→NFκB	0.1011	k1	TNF α synthesis	2.7397
a46	IFN-γ→NFκB	0.6207	k2	IL-1 β synthesis	2.4806
a47	IL10→NFκB	1.2172	k3	TLR2 synthesis	2.2888
a51	TNFα→CXCL10	0.2873	k4	NFκB synthesis	3.0622
a54	NFκB→CXCL10	0.3028	k5	CXCL10 synthesis	0.2603
a56	IFN-γ→CXCL10	0.3604	k6	IFN-γ synthesis	2.3243
a61	TNFα→IFN-γ	0.1475	k7	IL10 synthesis	1.5914

Kinetic	Biological	Optimal	Kinetic	Biological	Optimal
parameter	process	value	parameter	process	value
a14	ΝΓκΒ→ΤΝΓα	0.8388	a67	IL10— IFN-γ	-2.022
a15	CXCL10→TNFα	1.3521	a72	IL-1β→IL10	0.2335
a16	IFN-γ→TNFα	1.8693	a74	NFκB→IL10	0.0473
a23	TLR2— IL-1β	-0.508	a76	IFN-γ→IL10	0.4647
a24	NFκB→IL-1β	0.7257	d1	TNF α degradation	1.1549
a27	IL10→IL-1β	1.4590	d2	IL-1β degradation	0.1256
a32	IL-1β→TLR2	0.2264	d3	TLR2 degradation	0.3387
a34	NFκB→TLR2	0.0220	d4	NFkB degradation	0.0557
a41	ΤΝΓα→ΝΓκΒ	0.6108	d5	CXCL10 degradation	1.1194
a42	IL-1β→NFκB	0.6353	d6	IFN-γ degradation	0.0154
a43	TLR2→NFκB	0.6600	d7	IL10 degradation	1.4093
a46	IFN-γ→ΝFκΒ	0.2391	k1	TNFa synthesis	1.0607
a47	IL10— NFκB	-0.9893	k2	IL-1β synthesis	0.8100
a51	TNFα→CXCL10	0.098	k3	TLR2 synthesis	0.5081
a56	IFN-γ→CXCL10	1.7629	k4	NF _K B synthesis	0.4845
a61	TNFα→IFN-γ	0.1242	k5	CXCL10 synthesis	0.4727
a64	NFκB→IFN-γ	1.0415	k6	IFN-γ synthesis	1.2469
a65	CXCL10→IFN-γ	1.1820	k7	IL10 synthesis	0.0548

Table S3 | Optimal parameter values obtained by DMGBDE algorithm in normal network model

Table S4. Local robustness analysis of the initial values in the normal network model with 5% perturbations

Robu	stness measur	e LR _i with	n respect t	to different	outputs

Initial values	Kobustness measure LK_i with respect to different outputs												
	TNFα	IL-1β	TLR2	NFκB	CXCL10	IFN-γ	IL10						
$[TNF\alpha]_0$	1.24E-09	1.83E-09	1.09E-09	2.83E-09	1.11E-09	5.44E-10	1.19E-09						
[IL-1β] ₀	2.01E-10	3.65E-10	1.25E-10	9.32E-10	1.28E-10	1.04E-10	1.58E-10						
[TLR2] ₀	3.98E-09	5.53E-09	3.47E-09	8.11E-09	3.56E-09	1.39E-09	3.81E-09						
$[NF\kappa B]_0$	1.20E-09	1.74E-09	1.05E-09	2.62E-09	1.12E-09	4.57E-10	1.15E-09						
[CXCL10] ₀	2.50E-09	3.64E-09	2.22E-09	5.43E-09	2.27E-09	8.89E-10	2.43E-09						
$[IFN-\gamma]_0$	2.93E-09	4.04E-09	2.56E-09	5.79E-09	2.60E-09	1.10E-09	2.80E-09						
[IL10] ₀	2.98E-09	4.14E-09	2.60E-09	6.35E-09	2.66E-09	1.05E-09	2.84E-09						

Note: $[X]_0$ indicates the initial value of protein X in the dynamical models.

Table S5. Local robustness analysis of the initial values in the normal network model with 10% perturbations

Initial values	Robustness measure LR_i with respect to different outputs												
	TNFα	IL-1β	TLR2	ΝΓκΒ	CXCL10	IFN-γ	IL10						
$[TNF\alpha]_0$	9.00E-10	1.23E-09	7.73E-10	1.93E-09	7.92E-10	3.38E-10	8.41E-10						
$[IL-1\beta]_0$	2.15E-10	2.79E-10	1.88E-10	4.64E-10	2.01E-10	1.91E-10	2.06E-10						
[TLR2] ₀	2.38E-09	3.34E-09	2.09E-09	4.94E-09	2.13E-09	7.69E-10	2.29E-09						
$[NF\kappa B]_0$	8.57E-10	1.17E-09	7.25E-10	1.94E-09	7.93E-10	4.69E-10	7.89E-10						
[CXCL10] ₀	1.56E-09	2.16E-09	1.36E-09	3.10E-09	1.39E-09	6.30E-10	1.50E-09						
$[IFN-\gamma]_0$	1.78E-09	2.46E-09	1.54E-09	3.62E-09	1.58E-09	6.97E-10	1.71E-09						
[IL10] ₀	1.75E-09	2.47E-09	1.53E-09	3.69E-09	1.59E-09	6.69E-10	1.71E-09						

Note: [X]₀ indicates the initial value of protein X in the dynamical models.

Table S6. Local robustness analysis of initial values in normal network model with 20% perturbations

Initial values	Robustness measure LR_i with respect to different outputs												
	TNFα	IL-1β	TLR2	ΝΓκΒ	CXCL10	IFN-γ	IL10						
$[TNF\alpha]_0$	5.67E-10	7.97E-10	4.99E-10	1.14E-09	5.16E-10	1.88E-10	5.49E-10						
$[IL-1\beta]_0$	1.55E-10	2.12E-10	1.32E-10	3.04E-10	1.40E-10	5.79E-11	1.47E-10						
[TLR2] ₀	1.08E-09	1.54E-09	9.63E-10	2.19E-09	9.79E-10	3.43E-10	1.06E-09						
$[NF\kappa B]_0$	4.92E-10	6.72E-10	4.19E-10	9.83E-10	4.57E-10	1.76E-10	4.68E-10						
[CXCL10] ₀	1.02E-09	1.44E-09	9.00E-10	2.04E-09	9.18E-10	3.29E-10	9.89E-10						
$[IFN-\gamma]_0$	1.07E-09	1.51E-09	9.46E-10	2.15E-09	9.66E-10	3.44E-10	1.04E-09						
[IL10] ₀	9.03E-10	1.26E-09	7.93E-10	1.79E-09	8.23E-10	3.02E-10	8.74E-10						

Note: [X]₀ indicates the initial value of protein X in the dynamical models.

 Table S7. Local robustness analysis of initial values in inflammatory network model with 5% perturbations

 Pohystness measure LP, with respect to different outputs

Initial values		Robustness measure LK_i with respect to different outputs												
	TNFα	IL-1β	TLR2	ΝΓκΒ	CXCL10	IFN-γ	IL10							
$[TNF\alpha]_0$	1.39E-09	6.86E-09	4.60E-08	2.16E-09	6.69E-11	1.26E-09	1.19E-09							
$[IL-1\beta]_0$	1.13E-09	6.98E-09	5.33E-08	2.27E-09	7.14E-11	1.25E-09	1.20E-09							
[TLR2] ₀	9.03E-10	2.81E-09	2.65E-08	7.84E-10	4.19E-11	5.72E-10	7.22E-10							
$[NF\kappa B]_0$	7.28E-10	2.39E-09	2.13E-08	8.85E-10	1.70E-11	3.78E-10	3.89E-10							
[CXCL10] ₀	1.23E-09	6.30E-09	4.20E-08	2.15E-09	1.05E-10	1.19E-09	5.87E-10							
$[IFN-\gamma]_0$	6.65E-10	4.49E-09	3.87E-08	1.18E-09	5.25E-11	8.21E-10	6.59E-10							
[IL10] ₀	1.17E-09	5.44E-09	3.47E-08	1.95E-09	1.49E-10	1.01E-09	5.10E-10							

Note: [X]₀ indicates the initial value of protein X in the dynamical models.

Table S	8. I	Loca	l robu	istness	anal	ysis (of tl	he iı	nitia	al v	value	s in	int	flamma	atory	netwo	ork	mode	l with	10%	pe	rturl	oatio	ns
															•									

Initial values	Robustness measure LR_i with respect to different outputs												
initial values	TNFα	IL-1β	TLR2	ΝΓκΒ	CXCL10	IFN-γ	IL10						
$[TNF\alpha]_0$	2.53E-10	1.55E-09	1.36E-08	4.83E-10	2.02E-11	3.17E-10	1.51E-10						
$[IL-1\beta]_0$	6.79E-10	3.96E-09	2.97E-08	1.31E-09	4.78E-11	7.05E-10	7.10E-10						
[TLR2] ₀	7.44E-10	3.97E-09	2.77E-08	1.33E-09	5.50E-11	6.84E-10	5.90E-10						
$[NF\kappa B]_0$	3.40E-10	3.03E-09	2.21E-08	1.13E-09	4.58E-11	5.00E-10	5.09E-10						
[CXCL10] ₀	6.85E-10	3.53E-09	2.47E-08	1.24E-09	7.17E-11	6.65E-10	5.60E-10						
$[IFN-\gamma]_0$	4.35E-10	2.84E-09	2.33E-08	8.04E-10	1.92E-11	5.59E-10	2.00E-10						
[IL10] ₀	2.25E-10	1.32E-09	1.08E-08	3.79E-10	1.93E-11	2.16E-10	1.16E-10						

Note: [X]₀ indicates the initial value of protein X in the dynamical models.

Table S9. Local robustness analysis of the initial values in inflammatory network model with 20% perturbations

Initial values	Robustness measure LR_i with respect to different outputs												
	TNFα	IL-1β	TLR2	ΝΓκΒ	CXCL10	IFN-γ	IL10						
$[TNF\alpha]_0$	1.19E-10	8.27E-10	7.29E-09	2.21E-10	6.30E-12	1.45E-10	4.16E-11						
$[IL-1\beta]_0$	1.72E-10	1.29E-09	1.14E-08	3.11E-10	7.29E-12	2.27E-10	5.47E-11						
[TLR2] ₀	1.15E-10	8.21E-10	7.18E-09	2.10E-10	5.27E-12	1.43E-10	4.03E-11						
$[NF\kappa B]_0$	1.10E-10	7.75E-10	6.69E-09	2.03E-10	5.38E-12	1.37E-10	4.29E-11						
[CXCL10]0	1.58E-10	1.10E-09	9.73E-09	2.95E-10	5.79E-12	1.93E-10	5.20E-11						

$[IFN-\gamma]_0$	1.78E-10	1.33E-09	1.17E-08	3.38E-10	7.33E-12	2.32E-10	5.55E-11
[IL10] ₀	9.06E-11	6.21E-10	5.36E-09	1.60E-10	4.92E-12	1.10E-10	3.71E-11

Note: [X]₀ indicates the initial value of protein X in the dynamical models.

 Table S10. Local robustness analysis of kinetic parameters in the normal network model with 5% perturbations

 Robustness measure LR: with respect to different outputs

Parameters		nooubuit	bb meabare		peet to unificien	ii ouipuis	
	TNFα	IL-1β	TLR2	NFκB	CXCL10	IFN-γ	IL10
a14	0.136	0.020	0.011	0.052	0.003	0.017	0.018
a15	0.428	0.064	0.034	0.163	0.009	0.053	0.058
a16	0.277	0.041	0.022	0.106	0.006	0.034	0.037
a23	0.217	0.999	0.598	1.773	0.268	1.837	0.136
a24	0.037	0.174	0.104	0.308	0.046	0.319	0.024
a27	0.195	0.902	0.540	1.602	0.241	1.658	0.123
a32	0.160	0.739	0.298	1.337	0.198	1.359	0.101
a34	0.017	0.078	0.031	0.142	0.021	0.144	0.011
a41	0.021	0.075	0.039	1.211	0.022	0.152	0.016
a42	0.022	0.080	0.042	1.287	0.023	0.162	0.017
a43	0.023	0.083	0.043	1.334	0.024	0.167	0.018
a46	0.026	0.092	0.048	1.485	0.027	0.186	0.020
a47	0.089	0.321	0.168	5.192	0.095	0.651	0.069
a51	0.021	0.026	0.013	0.077	0.047	0.020	0.023
a56	0.345	0.437	0.221	1.291	0.786	0.329	0.382
a61	0.012	0.154	0.078	0.464	0.017	0.115	0.134
a64	0.018	0.239	0.120	0.719	0.026	0.178	0.208
a65	0.041	0.529	0.266	1.588	0.057	0.393	0.461
a67	0.092	1.202	0.604	3.610	0.130	0.894	1.047
a72	0.219	0.013	0.135	1.853	0.270	1.862	0.138
a74	0.005	0.000	0.003	0.041	0.006	0.042	0.003
a76	0.147	0.009	0.091	1.245	0.182	1.251	0.093
d1	1.016	0.151	0.081	0.388	0.021	0.126	0.137
d2	0.059	0.273	0.163	0.484	0.073	0.501	0.037
d3	0.216	1.002	0.403	1.814	0.267	1.841	0.136
d4	0.019	0.069	0.036	1.120	0.020	0.141	0.015
d5	0.469	0.593	0.300	1.753	1.067	0.447	0.519
d6	0.001	0.011	0.005	0.033	0.001	0.008	0.009
d7	0.379	0.024	0.233	3.179	0.468	3.203	0.239
k1	0.174	0.026	0.014	0.066	0.004	0.022	0.024
k2	0.042	0.196	0.117	0.348	0.052	0.360	0.027
k3	0.040	0.185	0.074	0.334	0.049	0.339	0.025
k4	0.017	0.062	0.032	0.994	0.018	0.125	0.013
k5	0.103	0.130	0.066	0.384	0.234	0.098	0.114
k6	0.022	0.290	0.146	0.870	0.031	0.215	0.252
k7	0.006	0.000	0.004	0.048	0.007	0.049	0.004

Fable S11. Local robustness ana	lysis of kinetic	parameters in the normal	l network model with [10% perturbations
---------------------------------	------------------	--------------------------	------------------------	-------------------

Robustness measure LR_i with respect to different outputs							
Parameters	TNFα	IL-1β	TLR2	ΝΓκΒ	CXCL10	IFN-γ	IL10
a14	0.136	0.020	0.011	0.052	0.003	0.017	0.018
a15	0.428	0.064	0.034	0.163	0.009	0.053	0.058
a16	0.277	0.041	0.022	0.106	0.006	0.034	0.037
a23	0.217	0.997	0.597	1.770	0.268	1.835	0.137
a24	0.038	0.174	0.104	0.308	0.046	0.319	0.024
a27	0.196	0.901	0.540	1.598	0.243	1.658	0.124
a32	0.160	0.738	0.297	1.335	0.198	1.357	0.101
a34	0.017	0.078	0.031	0.142	0.021	0.144	0.011
a41	0.021	0.075	0.039	1.211	0.022	0.152	0.016
a42	0.022	0.080	0.042	1.287	0.023	0.162	0.017
a43	0.023	0.083	0.043	1.334	0.024	0.167	0.018
a46	0.026	0.092	0.048	1.486	0.027	0.186	0.020
a47	0.090	0.319	0.170	5.183	0.095	0.650	0.070
a51	0.021	0.026	0.013	0.077	0.047	0.020	0.023
a56	0.345	0.437	0.221	1.291	0.786	0.329	0.382
a61	0.012	0.154	0.078	0.464	0.017	0.115	0.134
a64	0.018	0.239	0.120	0.719	0.026	0.178	0.208
a65	0.041	0.529	0.266	1.588	0.057	0.393	0.460
a67	0.092	1.200	0.603	3.604	0.130	0.893	1.045
a72	0.221	0.016	0.136	1.847	0.273	1.863	0.139
a74	0.005	0.000	0.003	0.041	0.006	0.042	0.003
a76	0.147	0.009	0.091	1.243	0.182	1.249	0.093
d1	1.014	0.151	0.081	0.387	0.021	0.126	0.137
d2	0.059	0.272	0.163	0.484	0.073	0.501	0.037
d3	0.218	1.000	0.403	1.808	0.269	1.841	0.137
d4	0.019	0.069	0.036	1.118	0.020	0.140	0.015
d5	0.468	0.592	0.300	1.751	1.066	0.446	0.518
d6	0.001	0.011	0.005	0.033	0.001	0.008	0.009
d7	0.380	0.040	0.233	3.176	0.469	3.202	0.240
k1	0.174	0.026	0.014	0.066	0.004	0.022	0.024
k2	0.042	0.196	0.117	0.347	0.052	0.360	0.027
k3	0.040	0.185	0.074	0.334	0.049	0.339	0.025
k4	0.017	0.062	0.032	0.994	0.018	0.125	0.013
k5	0.103	0.130	0.066	0.384	0.234	0.098	0.114
k6	0.022	0.289	0.146	0.870	0.031	0.215	0.252
k7	0.006	0.000	0.004	0.048	0.007	0.049	0.004

Dororsstore	Robustness measure LR_i with respect to different outputs									
Parameters	TNFα	IL-1β	TLR2	ΝΓκΒ	CXCL10	IFN-γ	IL10			
a14	0.139	0.021	0.011	0.053	0.003	0.017	0.019			
a15	0.435	0.065	0.035	0.166	0.009	0.054	0.059			
a16	0.282	0.042	0.023	0.107	0.006	0.035	0.038			
a23	0.234	1.017	0.610	1.793	0.289	1.880	0.149			
a24	0.038	0.177	0.106	0.314	0.047	0.325	0.024			
a27	0.202	0.915	0.549	1.630	0.249	1.690	0.127			
a32	0.167	0.751	0.305	1.356	0.207	1.389	0.106			
a34	0.017	0.080	0.032	0.144	0.021	0.146	0.011			
a41	0.021	0.076	0.040	1.232	0.022	0.155	0.016			
a42	0.023	0.081	0.043	1.310	0.024	0.164	0.017			
a43	0.023	0.084	0.044	1.358	0.025	0.170	0.018			
a46	0.026	0.093	0.049	1.511	0.028	0.190	0.020			
a47	0.093	0.319	0.176	5.264	0.096	0.660	0.073			
a51	0.021	0.026	0.013	0.078	0.048	0.020	0.023			
a56	0.351	0.444	0.225	1.314	0.800	0.335	0.389			
a61	0.012	0.157	0.079	0.472	0.017	0.117	0.137			
a64	0.019	0.244	0.123	0.732	0.026	0.181	0.212			
a65	0.042	0.538	0.271	1.617	0.058	0.400	0.469			
a67	0.093	1.224	0.615	3.679	0.132	0.916	1.068			
a72	0.226	0.025	0.138	1.877	0.279	1.895	0.142			
a74	0.005	0.000	0.003	0.042	0.006	0.042	0.003			
a76	0.149	0.013	0.092	1.280	0.185	1.282	0.094			
d 1	1.039	0.155	0.083	0.397	0.022	0.129	0.140			
d2	0.060	0.278	0.166	0.493	0.074	0.511	0.038			
d3	0.222	1.020	0.411	1.845	0.274	1.877	0.140			
d4	0.020	0.071	0.037	1.147	0.021	0.144	0.015			
d5	0.480	0.606	0.307	1.793	1.092	0.458	0.531			
d6	0.001	0.011	0.006	0.033	0.001	0.008	0.010			
d7	0.489	0.176	0.315	3.222	0.596	3.279	0.335			
k1	0.177	0.026	0.014	0.068	0.004	0.022	0.024			
k2	0.043	0.199	0.119	0.354	0.053	0.366	0.027			
k3	0.041	0.188	0.076	0.340	0.050	0.346	0.026			
k4	0.017	0.063	0.033	1.012	0.018	0.127	0.013			
k5	0.105	0.132	0.067	0.391	0.238	0.100	0.116			
k6	0.023	0.295	0.148	0.886	0.032	0.219	0.257			
k7	0.006	0.000	0.004	0.049	0.007	0.050	0.004			

Table S12. Local robustness analysis of kinetic parameters in the normal network model with 20% perturbations

Doromatars		Robustne	LR_i with res	R_i with respect to different outputs					
rarameters	TNFα	IL-1β	TLR2	NFκB	CXCL10	IFN-γ	IL10		
a12	0.030	0.021	0.007	0.003	0.000	0.007	0.005		
a13	0.100	0.070	0.024	0.010	0.001	0.023	0.017		
a15	0.775	0.540	0.189	0.074	0.010	0.178	0.131		
a16	0.115	0.080	0.028	0.011	0.001	0.026	0.020		
a17	0.111	0.078	0.027	0.011	0.001	0.026	0.019		
a21	0.793	3.757	20.731	1.505	0.033	0.701	0.846		
a23	0.146	0.681	3.730	0.278	0.006	0.127	0.155		
a24	0.152	0.703	3.843	0.288	0.006	0.131	0.160		
a26	0.075	0.349	1.911	0.143	0.003	0.065	0.079		
a31	0.735	2.985	20.238	1.394	0.028	0.561	0.729		
a32	1.159	4.983	34.158	2.197	0.045	0.934	1.179		
a34	0.405	1.603	10.811	0.768	0.015	0.302	0.397		
a37	0.014	0.056	0.376	0.027	0.001	0.011	0.014		
a42	0.075	0.294	1.978	0.043	0.002	0.054	0.073		
a43	0.068	0.265	1.786	0.039	0.002	0.049	0.066		
a45	0.023	0.088	0.592	0.013	0.001	0.016	0.022		
a46	0.061	0.240	1.614	0.035	0.002	0.044	0.059		
a47	0.101	0.394	2.657	0.058	0.003	0.073	0.097		
a51	0.163	0.026	0.618	0.017	0.245	0.125	0.079		
a54	0.173	0.028	0.653	0.018	0.259	0.132	0.083		
a56	0.195	0.031	0.737	0.020	0.292	0.149	0.094		
a61	0.018	0.085	0.542	0.005	0.003	0.089	0.055		
a62	0.030	0.144	0.912	0.008	0.005	0.150	0.092		
a64	0.033	0.158	1.003	0.008	0.005	0.165	0.101		
a65	0.072	0.342	2.172	0.018	0.012	0.358	0.219		
a67	0.027	0.127	0.804	0.007	0.004	0.133	0.081		
a71	0.006	0.017	0.110	0.007	0.001	0.015	0.062		
a73	0.004	0.011	0.073	0.004	0.000	0.010	0.041		
a74	0.006	0.018	0.119	0.007	0.001	0.016	0.067		
a76	0.056	0.160	1.056	0.065	0.005	0.142	0.595		
d1	1.040	0.725	0.254	0.100	0.013	0.239	0.176		
d2	1.151	6.048	34.587	2.184	0.051	1.124	1.293		
d3	0.157	0.616	4.145	0.297	0.006	0.116	0.153		
d4	0.403	1.578	10.634	0.233	0.011	0.292	0.390		
d5	0.681	0.111	2.571	0.069	1.022	0.520	0.329		
d6	0.156	0.735	4.656	0.040	0.025	0.769	0.470		
d7	0.078	0.224	1.476	0.090	0.007	0.199	0.833		
kl	0.130	0.091	0.032	0.013	0.002	0.030	0.022		
k2	0.152	0.705	3.855	0.289	0.006	0.132	0.114		
K3	0.11/	0.456	3.001	0.223	0.004	0.086	0.114		
K4	0.076	0.296	1.996	0.044	0.002	0.055	0.073		
k5	0.149	0.024	0.565	0.015	0.224	0.114	0.072		

Table S13. Local robustness analysis of kinetic parameters in the inflammatory network model with 5% perturbations

k6	0.028	0.132	0.840	0.007	0.005	0.139	0.085
k7	0.006	0.018	0.119	0.007	0.001	0.016	0.067

Table S14. Local robustness analysis of kinetic parameters in inflammatory network model with 10% perturbations

Doromata	ra -	Robustn	ess measure	LR_i with res	pect to differer	it outputs	
Faramete	TNFα	IL-1β	TLR2	NFκB	CXCL10	IFN-γ	IL10
a12	0.030	0.021	0.007	0.003	0.000	0.007	0.005
a13	0.102	0.071	0.025	0.010	0.001	0.023	0.017
a15	0.792	0.552	0.193	0.076	0.010	0.182	0.134
a16	0.118	0.082	0.029	0.011	0.002	0.027	0.020
a17	0.114	0.079	0.028	0.011	0.001	0.026	0.019
a21	0.791	3.952	22.217	1.502	0.034	0.736	0.866
a23	0.150	0.707	3.895	0.284	0.006	0.132	0.159
a24	0.155	0.718	3.932	0.294	0.006	0.134	0.163
a26	0.077	0.357	1.956	0.146	0.003	0.067	0.081
a31	0.730	3.187	21.909	1.385	0.029	0.597	0.749
a32	1.157	6.255	44.509	2.194	0.050	1.160	1.320
a34	0.408	1.676	11.387	0.774	0.015	0.315	0.407
a37	0.015	0.057	0.384	0.028	0.001	0.011	0.014
a42	0.077	0.300	2.025	0.044	0.002	0.056	0.074
a43	0.069	0.271	1.830	0.040	0.002	0.050	0.067
a45	0.023	0.090	0.605	0.013	0.001	0.017	0.022
a46	0.063	0.245	1.652	0.036	0.002	0.045	0.061
a47	0.103	0.404	2.723	0.060	0.003	0.075	0.100
a51	0.167	0.027	0.632	0.017	0.251	0.127	0.081
a54	0.176	0.028	0.667	0.018	0.265	0.135	0.085
a56	0.199	0.032	0.753	0.020	0.299	0.152	0.096
a61	0.018	0.087	0.554	0.005	0.003	0.091	0.056
a62	0.031	0.147	0.932	0.008	0.005	0.154	0.094
a64	0.034	0.162	1.025	0.009	0.006	0.169	0.103
a65	0.074	0.350	2.223	0.019	0.012	0.365	0.223
a67	0.027	0.130	0.821	0.007	0.004	0.136	0.083
a71	0.006	0.017	0.113	0.007	0.001	0.015	0.064
a73	0.004	0.011	0.074	0.005	0.000	0.010	0.042
a74	0.006	0.018	0.121	0.007	0.001	0.016	0.068
a76	0.057	0.163	1.079	0.066	0.005	0.146	0.608
d1	1.064	0.741	0.260	0.102	0.014	0.244	0.180
d2	1.174	8.360	51.844	2.230	0.060	1.537	1.563
d3	0.161	0.680	4.659	0.304	0.008	0.126	0.161
d4	0.409	1.627	11.003	0.242	0.011	0.301	0.398
d5	0.696	0.114	2.624	0.070	1.045	0.532	0.336
d6	0.159	0.751	4.759	0.041	0.026	0.787	0.480
d7	0.080	0.228	1.507	0.092	0.007	0.204	0.852
k1	0.133	0.093	0.032	0.013	0.002	0.031	0.023

k2	0.155	0.721	3.943	0.295	0.006	0.135	0.164
k3	0.120	0.466	3.129	0.227	0.004	0.088	0.116
k4	0.077	0.303	2.042	0.045	0.002	0.056	0.075
k5	0.153	0.025	0.578	0.016	0.229	0.117	0.074
k6	0.029	0.135	0.859	0.007	0.005	0.142	0.086
k7	0.006	0.018	0.122	0.007	0.001	0.016	0.069

Table	S15.	Local	robustness	analysis	of	kinetic	parameters	in	inflammatory	network	model	with	20%
pertur	batio	ns											

Doromotora	Robustness measure LR_i with respect to different outputs									
Parameters	TNFα	IL-1β	TLR2	NFκB	CXCL10	IFN-γ	IL10			
a12	0.035	0.025	0.009	0.003	0.000	0.008	0.006			
a13	0.119	0.083	0.029	0.011	0.002	0.027	0.020			
a15	0.925	0.644	0.225	0.089	0.012	0.212	0.157			
a16	0.138	0.096	0.034	0.013	0.002	0.032	0.023			
a17	0.133	0.093	0.032	0.013	0.002	0.030	0.023			
a21	0.863	4.964	29.143	1.651	0.041	0.920	1.018			
a23	0.178	1.164	7.146	0.334	0.018	0.214	0.220			
a24	0.180	0.844	4.634	0.342	0.007	0.158	0.191			
a26	0.090	0.419	2.298	0.170	0.004	0.078	0.095			
a31	0.802	4.038	28.429	1.525	0.035	0.752	0.882			
a32	2.133	41.713	327.518	4.174	0.080	7.440	5.778			
a34	0.461	2.063	14.246	0.873	0.018	0.386	0.478			
a37	0.017	0.067	0.448	0.033	0.001	0.013	0.017			
a42	0.089	0.352	2.378	0.052	0.002	0.065	0.087			
a43	0.081	0.319	2.157	0.047	0.002	0.059	0.078			
a45	0.027	0.105	0.708	0.015	0.001	0.019	0.026			
a46	0.073	0.287	1.938	0.042	0.002	0.053	0.071			
a47	0.120	0.475	3.212	0.071	0.003	0.088	0.117			
a51	0.195	0.031	0.739	0.020	0.293	0.149	0.094			
a54	0.206	0.033	0.780	0.021	0.309	0.157	0.099			
a56	0.232	0.037	0.881	0.024	0.349	0.177	0.112			
a61	0.022	0.102	0.647	0.005	0.003	0.107	0.065			
a62	0.036	0.172	1.092	0.009	0.006	0.179	0.110			
a64	0.040	0.189	1.200	0.010	0.006	0.197	0.121			
a65	0.086	0.411	2.614	0.021	0.014	0.427	0.261			
a67	0.032	0.151	0.959	0.008	0.005	0.158	0.097			
a71	0.007	0.020	0.132	0.008	0.001	0.018	0.074			
a73	0.005	0.013	0.087	0.005	0.000	0.012	0.049			
a74	0.007	0.021	0.142	0.009	0.001	0.019	0.080			
a76	0.066	0.191	1.265	0.077	0.006	0.170	0.710			
dl	1.248	0.870	0.305	0.120	0.016	0.286	0.212			
d2	1.701	26.970	187.356	3.291	0.083	4.841	3.913			
d <i>3</i>	0.206	1.511	11.216	0.380	0.038	0.283	0.269			
04	0.468	1947	10.281	0 295	0015	0.500	0.400			

d5	0.816	0.135	3.061	0.082	1.226	0.624	0.394
d6	0.187	0.881	5.586	0.050	0.030	0.922	0.563
d7	0.093	0.267	1.759	0.108	0.008	0.239	0.998
k1	0.155	0.108	0.038	0.015	0.002	0.036	0.026
k2	0.181	0.846	4.648	0.343	0.008	0.158	0.192
k3	0.140	0.546	3.675	0.265	0.005	0.103	0.136
k4	0.090	0.355	2.399	0.053	0.002	0.066	0.087
k5	0.178	0.029	0.675	0.018	0.268	0.136	0.086
k6	0.033	0.158	1.005	0.008	0.005	0.165	0.101
k7	0.008	0.022	0.142	0.009	0.001	0.019	0.080

Table S16. Global robustness analysis of initial values in normal network model

	Global robust	ness measure GR _i with	n respect to different	
Outputs	initial values perturbations			Average
	5%	10%	20%	-
TNFα	3.49E-09	1.67E-09	9.01E-10	2.02E-09
IL-1β	4.96E-09	2.42E-09	1.32E-09	2.90E-09
TLR2	3.14E-09	1.52E-09	8.28E-10	1.83E-09
NFκB	7.09E-09	3.39E-09	1.86E-09	4.11E-09
CXCL10	3.11E-09	1.49E-09	7.91E-10	1.80E-09
IFN-γ	1.29E-09	5.15E-10	2.87E-10	6.96E-10
IL10	3.41E-09	1.65E-09	8.95E-10	1.99E-09

Table S17. Global robustness analysis of initial values in inflammatory network model

Global robustness measure GR_i with respect to different

Outputs	initial values perturbations			Average
	5%	10%	20%	-
TNFα	1.33E-09	3.36E-10	1.68E-10	6.10E-10
IL-1β	7.39E-09	2.30E-09	1.24E-09	3.64E-09
TLR2	5.27E-08	2.02E-08	1.09E-08	2.79E-08
ΝΓκΒ	2.43E-09	6.13E-10	3.17E-10	1.12E-09
CXCL10	1.12E-10	1.44E-11	7.31E-12	4.46E-11
IFN-γ	1.38E-09	4.04E-10	2.17E-10	6.68E-10
IL10	1.08E-09	9.72E-11	5.50E-11	4.12E-10

Table S18. Global robustness analysis of kinetic parameters in normal network model

	Global robust	ness measure GR _i with	n respect to different	
Outputs		Average		
	5%	10%	20%	-
TNFα	3.60E-09	3.34E-09	1.68E-09	2.87E-09
IL-1β	5.12E-09	4.73E-09	2.38E-09	4.08E-09
TLR2	3.20E-09	2.96E-09	1.49E-09	2.55E-09
NFκB	7.30E-09	6.73E-09	3.39E-09	5.81E-09
CXCL10	3.26E-09	3.02E-09	1.52E-09	2.60E-09
IFN-γ	1.14E-09	1.06E-09	5.42E-10	9.16E-10
IL10	3.52E-09	3.25E-09	1.64E-09	2.80E-09

Table S19. Global robustness analysis of kinetic parameters in inflammatory network model

	Giobal lobasti	1035 medsure OR_l with	i respect to unreferre	
Outputs		Average		
	5%	10%	20%	_
TNFα	2.36E-10	1.57E-10	1.12E-10	1.68E-10
IL-1β	1.55E-09	1.05E-09	7.57E-10	1.12E-09
TLR2	1.35E-08	9.12E-09	6.64E-09	9.77E-09
ΝΓκΒ	4.07E-10	2.66E-10	2.01E-10	2.92E-10
CXCL10	1.12E-11	6.48E-12	4.37E-12	7.36E-12
IFN-γ	2.67E-10	1.83E-10	1.33E-10	1.94E-10
IL10	1.08E-10	5.73E-11	4.11E-11	6.89E-11

Global robustness measure GR_i with respect to different

Table S20. Spearman correlations between the rate of change of the local network entropies of HDAC4 and those of other proteins

	TNFα	IL-1β	TLR2	NFκB	CXCL10	IFN-γ	IL10	COX-2
HDAC4	-1	-0.5	-0.5	-1	-0.5	-0.5	-0.5	-1

Table S21. Descriptions of the proteins selected from published studies

Symbol	Entrez Gene Name	Туре
ABCF1	ATP-binding cassette, sub-family F (GCN20), member 1	transporter
AFAP1L2	actin filament associated protein 1-like 2	other
AIMP1	aminoacyl tRNA synthetase complex-interacting multifunctional protein 1	cytokine
ALOX5	arachidonate 5-lipoxygenase	enzyme
ALOX5AP	arachidonate 5-lipoxygenase-activating protein	other
C3AR1	complement component 3a receptor 1	G-protein coupled receptor
CCL13	chemokine (C-C motif) ligand 13	cytokine
CCL17	chemokine (C-C motif) ligand 17	cytokine
CCL19	chemokine (C-C motif) ligand 19	cytokine
CCL2	chemokine (C-C motif) ligand 2	cytokine
CCL20	chemokine (C-C motif) ligand 20	cytokine
CCL24	chemokine (C-C motif) ligand 24	cytokine
CCL3	chemokine (C-C motif) ligand 3	cytokine
CCL4	chemokine (C-C motif) ligand 4	cytokine
CCL5	chemokine (C-C motif) ligand 5	cytokine
CCL7	chemokine (C-C motif) ligand 7	cytokine
CCR1	chemokine (C-C motif) receptor 1	G-protein coupled receptor
CCR3	chemokine (C-C motif) receptor 3	G-protein coupled receptor
CCR7	chemokine (C-C motif) receptor 7	G-protein coupled receptor
CD14	CD14 molecule	transmembrane receptor
CD40	CD40 molecule, TNF receptor superfamily member 5	transmembrane receptor
CEBPB	CCAAT/enhancer binding protein (C/EBP), beta	transcription regulator
CIITA	class II, major histocompatibility complex, transactivator	transcription regulator
CXCL10	chemokine (C-X-C motif) ligand 10	cytokine
CXCL11	chemokine (C-X-C motif) ligand 11	cytokine
CXCL2	chemokine (C-X-C motif) ligand 2	cytokine
CXCL3	chemokine (C-X-C motif) ligand 3	cytokine

CXCL6	chemokine (C-X-C motif) ligand 6	cytokine
CXCL9	chemokine (C-X-C motif) ligand 9	cytokine
CXCR4	chemokine (C-X-C motif) receptor 4	G-protein coupled receptor
DARC	Duffy blood group, chemokine receptor	G-protein coupled receptor
ELF3	E74-like factor 3 (ets domain transcription factor, epithelial-specific)	transcription regulator
FOS	FBJ murine osteosarcoma viral oncogene homolog	transcription regulator
HDAC4	histone deacetylase 4	transcription regulator
HDAC5	histone deacetylase 5	transcription regulator
HDAC9	histone deacetylase 9	transcription regulator
IFNA2	interferon, alpha 2	cytokine
IFNB1	interferon, beta 1, fibroblast	cytokine
IFNG	interferon, gamma	cytokine
IL29	interferon, lambda 1	cytokine
IKBKB	inhibitor of kappa light polypeptide gene enhancer in B-cells, kinase beta	kinase
IL10	interleukin 10	cytokine
IL13	interleukin 13	cytokine
IL17B	interleukin 17B	cytokine
IL1A	interleukin 1, alpha	cytokine
IL1B	interleukin 1, beta	cytokine
IL1RAP	interleukin 1 receptor accessory protein	transmembrane receptor
IL1RN	interleukin 1 receptor antagonist	cytokine
IL2	interleukin 2	cytokine
IL4	interleukin 4	cytokine
IL5	interleukin 5 (colony-stimulating factor, eosinophil)	cytokine
IL6	interleukin 6 (interferon, beta 2)	cytokine
IL7	interleukin 7	cytokine
IL8	interleukin 8	cytokine
IRAK2	interleukin-1 receptor-associated kinase 2	kinase
IRF3	interferon regulatory factor 3	transcription regulator
ITCH	itchy E3 ubiquitin protein ligase	enzyme
LTA4H	leukotriene A4 hydrolase	enzyme
LY96	lymphocyte antigen 96	transmembrane receptor
MAPK14	mitogen-activated protein kinase 14	kinase
MECOM	MDS1 and EVI1 complex locus	transcription regulator
MEFV	Mediterranean fever	other
C3	complement component 3	chemical - endogenous
05		mammalian
C5	complement component 5	chemical - endogenous
		mammalian
NFATC3	nuclear factor of activated T-cells, cytoplasmic, calcineurin-dependent 3	transcription regulator
NFATC4	nuclear factor of activated T-cells, cytoplasmic, calcineurin-dependent 4	transcription regulator
NFKB1	nuclear factor of kappa light polypeptide gene enhancer in B-cells 1	transcription regulator
NFRKB	nuclear factor related to kappaB binding protein	transcription regulator
NLRP3	NLR family, pyrin domain containing 3	other
NOD1	nucleotide-binding oligomerization domain containing 1	other
PTGS2	prostaglandin-endoperoxide synthase 2 (prostaglandin G/H synthase and	enzyme
PTGS2	cyclooxygenase)	

PTX3	pentraxin 3, long	other
PYCARD	PYD and CARD domain containing	transcription regulator
RIPK2	receptor-interacting serine-threonine kinase 2	kinase
SELE	selectin E	transmembrane receptor
SEDDINIA 2	serpin peptidase inhibitor, clade A (alpha-1 antiproteinase, antitrypsin),	other
SERFINAS	member 3	
TLR1	toll-like receptor 1	transmembrane receptor
TLR2	toll-like receptor 2	transmembrane receptor
TLR3	toll-like receptor 3	transmembrane receptor
TLR4	toll-like receptor 4	transmembrane receptor
TLR5	toll-like receptor 5	transmembrane receptor
TLR6	toll-like receptor 6	transmembrane receptor
TLR7	toll-like receptor 7	transmembrane receptor
TLR9	toll-like receptor 9	transmembrane receptor
TNFα	tumor necrosis factor	cytokine
TNFRSF4	tumor necrosis factor receptor superfamily, member 4	transmembrane receptor
TNFSF10	tumor necrosis factor (ligand) superfamily, member 10	cytokine
TNFSF4	tumor necrosis factor (ligand) superfamily, member 4	cytokine
TOLLIP	toll interacting protein	other
TPST1	tyrosylprotein sulfotransferase 1	enzyme

Table S22. Spearman correlations of the local network entropies between HDAC4, HDAC5, TNFSF10 and three proteins (TNFα, NFκB, COX-2) for HCV infection

	HDAC4	HDAC5	TNFSF10
TNFα	-0.5	-1	0.5
NFκB	-0.5	0.5	-1
COX-2	1	0.5	0.5

Supplementary Text:

Improved conjugate gradient algorithm. We proposed an improved conjugate gradient method (ICG) to solve the optimization problem in the equation (4) in the main text. The detailed procedure of the algorithm was given below.

Algorithm 1: ICG

Step 1: Obtain the initialization point x_0 by using the function *fmincon* in the Matlab toolbox to solve this optimization problem and initialize the iterations to k=0;

Step 2: Compute the objective function value $J_{\alpha}(x_k)$ and the gradient of the objective function as follows:

$$g_k = \nabla J_{\alpha}(x_k) = \Phi_i x_k - Y_i^{\exp} + \alpha x_k;$$

Step 3: If $\|g_k\|_2 < \varepsilon$, then $x^* = x_k$, and the algorithm is terminated. Otherwise, proceed to Step 4.

Step 4: Adopt the Fletcher-Reeves formula to determine the search direction d_k ,

$$d_{k} = \begin{cases} -g_{k} + \beta_{k-1}d_{k-1}, & k \ge 1 \\ -g_{k}, & k = 0 \end{cases}$$

where $\beta_{k-1} = \frac{g_k^T g_k}{g_{k-1}^T g_{k-1}}$.

Step 5: Use the line search method based on Armilo criteria to select the interation size $\alpha_k = \beta^{m_k}$, where m_k is the smallest non-negative integer that satisfies the following inequality:

$$J_{\alpha}(x_{k}+\beta^{m}d_{k}) \leq J_{\alpha}(x_{k})+\sigma\beta^{m}g_{k}^{T}d_{k},$$

where $\beta \in (0, 1)$, and $\sigma \in (0, 0.5)$.

Step 6: $x_{k+1} = x_k + \alpha_k d_k$, k = k+1, and return to Step 2.

Nonlinear ODEs models of the two subnetworks. The ODEs of the two subnetworks are given blow.

(1) The ODEs in inflammatory sub-network

$$\begin{aligned} \frac{dx_1}{dt} &= a_{12}x_2 + \frac{a_{13}x_3^2}{1+x_3^2} + a_{15}x_5 + \frac{a_{16}x_6^2}{1+x_6^2} + \frac{a_{17}x_7^2}{1+x_7^2} - d_1x_1 + k_1 \\ \frac{dx_2}{dt} &= a_{21}x_1 + a_{23}x_3 + \frac{a_{24}x_4^2}{1+x_4^2} + a_{26}x_6 - d_2x_2 + k_2 \\ \frac{dx_3}{dt} &= a_{31}x_1 + a_{32}x_2 + a_{34}x_4 + a_{37}x_7 - d_3x_3 + k_3 \\ \frac{dx_4}{dt} &= \frac{a_{42}x_2^2}{1+x_2^2} + \frac{a_{43}x_3^2}{1+x_3^2} + a_{45}x_5 + a_{46}x_6 + a_{47}x_7 - d_4x_4 + k_4 \\ \frac{dx_5}{dt} &= \frac{a_{51}x_1^2}{1+x_1^2} + \frac{a_{54}x_4^2}{1+x_4^2} + \frac{a_{56}x_6^2}{1+x_6^2} - d_5x_5 + k_5 \\ \frac{dx_6}{dt} &= a_{61}x_1 + a_{62}x_2 + \frac{a_{64}x_4^2}{1+x_4^2} + a_{65}x_5 + a_{67}x_7 - d_6x_6 + k_6 \\ \frac{dx_7}{dt} &= \frac{a_{71}x_1^2}{1+x_1^2} + \frac{a_{73}x_3^2}{1+x_3^2} + \frac{a_{74}x_4^2}{1+x_4^2} + a_{76}x_6 - d_7x_7 + k_7 \end{aligned}$$

(2) The ODEs in normal sub-network

$$\begin{aligned} \frac{dx_1}{dt} &= \frac{a_{14}x_4^2}{1+x_4^2} + a_{15}x_5 + \frac{a_{16}x_6^2}{1+x_6^2} - d_1x_1 + k_1 \\ \frac{dx_2}{dt} &= a_{23}x_3 + \frac{a_{24}x_4^2}{1+x_4^2} + a_{27}x_7 - d_2x_2 + k_2 \\ \frac{dx_3}{dt} &= a_{32}x_2 + a_{34}x_4 - d_3x_3 + k_3 \\ \frac{dx_4}{dt} &= \frac{a_{41}x_1^2}{1+x_1^2} + \frac{a_{42}x_2^2}{1+x_2^2} + \frac{a_{43}x_3^2}{1+x_3^2} + a_{46}x_6 + a_{47}x_7 - d_4x_4 + k_4 \\ \frac{dx_5}{dt} &= \frac{a_{51}x_1^2}{1+x_1^2} + \frac{a_{56}x_6^2}{1+x_6^2} - d_5x_5 + k_5 \\ \frac{dx_6}{dt} &= a_{61}x_1 + \frac{a_{64}x_4^2}{1+x_4^2} + a_{65}x_5 + a_{67}x_7 - d_6x_6 + k_6 \\ \frac{dx_7}{dt} &= a_{72}x_2 + \frac{a_{74}x_4^2}{1+x_4^2} + a_{76}x_6 - d_7x_7 + k_7 \end{aligned}$$

In the above ODEs, x_i (*i*=1, 2, ..., 7) represents the activity of TNF α , IL-1 β , TLR2, NF κ B, CXCL10, IFN- γ and IL10, respectively.

DMGBDE algorithm. The procedure of DMGBDE algorithm is as follows.

Algorithm 2: DMGBDE algorithm

(1): Initialize the population X and compute the corresponding fitness Xf. $MaxFES=n \cdot 10^4$.

- (2): Initialize *FES*= 0, *FlagRenew*=1, *nNIMPROVE*=0 and objective function *Fun*.
- (3): *VF* and *VCR* are initialized to be 0.1+0.8rand(N, 2) and rand(N, 2), respectively.

(4): Option=optimset('LargeScale', 'off', 'HessUpdate', 'bfgs', 'TolFun', 1e-30, 'TolX', 1e-30);

(5): while $FES \leq MaxFES$ do

(6): % Step 1: Perform local search around the searched best individual.

(7): if *FlagRenew*=1 then

(8):
$$[Te, Tef] = QNLS(Fun, X_i, Option, n + \left\lfloor \frac{FES}{MaxFES} MaxITER \right\rfloor);$$

(See the Algorithm 3)

(9): $X_* \leftarrow Te, Xf_* \leftarrow Tef$. Renew *FES*.

(10): FlagRenew=0.

(11): end if

(12): % Step 2: Generate trial individuals by using DMM and renew the population.

- (13): for *i*=1,..., *N* do
- (14): if $rand \leq pDEc$ then

(15):
$$[X, Xf, VF, VCR] = TrialInd(Xf, VF, VCR, 1)$$

(16): else

(17):
$$[X, Xf, VF, VCR] = TrialInd(Xf, VF, VCR, 2).$$

(See the Algorithm 4)

(18): end if

(19):
$$FES \leftarrow FES + 1$$
. Set *FlagRenew*=1 if the best individual has been renewed.

(20): end for

(21): % Step 3: Perform local search around other competitive individuals.

- (22): if the best has not been renewed then
- (23): *nNIMPROVE=nNIMPROVE*+1.
- (24): if *nNIMPROVE*>*NNIMPROVE*

(25): for
$$i = 1, \dots, \min\{\max\{\lfloor 0, 1 \cdot n \rfloor, 3\}, 8\}$$
 do

(26): Choose the (i+1) -th best individual $X_{*(i+1)}$.

(27):
$$[Te, Tef] = QNLS(Fun, X_{*(i+1)}, Option, n + MaxITER);$$

(See the Algorithm 3)

(28):
$$X_{*(i+1)} \leftarrow Te, Xf_{*(i+1)} \leftarrow Tef$$
. Renew *FES*.

- (34): end if
- (35): end while

(1): function [Te, Tef] = QNLS(Fun, x, Option, NumIter)

(2): *Option.MaxIter* = *NumIter*;

(3): [Te, Tef] = fminunc(Fun, x, Option);

Algorithm 4 DMM for generating trial individuals: Sub-algorithm for Algorithm 2

(1): function [X, Xf, VF, VCR] = TrialInd(Xf, VF, VCR, co)

(2): Generate random numbers $rand_1$, $rand_2$ in (0,1).

$$\begin{cases} F = 0.1 + 0.8 rand_1, CR = rand_1 & \text{if } rand_2 \le 0.3 \\ F = VF_{i,co}, CR = VCR_{i,co} & \text{otherwise.} \end{cases}$$

(3): Generate mutation individual:

if
$$co=1$$
, $V_i = X_{r_1}^g + F \cdot (X_{r_2}^g - X_{r_3}^g)$,

if co=2, $V_{i,j}^{(j)} = X_{r_{i},j}^{g} + F \cdot (X_{r_{2},j}^{g} - X_{r_{3},j}^{g})$, where $F \in [0,1]$ is the mutation probability.

(4): Perform crossover operation with equation $U_{i,j} = \begin{cases} V_{i,j}, & \text{if } (rand \le CR) \text{ or } (j = rn_i), \\ X_{i,j}^g, & \text{otherwise} \end{cases}$

and generate trial individual Te.

(5): if
$$Fun(Te) < Xf_i$$
 then

(6):
$$X_i \leftarrow Te, Xf_i \leftarrow Fun(Te)$$

(7):
$$VF_{i,co} \leftarrow F, VCR_{i,co} \leftarrow CR.$$

(8): end if

In the above DMGBDE algorithm, *FES* is the number of function evaluations. | A | means rounding number A to

the nearest integer less than or equal to A. The detailed descriptions for the DMGBDE algorithm are available in the literature¹.

Comparative control study for HCV infection

Data collection. Gene expression profiling of HCV infected Huh7 cells by microarray analysis was retrieved from the Gene Expression Omnibus (GEO) database using the GEO accession number GSE20948^{2,3}. A total of 28 RNA samples were analyzed including 3x mock infected samples taken at 6, 12, 18, 24 and 48 hours post-treatment and 3x JFH-1 infected samples taken at 6, 12, 18, 24 and 48 hours post-infection.

Construction of HCV infection-induced cell-specific normal and inflammatory networks. We applied the same procedure of network construction (Supplementary Fig. S1) to construct the normal and inflammatory

networks with HCV infection, respectively. The average relative errors (AREs) of all nodes are less than 0.1 in the constructed normal and inflammatory networks (Supplementary Fig. S21), suggesting that the accuracy and reliability of the constructed networks.

Both network entropy and other network metrics exhibited no significant differences between the normal and inflammatory networks. Based on the same computational and statistical analysis as in the main text, we found that there are not significant differences in the entropies and the variance of protein expression levels between the normal and inflammatory networks for HCV infection (Supplementary Fig. S16), which is very different from those for IAV infection (Figure 3 and Supplementary Fig. S7). In addition, Supplementary Fig. S17 shows that there are not significant differences in these common network metrics between the normal and inflammatory networks. These results indicated that both the network entropy and other network metrics cannot discriminate normal networks from inflammatory networks for HCV infection.

Identification of protein complexes. We also used the TSN-PCD algorithm⁴ to identify protein complexes during HCV infection. Surprisingly, the protein complex (TNFSF10/HDAC4/HDAC5), which was predicted to be important for controlling IAV-induced inflammation, has not been identified in the normal and inflammatory networks with HCV infection.

Correlations. Compared to the normal network, the local network entropies of the three proteins (TNFSF10, HDAC4, HDAC5) were increased in the inflammatory networks, while those of TNF α , NF κ B and COX-2 were all reduced after HCV infection, which were opposite to those in IAV infection. Moreover, Supplementary Table S22 showed that there were no strong correlations between the entropies of TNFSF10, HDAC4, HDAC5 and those of the three proteins TNF α , NF κ B and COX-2.

In summary, these results suggested that the pathogenesis of HCV infection is quite different from that of IAV infection. Our findings in this study are specific to the pathogenesis of IAV disease. However, our investigation supports the quantitative analysis of applying network-based approaches to elucidate the characteristics of infectious diseases and provide a rationale for developing specific intervention strategies to reduce the risk of infectious diseases. These findings can serve as a significant foundation for further exploring the molecular mechanisms of other infectious diseases and developing control strategies.

- 1. Xie, W., Yu, W. & Zou, X. Diversity-maintained differential evolution embedded with gradient-based local search. *Soft Comput* **17**, 1511-1535(2013).
- Barrett, T. *et al.* NCBI GEO: archive for functional genomics data sets--update. *Nucleic Acids Res* 41, D991-995 (2013).
- 3. Blackham, S. *et al.* Gene expression profiling indicates the roles of host oxidative stress, apoptosis, lipid metabolism, and intracellular transport genes in the replication of hepatitis C virus. *J Virol* **84**, 5404-5414 (2010).
- Li, M., Wu, X., Wang, J. & Pan, Y. Towards the identification of protein complexes and functional modules by. *BMC Bioinformatics* 13, 109 (2012).